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Abstract. We provide examples of transitive partially hyperbolic dynamics

(specific but paradigmatic examples of homoclinic classes) which blend dif-
ferent types of hyperbolicity in the one-dimensional center direction. These

homoclinic classes have two disjoint parts: an “exposed” piece which is poorly

homoclinically related with the rest and a “core” with rich homoclinic rela-
tions. There is an associated natural division of the space of ergodic measures

which are either supported on the exposed piece or on the core. We describe

the topology of these two parts and show that they glue along nonhyperbolic
measures.

Measures of maximal entropy are discussed in more detail. We present

examples where the measure of maximal entropy is nonhyperbolic. We also
present examples where the measure of maximal entropy is unique and non-

hyperbolic, however in this case the dynamics is nontransitive.

1. Introduction

An important task in ergodic theory is to describe the topology of the space
of invariant and/or ergodic measures which are supported on a given invariant
set. Here in many cases the weak∗ topology is considered, though one also studies
convergence in the weak∗ topology and entropy. Recently there happened a certain
revival of this type of problems in the context of nonhyperbolic dynamical systems
[15, 16, 11, 2], most of them revisiting the pioneering work of Sigmund on topological
dynamical systems satisfying the specification property [26, 27].

For a general continuous map F on a metric space Λ, consider the set of F -
invariant Borel probability measures M(Λ) and denote by Merg(Λ) the subset of
ergodic ones. If Λ is compact then M = M(Λ) is a Choquet simplex whose extremal
elements are the ergodic measures. Density of ergodic measures in M implies that
either M is a singleton (when F is uniquely ergodic) or a nontrivial simplex whose
extreme points are dense. In the latter case, it is the so-called Poulsen simplex
and by [22] has immediately a number of further strong properties such as arcwise
connectedness. Sigmund [26, 27] addressed first the questions on the density of
ergodic measures and also the properties of generic invariant measures. He showed
that for a map F satisfying the so-called periodic specification property the periodic
measures (and thus the ergodic ones) are dense in M. Here a measure is periodic
if it is the invariant probability measure supported on a periodic orbit. Moreover,
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the sets of ergodic measures and of measures with entropy zero are both residual
in M. For an updated discussion and more references, see [15].

Observe that Sigmund’s results [26, 27] immediately apply to any basic set of
a smooth Axiom A diffeomorphism. In a (more) general context, to address the
general question if the space M has dense extreme points or at least is connected,
some natural requirements are to be satisfied. An important one is certainly topo-
logical transitivity, which is however far from being sufficient as for example there
exist minimal systems with exactly two ergodic measures.

Nowadays arguments which provide the connectedness of M are largely based on
the approximation of invariant measures by periodic measures or Markov ergodic
measures supported on horseshoes (a specific type of basic set). This demands
that the periodic orbits involved are hyperbolic and somehow dynamically related
among themselves. A natural relation introduced by Newhouse [23], and used in
this context, is the homoclinic relation, that is, the un-/stable invariant sets of these
orbits intersect cyclically and transversally.

A natural strategy is to study the components of the space of measures which
each are candidate to correspond to one of the “elementary” undecomposable pieces
of the dynamics. One of the possibilities to define properly what is meant by
elementary is the homoclinic class, that is, the closure of the hyperbolic periodic
orbits which are homoclinically related to the orbit of a hyperbolic periodic point
P and denoted by H(P ). Note that one of the fundamental properties is that
the dynamics on each class is topologically transitive. Basic sets of the hyperbolic
theory mentioned above are the simplest examples of homoclinic classes.

Notice that, when defining a homoclinic class, taking the closure can incorporate
other orbits which are dynamically related but which are of different type of hyper-
bolicity. In this way, homoclinic classes may fail to be hyperbolic, contain saddles
of different types of hyperbolicity (different u-index, that is, dimension of unstable
manifold), exhibit internal cycles, and support nonhyperbolic measures (also with
positive entropy). Homoclinic classes of periodic points of different indices may
even coincide. Furthermore, there are examples where a homoclinic class H(P ) of
a periodic point P properly contains another class H(P ′) of a periodic point P ′

of the same index as P . Note that this precisely occurs if P ′ ∈ H(P ) was not
homoclinically related to P . One sometimes refers to H(P ′) as an exposed piece of
H(P ) [9]. This type of phenomenon is a key ingredient in this paper. This gives
only a rough idea what complicated structure these classes may have, see also [3,
Chapter 10.4] for a more complete discussion.

To be more precise for the following, we say that an ergodic measure µ is hyper-
bolic if its Lyapunov exponents are nonzero. Moreover, almost all points have the
same number u = u(µ) of positive Lyapunov exponents and we call this number u
the u-index of µ (analogously to hyperbolic periodic measures above). Given u, we
denote by denote by Merg,u the set of ergodic measures of u-index u. Note that in
general one may have Merg,u(H(P )) 6= ∅ for several values of u.

For the following let us study the topological structure of Merg,u(H(P )) for u be-
ing the index of P . Assuming that H(P ) is locally maximal and that all the saddles
of index u are homoclinically related, in [16] it is shown that Merg,u(H(P )) is path
connected with periodic measures being dense and that its closure is a Poulsen sim-
plex. Note that Merg,u(H(P )) may only capture some part of Merg(H(P )). Indeed
this occurs when H(P ) contains saddles of different indices. Still in this context,
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assume now that there coexists a saddle Q of index v 6= u and having the property
that H(Q) ⊂ H(P ) (in an extreme case, these classes can even coincide as sets) and
assume that all the saddles of index v in H(Q) are homoclinically related with Q
and consider Merg,v(H(Q)). Though the interrelation between Merg,u(H(P )) and
Merg,v(H(Q)) is not addressed in [16], note that, by the very definition, they are
disjoint. Nevertheless, their closures may intersect or may not. Indeed, the space
Merg(H(P )) may be connected or may not. To address this point is precisely the
goal of this paper.

We introduce a class of examples of saddles P and Q of different indices whose
homoclinic classes coincide H(P ) = H(Q) = Λ such that Λ is the disjoint union of
two invariant sets Λex (a compact set that is a topological horseshoe) and Λcore.
Moreover, these sets satisfy the following properties: (i) P,Q ∈ Λcore and the closure
of Λcore is the whole homoclinic class, (ii) every pair of saddles of the same index
in Λcore (respectively, Λex) are homoclinically related, and (iii) no saddle in Λcore

is homoclinically related to any one in Λex. We refer to Λex as the exposed piece of
Λ = H(P ) = H(Q) and to Λcore as its core. We study the space Merg(Λ) and show
that it has an interesting topological structure: the set Merg(Λ) has three pairwise
disjoint parts Merg,u(Λ), Merg,v(Λ), v = u+ 1 and u, v are the indices of P and Q,
and Merg(Λex), such that

Merg(Λ) = Merg,u(Λ) ∪Merg,u(Λ) ∪Merg(Λex) ∪Merg,nhyp(Λ)

where Merg,nhyp(Λ) is the set of of nonhyperbolic ergodic measures of Λ. Note that
Merg(Λex) and Merg,nhyp(Λ) may intersect. Moreover, the sets closure(Merg,u(Λ)),
closure(Merg,v(Λ)), and closure(Merg(Λex)), are Poulsen simplices whose intersec-
tion is contained in Merg,nhyp(Λ), see Theorem 2.5. Figure 1 below illustrates the
interrelation between the measure space components.

Merg,u(Λ)Merg,u+1(Λ)

Merg,nhyp(Λ)

Merg(Λex)

δPex δQex

Figure 1. The space Merg(Λ)

Let us say a few additional words about the topological structure of the set
Λ = H(P ) = H(Q). There are two exposed saddles Pex, Qex ∈ Λex of the same
indices such as P and Q, respectively, which are involved in a heterodimensional
cycle (i.e., the invariant sets of these saddles meet cyclically), Indeed, the intersec-
tions of these invariant sets give rise to the exposed piece of dynamics that satisfy
Λex = H(Pex) = H(Qex) ( Λ. We are aware that on one hand this is a quite spe-
cific dynamical configuration, on the other hand it provides paradigmatic examples.
We also observe that this dynamical configuration resembles in some aspects the
so-called Bowen eye (a two dimensional vector field having two saddle singularities
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involved in a double saddle connection) in [14, 29] and the examples due to Kan of
intermingled basins of attractions (where an important property is that the bound-
ary of an annulus is preserved) [18]. Finally, if we considered systems satisfying
some boundary conditions or preserving a boundary, the conditions considered are
quite general.

A particular emphasize is given to the measures of maximal entropy. In some
cases, In some cases, these measures can be nonhyperbolic. We give a (non-
transitive) example where the unique measure of maximal entropy is nonhyperbolic.

Finally, we state of results for step skew products (these examples have dif-
ferentiable realizations as partially hyperbolic sets with one dimensional central
direction) and throughout the paper we do not aim generality, on the contrary
our goal is to make the construction in the simplest setting emphasizing the key
ingredients behind the constructions.

This paper is organized as follows. In Section 2 we state precisely our setting
and our examples and state our main results. In Section 3 we study the “symme-
tries” between certain measures and investigate entropy. In Section 4 we study the
approximation of “boundary measures”. In Section 5 we study the measures sup-
ported in Λcore. In Appendix A we provide details on transitivity and homoclinic
relations in our examples and we analyze examples with nonhyperbolic measures
of maximal entropy.

2. Setting and statement of results

We now define precisely the dynamics that we will study. Consider C1 diffeo-
morphisms f0, f1 : [0, 1]→ [0, 1] satisfying the following properties:

(H1) The map f0 has (exactly) two fixed points f0(0) = 0 and f0(1) = 1, satisfies
f ′0(0) = β > 1 and f ′0(1) = λ ∈ (0, 1).

(H2) The map f1 has negative derivative and satisfies f1(0) = 1 and f1(1) = 0.

The simplest (and also paradigmatic) example occurs when f1(x) = 1− x.

f0

f1

Figure 2. Fiber maps in (2.1)

Let σ : Σ2 → Σ2 be the standard shift map on the shift space Σ2 = {0, 1}Z of
two-sided sequences, endowed with the usual metric. Consider the one step-skew
product map F associated to σ and the maps f0 and f1 defined by

(2.1) F : Σ2 × [0, 1]→ Σ2 × [0, 1], (ξ, x) 7→
(
σ(ξ), fξ0(x)

)
.
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We consider the following F -invariant subsets of Λ
def
= Σ2 × [0, 1]

(2.2) Λex
def
= Σ2 × {0, 1}, Λcore

def
= (Σ2 × [0, 1]) \ Λexc = Σ2 × (0, 1).

We say that Λex is the exposed piece of Σ2 × [0, 1] and that Λcore is the core of
Σ2 × [0, 1] (these denominations are justified below). Note that Λex is a closed
while Λcore is not. Moreover, F |Λex

is topologically transitive. In fact, F |Λex
is

conjugate to a subshift of finite type, one may think this dynamical system as
a horseshoe in a “plane”, in that plane any pair of saddles are “homoclinically
related”.

Remark 2.1 (Topological dynamics on Σ2 × [0, 1]). While the dynamics in Λex is
completely characterized, in our quite general setting very few can be said about the
dynamics of F in Λcore. The most interesting case certainly occurs when F |Λcore

is topologically transitive. Below we will see more specific examples where this
transitivity indeed holds and, moreover, hyperbolic periodic orbits of positive and
negative Lyapunov exponent are both dense in Σ2×[0, 1] and homoclinically related.
We will see that nevertheless the measure space M(Λex) is “semi-detached” from
M(Λcore).

Consider now more specific hypotheses on the C1 diffeomorphisms interval maps
f0, f1 : [0, 1]→ [0, 1]:

(H2’) f1(x) = 1− x.
(H3) The derivative f ′0 is decreasing. Considering the point c ∈ (0, 1) defined by

the condition f ′0(c) = 1, it holds f1 ◦ f2
0 (c) > f2

0 (c).
(H4) The numbers λ and β given in (H1) satisfy

κ def
=
λ2 (1− λ)

β (β − 1)
> 1.

Observe that for fixed λ, the inequality in (H4) holds whenever β is close enough
to 1.

Proposition 2.2. Assume that F defined in (2.1) satisfies the hypotheses (H1),
(H2’), (H3), and (H4). Then F is topologically transitive. Moreover, every pair of
fiber expanding hyperbolic periodic orbits and every pair of fiber contracting hyper-
bolic periodic orbits in Λcore are homoclinically related, respectively.

Remark 2.3 (Discussion of hypotheses). Homoclinic relations for skew products
are recalled in Appendix A, where also the above proposition is proved. Condition
(H4) will provide so-called expanding itineraries which in turn imply the homoclinic
relations and their density for expanding points, while condition (H3) takes care of
so-called contracting itineraries and the corresponding homoclinic relations. Thus,
we conclude transitivity. The proof follows largely blender-like standard arguments
used in [7]. Condition (H2’) is only used for simplicity and also to follow more closely
the model in [13]. The key facts remain true assuming only (H2), in particular we
never use the fact that for (H2’) the map f1 is an involution.

We observe that (H3) and (H4) demand a certain “asymmetry” of the fiber map
f0. In Section A.4 we will provide a “symmetric” example which satisfies (H1) and
for which the associated skew product fails to be transitive and its only measure of
maximal entropy is nonhyperbolic and supported on Λex.

Remark 2.4 (Examples in Σ3 × S1 and Σ2 × S1). We can produce a transitive
example in Σ3×S1 with properties analogous to the one in Proposition 2.2 as follows.
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Obtain S1 by identifying the boundary points of [0, 2]. Define g0, g1, g2 : S1 → S1

as follows

• g0(x) = f0(x) if x ∈ [0, 1] and g0(x) = f0(x− 1) if x ∈ [0, 2).
• g1(x) = f1(x) = 1− x if x ∈ [0, 1] and g1(x) = 3− x if x ∈ [0, 2),
• g2(x) = x + 1 mod 2 (or any appropriate map preserving {0, 1} and inter-

changing the interior of the intervals (0, 1) and (1, 2)).

These maps are depicted in Figure 3. In this case, Λex = Σ3 × {0, 1} and Λcore =
Σ3×((0, 1)∪(1, 2)). We observe that the IFS {g0, g1, g2} does not satisfy the axioms
stated in [10] which would prevent the existence of exposed pieces of dynamics. Al-
though the Axioms Transitivity and CEC (controlled expanding forward/backward
covering) can be verified, the Axiom Accessibility is not satisfied (the points {0, 1, 2}
cannot “be reached from outside”).

Note that the skew product on Σ2 × S1 generated by the fiber maps {g0, g1}
as above is not transitive and has two open “transitive” components Λ−core and
Λ+

core contained in Σ2 × (0, 1) and Σ2 × (1, 2), respectively, which are glued at the
“exposed” piece Σ2 × {0, 1}. The additional map g2 in the previous example just
mixes the two components Λ±core while preserving the exposed piece.

g1

g1

g2

g0

0 1 2

Figure 3. Fiber maps of the example in Remark 2.4

Let M be the space of all F -invariant measures and equip it with the weak∗
topology. It is well known that it is a compact metrizable topological space [30,
Chapter 6.1]. Denote by Merg = Merg(Σ2 × [0, 1]) the subset of ergodic measures.
We denote by Merg(Λex) the ergodic measures supported on Λex and by Merg(Λcore)
the ergodic measures supported on Λcore. Observe that

Merg = Merg(Λcore) ∪Merg(Λex).

We will study this system by separately looking at measures supported on these
two sets. A crucial point for us is how these two components “glue”.

Given X = (ξ, x) ∈ Σk × [0, 1], we consider the (fiber) Lyapunov exponent of the
map F at X which is defined by

χ(X)
def
= lim

n→±∞

1

n
log |(fnξ )′(x)|, where fnξ

def
= fξn−1 ◦ . . . ◦ fξ0 ,

where we assume that both limits exist and are equal. Note that it is nothing but
the Birkhoff average of a continuous function. For every F -ergodic Borel probability
measure µ the Lyapunov exponent is almost everywhere well defined and constant.
This common value of exponents will be called the Lyapunov exponent of µ and
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denoted by χ(µ). An ergodic measure µ is nonhyperbolic if χ(µ) = 0 and hyperbolic
otherwise.

Accordingly, we split the set of all ergodic measures in Λcore and consider the
decomposition

Merg(Λcore) = Merg,<0(Λcore) ∪Merg,0(Λcore) ∪Merg,>0(Λcore)

into measures with negative, zero, and positive fiber Lyapunov exponent, respec-
tively. Analogously, we consider

Merg(Λex) = Merg,<0(Λex) ∪Merg,0(Λex) ∪Merg,>0(Λex).

Properties of the space of measures are summarized in the next theorem. Given
N ⊂M, its closed convex hull is the smallest closed convex set containing N.

Theorem 2.5. Assume that F defined in (2.1) satisfies the hypotheses (H1) and
(H2). Then the space M(Σ2 × [0, 1]) has the following properties:

1. Periodic orbit measures are dense in the closed convex hull of Merg(Λex).
2. Every hyperbolic measure M(Λex) has positive weak∗ distance from M(Λcore).
3. Every nonhyperbolic measure M(Λex) can be weak∗ approximated by periodic

measures in Merg(Λcore).
4. Each of the components Merg,?(Λex), ? ∈ {< 0, 0, > 0} is nonempty.

Moreover, if hypotheses (H2’), (H3), and (H4) additionally hold, then

5. The set Merg,?(Λcore), ? ∈ {< 0, > 0}, is nonempty.
6. The set Merg,<0(Λcore) and the set Merg,>0(Λcore) are arcwise connected,

respectively.

The fact that there are ergodic measures with zero Lyapunov exponent and pos-
itive entropy in Merg(Λcore) can be shown using methods in [1], we refrain from dis-
cussing this here. We also refrain from studying how such measures are approached
by hyperbolic ergodic measures in Merg(Λcore) as this is much more elaborate and
will be part of an ongoing project (see [10] for techniques in a slightly different but
technically simpler context).

f0

f1,t(x) = t(1− x)

t

0 1
Figure 4. Porcupine-like horseshoes.

Remark 2.6 (Porcupine vs. totally spiny porcupine). Let us compare the porcupine-
like horseshoes corresponding to the interval maps in Figure 4 with the “totally
spiny porcupine” discussed here (corresponding to Figure 2). Porcupine-like horse-
shoes were introduced in [12] as model for internal heterodimensional cycles in
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horseshoes. Later these horseshoes were generalized and studied in a series of papers
from various points of view: topological ([7, 8, 9], thermodynamical ([21, 9, 24, 25])
and fractal ([13])1. This line of research is also closely related to the study of so-
called bony attractors and sets (see [17] for a survey and references). One important
motivation to study those models is that they serve as a prototype of partially hy-
perbolic dynamics.

Let us consider the map Ft defined as in (2.1) but with the maps f0, f1,t as in
Figure 4 in the place of f0, f1 in Figure 2. Let Γt be the maximal invariant set of Ft.
In the above cited porcupine-like horseshoes, one also splits the maximal invariant
set Γt (which is nonhyperbolic and transitive) into two parts Γtex and Γtcore in the
same spirit as in (2.2) (and with analogous properties as in Proposition 2.2). In
that case Γtex consists only of one fiber expanding point Q = (0Z, 0) and Γtcore is
its complement that contains the fiber contracting point P = (0Z, 1). The space
of ergodic measures of Γt splits into two components, each of them connected
but at positive distance from each other, which are {δQ} and Merg(Γtcore) (see, in
particular, [21]). In the transition from a porcupine to a totally spiny porcupine
(which occurs at t = 1), the space of ergodic measures becomes connected (stated
in Theorem 2.5) and this happens as follows. The measures δQ and δP form part
of the space of ergodic measures of an abstract horseshoe Λex. At the same time,
the measure δP detaches from Merg(Λcore) which is a consequence of the fact that
the saddle P is not homoclinically related to any saddle in Λcore, similarly for Q.
The components Merg(Λex) and Merg(Λcore) become glued through nonhyperbolic
measures.

Theorem 2.7. Assume that F defined in (2.1) satisfies the hypotheses (H1) and
(H2). Then there is a unique measure µex

max of maximal entropy log 2 in Merg(Λex)
and its Lyapunov exponent is given by

χ(µex
max) =

1

4
(log f ′0(0) + log f ′0(1) + log |f ′1(0)|+ log |f ′1(1)|) .

Moreover, if the measure µex
max is hyperbolic then there exists at least one measure of

maximal entropy in Merg(Λcore). More precisely, if the measure µex
max has positive

(negative) Lyapunov exponent then there exists a measure of maximal entropy with
nonpositive (nonnegative) exponent in Merg(Λcore).

Note that the topological structure of M(Λex) (items 1. and 4. in Theorem 2.7)
are immediate consequences of the fact that the dynamics of F on Λex is conjugate
to a subshift of finite type (see Section 3 for details).

Note that the under the hypotheses of the above theorem, we do not know if the
measure of maximal entropy in Λcore is hyperbolic or not.

Remark 2.8. In view of Theorem 2.7, choosing the derivatives of the fiber maps
at 0 and 1 appropriately, one obtains one measure of maximal entropy µex

max which
is nonhyperbolic. Note that condition (H4) is incompatible with such a choice, and
hence it is unclear if the system is transitive (compare Proposition 2.2).

Similar arguments apply to the examples discussed in Remark 2.4. It is inter-
esting to compare to the results in [28] where maps with “sufficiently high entropy

1The term “porcupine” coined in [7] refers to the rich topological fiber structure of the homo-
clinic class, which is simultaneously composed of uncountable many fibers which are continua and

uncountable many ones which are just points. In this paper, all fibers are full intervals.
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measures” are always hyperbolic, though there a key ingredient is accessibility which
is missing here.

In Appendix A.3, we provide examples where the system is transitive and exhibits
a nonhyperbolic measure of maximal entropy in Merg(Λex), proving the following
theorem.

Theorem 2.9. There are maps F̃ defined as in (2.1) whose fiber maps f̃0, f̃1 satisfy

1. f̃0 has (exactly) two fixed points f̃0(0) = 0 and f̃0(1) = 1, with f̃ ′0(0) = 1 =

f̃ ′0(1),

2. f̃1(x) = 1− x,

such that F̃ is topologically transitive and that every pair of fiber expanding hyper-
bolic periodic orbits and every pair of fiber contracting hyperbolic periodic orbits in
Λcore are homoclinically related, respectively. In particular, the unique measure of
maximal entropy in Merg(Λex) is nonhyperbolic.

Note that in the above theorem this measure is also a measure of maximal
entropy in Merg(Λ), however we do not know if there is some hyperbolic measure
of maximal entropy in Merg(Λ).

Mutatis mutandi, we can perform a version of the map F̃ in Σ3 × S1 as in
Remark 2.4.

Finally, in Appendix A.4 we present an example with a unique measure of max-
imal entropy which is nonhyperbolic and supported on Λex. However this example
fails to be transitive.

Theorem 2.10. There are maps F defined as in (2.1) whose fiber maps f0, f1

satisfy

1. f0 has (exactly) two fixed points f0(0) = 0 and f0(1) = 1, with f ′0(0) = 1 =
f ′0(1),

2. f1(x) = 1− x.

such that F is not topologically transitive and has a unique measure of maximal
entropy supported on Λex, which is nonhyperbolic.

One of the key properties of the class of examples in the above theorem is that
f0 is conjugate to its inverse f−1

0 by f1. The proof of the result is based on an
analysis of random walks on R and of somewhat different flavor.

3. Symmetric, mirror, and twin measures

Recalling well-known facts about shift spaces, we will see that there is a unique
measure of maximal entropy for F |Λex

and we will deduce that, in the case this
measure is hyperbolic, there is (at least) one “twin” measure in Λcore with the
same (maximal) entropy. The latter is either hyperbolic with opposite sign of its
exponent or nonhyperbolic.

Recall that on the full shift σ : Σ2 → Σ2 there is a unique measure ν̂max of
maximal entropy log 2 which is the ( 1

2 ,
1
2 )-Bernoulli measure.

To study the structure of the invariant set Λex, consider the “first level” rectan-

gles Ck
def
= {ξ ∈ Σ2 : ξ0 = k} and the subsets

Ĉ0L
def
= C0 × {0}, Ĉ1L

def
= C1 × {0}, Ĉ0R

def
= C0 × {1}, Ĉ1R

def
= C1 × {1},
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of Σ2 × [0, 1]. Consider the transition matrix A given by

A
def
=


1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

 .

This matrix codes the transitions between the symbols {0L, 1L, 0R, 1R} modelling

the transitions between the sets Ĉ0L , Ĉ1L , Ĉ0R , Ĉ1R by the map F . More precisely,
note that the restriction of F |Λex

is topologically conjugate to the subshift of finite
type σA : ΣA → ΣA by means of a map $ : Λex → ΣA. Note that there is a unique
measure of maximal entropy νex

max for σA : ΣA → ΣA
2. Note that hνex

max
(σ) = log 2.

Hence, by conjugation, the measure µex
max = ($−1)∗ν

ex
max is the unique measure of

maximal entropy log 2 for F : Λex → Λex.
We define the following projection

Π: ΣA → Σ2, Π(. . . i−1.i0 . . .)
def
= (. . . ξ−1.ξ0 . . .),

ξk
def
=

{
0 if ik ∈ {0L, 0R}
1 if ik ∈ {1L, 1R}.

It is immediate to check that

ν̂max = Π∗ν
ex
max.

We say that the symbols iR, jL are the mirrors of iL and jR, respectively,
for i and j in {0, 1} and denote iR = īL and jL = j̄R. Given a sequence ξ =
(. . . ξ−1.ξ0 . . .) ∈ ΣA, we define by ξ̄ = (. . . ¯ξ−1.ξ̄0 . . .) the mirrored sequence of ξ.

Note that ξ̄ ∈ ΣA. Given a subset B ⊂ ΣA, we denote by B̄
def
= {ξ̄ : ξ ∈ B} its

mirrored set.
Now we are ready to define symmetric sets and measures.

Definition 3.1 (Symmetric sets and measures). A measurable set B ⊂ ΣA is
symmetric if B = B̄. We say that B is symmetric ν-almost surely if ν(B∆B̄) = 0.
A measure ν ∈M(ΣA) is symmetric if ν(B̄) = ν(B) for every B ⊂ ΣA. If a measure
is not symmetric then we call it asymmetric. A measure µ ∈M(Λex) is symmetric
if $∗µ is symmetric, otherwise we call it asymmetric.

We denote by Msym
erg (Λex) and Masym

erg (Λex) the sets of symmetric and asymmetric
ergodic measures in Λex, respectively.

We will use the following lemma.

Lemma 3.2. Let ν ∈ M(ΣA) be a symmetric measure. Then any set B ⊂ ΣA
which is ν-almost symmetric satisfies

ν((Π−1 ◦Π)(B)) = ν(B).

Proof. Indeed, by ν-almost symmetry of B, setting C
def
= B ∩ B̄, D

def
= B̄ \ C, and

E
def
= B \C, we have B = E ∪C, ν(C) = ν(C̄) = ν(B) = ν(B̄), and ν(D) = ν(E) =

0. Hence ν(D̄) = ν(D) = 0. Observing that

(Π−1 ◦Π)(B) = B ∪ B̄ = E ∪ C ∪D
the claim follows. �

2Note that this measure is the Parry measure associated to the topological Markov chain σA,
see [30, Theorem 8.10].
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Lemma 3.3. For every ν ∈ Merg(ΣA), there exist at most one measure ν̄ ∈
Merg(ΣA), ν̄ 6= ν, such that Π∗ν̄ = Π∗ν. There is no such measure if, and only if,
ν is symmetric.

Proof. It suffices to observe that the product σ-algebra of Borel measurable sets of
ΣA is generated by the semi-algebra generated by the family of all finite cylinder
sets {[ik . . . i`]}. Note also that the mirror C̄ of a cylinder C in ΣA is again a cylinder

in ΣA. Now given ν ∈ Merg(ΣA), define a measure ν̄ by setting ν̄(C)
def
= ν(C̄) for

every cylinder C and extend it to the generated σ-algebra.
By definition, we immediately obtain that Π∗ν̄ = Π∗ν and that hν̄(σA) =

hν(σA).
To prove that ν and ν̄ are the only ergodic measures satisfying Π∗ν̄ = Π∗ν,

by contradiction assume that there exists ν̂ ∈ Merg(ΣA), ν̄ 6= ν̂ 6= ν satisfying

Π∗ν̂ = Π∗ν. Consider the measure ν̃
def
= 1

2 (ν + ν̄). Note that ν̃ is symmetric. Also
note that Π∗ν̃ = Π∗ν̂. Finally note that ν̃ is singular with respect to ν̂ and hence
there is a set B ⊂ ΣA satisfying ν̃(B) = 0 = ν̂(Bc). Since ν̃ is symmetric, we have
ν̃(B̄) = ν̃(B). So we obtain ν̃(B̄4B) = 0 and hence B is ν̃-almost symmetric.
Hence, we have

0 = ν̃(B)

(by Lemma 3.2 ) = ν̃((Π−1 ◦Π)(B)) = Π∗ν̃(Π(B))

(since Π∗ν̃ = Π∗ν̂ ) = Π∗ν̂(Π(B)) = ν̂((Π−1 ◦Π)(B)) ≥ ν̂(B) = 1,

a contradiction. This proves that ν̄ is uniquely defined.
By definition, ν is symmetric if, and only if, ν̄ = ν. �

Definition 3.4 (Mirror measure). We call the measure ν̄ provided by Lemma 3.3
the mirror measure of ν. We call the measure $−1

∗ ν̄ ∈M(Λex) the mirror measure
of µ = $−1

∗ ν and denote it by µ̄.

The following is an immediate consequence of Lemma 3.3 and the uniqueness of
the measure of maximal entropy.

Corollary 3.5. The measure of maximal entropy µex
max is symmetric.

Lemma 3.6. If µ̄ is a mirror measure of µ ∈ Merg(Λex) then hµ̄(F ) = hµ(F ).
Moreover, we have

χ(µ̄) + χ(µ) = N(0) log(f ′0(0) · f ′0(1)) +N(1) log(f ′1(0) · f ′1(1)),

where N(0)
def
= µ(Σ2 × {0}) and N(1)

def
= µ(Σ2 × {1}).

Proof. Let ν = $∗µ. It suffices to observe that a sequence ξ is ν-generic if, and
only if, ξ̄ is ν̄-generic and to do the straightforward calculation. �

Definition 3.7. Given an ergodic measure µ ∈Merg(Σ2 × [0, 1]), an ergodic mea-
sure µ̃ ∈Merg(Σ2 × [0, 1]), µ̃ 6= µ, is called a twin measure of µ if π∗µ̃ = π∗µ.

Note that the above immediately implies that if µ ∈ Merg(Λex) is symmetric
then all its twin measures are in Merg(Λcore).

Lemma 3.8 (Existence of twin measures). For every measure λ ∈ M(Σ2) there
exist a measure µ1 ∈ M(Σ2 × [0, 1]) satisfying π∗µ1 = λ and χ(µ1) ≥ 0 and a
measure µ2 ∈M(Σ2 × [0, 1]) satisfying π∗µ2 = λ and χ(µ2) ≤ 0.

Moreover, if λ was ergodic then µ1 and µ2 can be chosen ergodic.
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Note that the measures µ1 and µ2 in the above lemma may coincide.

Proof. First observe that λ ∈ M(Σ2) is weak∗ approximated by measures λ` ∈
M(Σ2) supported on periodic sequences.

For each such measure λ` there exists a measure µ` ∈ M(Σ2 × [0, 1]) which is
supported on a F -periodic orbit in Σ2× [0, 1] and satisfies π∗µ` = λ` and χ(µ`) ≥ 0.
Indeed, assume that λ` is supported on the orbit of a periodic sequence ξ ∈ Σ2 of
period n. Recall that the fiber maps f0 and f1 and hence the map fnξ preserve

the boundary {0, 1}. Hence, this map fnξ has a fixed point x ∈ [0, 1] satisfying

|(fnξ )′(x)| ≥ 1. Now observe that the orbit of (ξ, x) is F -periodic of period n and

taking the measure µ` supported on it we have 1
n log |(fnξ )′(x)| = χ(µ`).

Now take any weak∗ accumulation point µ of the sequence (µ`)`. Note that by
continuity of π∗ we have π∗µ = λ.

If λ was ergodic, µ might not be ergodic. However, any ergodic measure in
the ergodic decomposition of µ also projects to λ and hence there must exist one
measure µ′ in this decomposition satisfying χ(µ′) ≥ 0.

The same arguments work for the case χ(·) ≤ 0. �

Corollary 3.9. For every hyperbolic symmetric ergodic measure µ ∈ Merg(Λex)
there exists an ergodic twin measure µ̃ ∈ Merg(Σ2 × (0, 1)), µ̃ 6= µ, satisfying
hµ̃(F ) = hµ(F ).

Proof. Assume that χ(µ) > 0, the other case χ(µ) < 0 is analogous. Let λ
def
= π∗µ.

By Lemma 3.8, there exists a twin measure µ̃ ∈ Merg(Σ2 × [0, 1]) of µ satisfying
χ(µ̃) ≤ 0. Note that hπ∗µ̃(σ) ≤ hµ̃(F ) and hπ∗µ(σ) ≤ hµ(F ). On the other hand,
by [20]

max{hµ(F ), hµ̃(F )} ≤ sup
m : π∗m=π∗µ

hm(F ) = hπ∗µ(σ) +

∫
htop(F, π−1(ξ)) dπ∗µ(ξ).

Since π is 2-1, we have htop(F, π−1(ξ)) = 0 for every ξ. Thus, we conclude hµ(F ) =
hµ̃(F ) = hπ∗µ(σ).

By conjugation $ between F |Λex
and σA|ΣA , there can be at most one other

ergodic measure in Merg(Λex) which project to the same measure on Σ2, namely
$−1
∗ ν̄, where ν = $−1

∗ µ and ν̄ is the mirror measure of ν. For symmetric µ, no
such mirror exists. Hence, we must have µ̃ ∈Merg(Σ2 × (0, 1)). �

By Corollary 3.5, the above applies in particular to µex
max.

Corollary 3.10. If the measure of maximal entropy µex
max ∈Merg(Λex) is hyperbolic

then there exists an ergodic twin measure of maximal entropy µ̃ ∈Merg(Λcore) such
that χ(µ̃)χ(µex

max) ≤ 0.

Proof of Theorem 2.7. As recalled already, there is a unique measure of maximal
entropy for F |Λex

and its Lyapunov exponents can be easily calculated. The fact
that there may exist another measure of maximal entropy for F |Λcore

follows imme-
diately from Corollary 3.10. �

4. Approximations of boundary measures

This section discusses the approximation of measures in M(Λex) by (ergodic)
measures in M(Λcore). In particular, we will complete the proof of Theorem 2.5.
We will always work with the system satisfying hypotheses (H1) and (H2).
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Recall again that M equipped with the weak∗ topology it is a compact metrizable
topological space [30, Chapter 6.1]. Recall that X ∈ Σ2×[0, 1] is a generic point of a
measure µ ∈M(Σ2× [0, 1]) if the sequence 1

n (δX +δF (X) + . . .+δFn−1(X)) converges
to µ in the weak∗ topology, where δY denotes the Dirac measure supported in Y .
Recall that for every ergodic measure there exists a set of generic points with full
measure.

Given δ ∈ (0, 1/2), we consider the local distortion map

(4.1) ∆(δ)
def
= max

i=0,1

{
max
z∈[0,δ]

∣∣∣∣log
|f ′i(z)|
|f ′i(0)|

∣∣∣∣ , max
z∈[1−δ,1]

∣∣∣∣log
|f ′i(z)|
|f ′i(1)|

∣∣∣∣} .
Note that ∆(δ)→ 0 as δ → 0. We state the following simple facts without proof.

Lemma 4.1. For every δ ∈ (0, 1/2) and every x ∈ [0, δ] we have

e−∆(δ) ≤ f ′i(x)

f ′i(0)
,
f ′i(1− x)

f ′i(1)
≤ e∆(δ)

and

e−∆(δ) ≤ |fi(x)− fi(0)|
|x||f ′i(0)|

,
|fi(1− x)− fi(1)|
|1− (1− x)||f ′i(1)|

≤ e∆(δ).

Proposition 4.2. For every µ ∈M(Λex) satisfying χ(µ) = 0 there exists a sequence
(µk)k ⊂ Merg(Λcore) of measures supported on periodic orbits which converge to µ
in the weak∗ topology.

Proof. Let µ be an invariant measure supported in Λex and satisfying the hypothesis
χ(µ) = 0 and let X = (ξ, x) ∈ Λex be a µ-generic point. Hence χ(X) = 0. Note
that ξ hence has infinitely many symbols 1 by our hypothesis f ′0(0) 6= 1 6= f ′0(1).
Hence, without loss of generality, we can assume that x = 1.

Given the sequence ξ = (. . . ξ−1.ξ0ξ1 . . .), for n ≥ 1 define

pn
def
= card

{
i ∈ {0, . . . , n− 1} : ξi = 0, card{j < i : ξj = 1} even

}
,

qn
def
= card

{
i ∈ {0, . . . , n− 1} : ξi = 0, card{j < i : ξj = 1} odd

}
,

rn
def
= card

{
i ∈ {0, . . . , n− 1} : ξi = 1, card{j < i : ξj = 1} even

}
,

sn
def
= card

{
i ∈ {0, . . . , n− 1} : ξi = 1, card{j < i : ξj = 1} odd

}
.

Note that n = pn + qn + rn + sn. Let

(4.2) φ(n)
def
= pn log |f ′0(1)|+ qn log |f ′0(0)|+ rn log |f ′1(1)|+ sn log |f ′1(0)|.

Observe that φ(n) = log |(fnξ )′(1)| and hence χ(X) = 0 implies

lim
n→∞

φ(n)

n
= 0.

Let
ψ(n)

def
= max

i=1,...,n
|φ(i)|

and note that

(4.3) lim
n→∞

ψ(n)

n
= 0.

Let B = {0, 1}. Given a fiber point x0 ∈ (0, 1) let us use the following notation of
its orbit under the fiber dynamics determined by the sequence ξ:

(4.4) xi
def
= f iξ(x0).
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Partially affine case: To sketch the idea of the proof, assume for a moment that
f0|Iδ and f1|Iδ are affine, where Iδ = [0, δ] ∪ [1 − δ, 1] for some small δ > 0. Note
that for given n and a point x0 ∈ [1− δ, 1) satisfying

(4.5) xi ∈ Iδ for all i ∈ {0, . . . , n− 1}

we have

(4.6)
Dist(xi+1, B)

Dist(xi, B)
= eφ(i+1)−φ(i),

where Dist(x,B) denotes the distance of x from a set B. Hence

Dist(xn, B)

Dist(x0, B)
= eφ(n).

This implies

(4.7) e−ψ(n) ≤ Dist(xi, B)

Dist(x0, B)
≤ eψ(n) for all i ∈ {0, . . . , n}.

Note that (4.5) is satisfied provided x0 was chosen to satisfy Dist(x0, B) < δe−ψ(n).
Note that e−ψ(n) may not converge to 0. For this reason, let us choose

(4.8) δ(n)
def
= δe−2 max{ψ(n),

√
n}.

Note that

(4.9) lim
n→∞

δ(n)eψ(n) = 0.

Let now n be a sufficiently large integer such that card{j ≤ n − 1: ξj = 1} is
odd. Note that this implies fnξ is orientation reversing. Let N(n) be the smallest

positive integer such that x0
def
= f

N(n)
0 (1/2) ∈ [1− δ(n), 1). Note that

(4.10) N(n) ∼ |log δ(n)|,

where the approximation is up to some universal multiplicative factor, independent

on n. Note that f
N(n)
0 is orientation preserving. We now apply the above arguments

to the chosen point x0. We consider the sequence (xi)
n
i=0 as defined in (4.4). First,

note that Dist(x0, B) ∼ δ(n) and with (4.7) we have

δ(n)e−ψ(n) ≤ xi ≤ Dist(x0, B)eψ(n) ≤ δ(n)eψ(n) for all i ∈ {0, . . . , n}.

Further note that xn by our choice of n is close to 0. Then let M(n) be the

smallest positive integer such that f
M(n)
0 (xn) ≥ 1/2. Note that f

M(n)
0 is orientation

preserving. Note that

(4.11) M(n) ∼ |log δ(n) + ψ(n)|.

Now consider the map g
def
= f

M(n)
0 ◦ fnξ ◦ f

N(n)
0 and note that it reverses orientation.

Hence, there exists a point y in the fundamental domain [1/2, f0(1/2)) such that
g(y) = y. Note that by the estimates of N(n) and M(n) in (4.10) and (4.11) and
our choice of δ(n) in (4.8) and by (4.3) we have

(4.12) lim
n→∞

N(n) +M(n)

n
= 0.

We now consider the (invariant) measure µn,δ supported on the periodic orbit of

the point Y = (η, y), where η = (0N(n)ξ0 . . . ξn−10M(n))Z. It remains to show that
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this measure is close to µ in the weak∗ topology provided that n was big. Note
that we can write µn,δ as

µn,δ =
N(n)

N(n) + n+M(n)
µ1+

+
n

N(n) + n+M(n)

1

n

n−1∑
k=0

δFN(n)+k(Y ) +
M(n)

N(n) + n+M(n)
µ2,

where µ1 and µ2 are some probability measures. Note that by (4.12) the first and the
last term converges to 0 as n tends to ∞. The second term is close to µ because X
was a µ-generic point and the orbit piece {FN(n)(Y ), FN(n)+1(Y ), . . . , FN(n)+n(Y )}
is δ(n)eψ(n)-close to the orbit piece {X,F (X), . . . , Fn(X)}. Recalling (4.9), this
completes the proof in the affine case.

General case: In the nonaffine case the proof goes similarly. Applying Lemma 4.1,
we choose the number δ(n) in an appropriate way. First note that instead of (4.6)
by this lemma we have

Dist(xi+1, B)

Dist(xi, B)
≤ eφ(i+1)−φ(i)e∆(δ).

Arguing as above, let now

δ(n)
def
= δe−2 max{ψ(n),

√
n}e−n∆(δe−

√
n).

Observe that with this choice, for every x0 ∈ [1 − δ(n), 1) for every i ∈ {1, . . . , n}
we have

Dist(xi, B) ≤ δ(n)eφ(i)ei∆(δe−
√
n) ≤ δe−

√
n

provided that Dist(xj , B) ≤ δe−
√
n for all j ∈ {0, . . . , i− 1}. By induction, we will

get that for all i ∈ {0, . . . , n} we have

Dist(xi, B) ≤ δe−
√
n.

Note that with the above definition of δ(n) the estimates of N(n) and M(n) in
(4.10) and (4.11) remain without changes. And the rest of the proof is analogous
to the partially affine case. �

We now prove the converse to Proposition 4.2.

Proposition 4.3. For every µ ∈M(Λex) for which there exists a sequence (νk)k ⊂
M(Λcore) of measures which converge to µ in the weak∗ topology we have χ(µ) = 0.

The proof of the above proposition will be an immediate consequence of the
following lemma. Recall the definition of ∆(·) in (4.1).

Lemma 4.4. There exist constants K1,K2 > 0 such that for every δ ∈ (0, 1/2)
and every measure ν ∈M(Λcore) we have

|χ(ν)| ≤ K1ν(Σ2 × [δ, 1− δ]) +K2∆(δ).

Proof. Note that it is enough to prove the claim for ν ∈ M(Λcore) being ergodic.
Indeed, for a general invariant measure ν ∈ M(Λcore) with ergodic decomposition
ν =

∫
νθ dλ(νθ), applying the above claim to any (ergodic) νθ in this decomposition

we have

χ(ν) =

∫
χ(ν) dλ(νθ) ≤ K1ν(Σ2 × [δ, 1− δ]) +K2∆(δ)
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with the analogous lower bound.
Let us hence assume that ν ∈ M(Λcore) is ergodic. Since ν is not supported on

Λex, there exists δ′ ∈ (0, δ) such that ν(Σ2 × [δ′, 1 − δ′]) > 0. Let X = (ξ, x) be
a generic point for ν satisfying x ∈ [δ′, 1 − δ′] and consider the sequence of points

xi
def
= f iξ(x) for i ≥ 0. Since ν is ergodic, there are infinitely many n ≥ 0 such that

xn ∈ [δ′, 1− δ′] and hence

(4.13) 2δ′ ≤ Dist(xn, B)

Dist(x0, B)
≤ 1

2δ′
,

where B = {0, 1}. Because X is a generic point, given any ε, for n large enough we
have ∣∣∣ 1

n
log |(fnξ )′(x)| − χ(ν)

∣∣∣ ≤ ε
and also

(4.14)
∣∣∣ 1
n

card{i ∈ {0, . . . , n− 1} : xi ∈ [δ, 1− δ]} − ν(Σ2 × [δ, 1− δ])
∣∣∣ ≤ ε.

Applying Lemma 4.1, we have

eω(i+1)e−∆(δ) ≤ Dist(xi+1, B)

Dist(xi, B)
≤ eω(i+1)e∆(δ) if xi ∈ (0, δ] ∪ [1− δ, 1),

eω(i+1)K−1 ≤ Dist(xi+1, B)

Dist(xi, B)
≤ eω(i+1)K if xi 6∈ (0, δ] ∪ [1− δ, 1),

where K > 1 is some universal constant and

ω(i)
def
=


log |f ′ξi(0)| if xi−1 ∈ (0, δ],

log |f ′ξi(1)| if xi−1 ∈ [1− δ, 1),

0 otherwise.

By a telescoping sum, we have

Dist(xn, B)

Dist(x0, B)
=

n−1∏
i=0

Dist(xi+1, B)

Dist(xi, B)
.

We split the index set {0, . . . , n−1} = I1∪I2 according to the rule that xi ∈ [δ, 1−δ]
for all i ∈ I1 and xi 6∈ [δ, 1− δ] for all i ∈ I2. Let

φ(n)
def
=

n∑
i=1

ω(i)

and note that this function was also used in the previous proof, see (4.2). By the
above estimates, we hence have

eφ(n)K− card I1 · e−∆(δ) card I2 ≤ Dist(xn, B)

Dist(x0, B)
≤ eφ(n)Kcard I1 · e∆(δ) card I2 .

This implies

(4.15) eφ(n) ≤ Dist(xn, B)

Dist(x0, B)
Kcard I1 · e∆(δ) card I2 .

Again applying Lemma 4.1, if Dist(xi, B) < δ then we have

|(fξi+1
)′(xi)| ≤ eω(i+1)e∆(δ)
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and if Dist(xi, B) ≥ δ then we have

|(fξi+1
)′(xi)| ≤ eω(i+1)L

for some universal L > 1. Hence, decomposing the orbit piece (xi)
n−1
i≥0 as above

into index sets I1 and I2, we obtain

|(fnξ )′(x)| ≤ eφ(n)Lcard I1 · e∆(δ) card I2

with the analogous lower bound.
By (4.14), we have card I1 ≤ n(ν(Σ2 × [δ, 1− δ]) + ε).
Substituting the estimate for eφ(n) in (4.15) we obtain

|(fnξ )′(x)| ≤ Dist(xn, B)

Dist(x0, B)
(KL)card I1 · e2∆(δ) card I2 ≤ 1

2δ′
(KL)card I1 · e2∆(δ) card I2 ,

where we also used (4.13). Hence

1

n
log |(fnξ )′(x)| ≤ 1

n
|log(2δ′)|+ log(KL)

(
ν(Σ2 × [δ, 1− δ]) + ε

)
+ 2∆(δ),

with the analogous lower bound. Since |log |(fnξ )′(x)|/n−χ(ν)| ≤ ε, passing n→∞
and then ε→ 0 this ends the proof of the lemma. �

Proof of Theorem 2.5. Item 1 is a well-known fact, see for example [26, Proposition
2 item (a)]. This fact implies that Merg(Λex) is a Poulsen simplex (see [22] or in the
particular case of the shift space [27]). Item 4 is then an immediate consequence
from the facts that µ 7→ χ(µ) is continuous and that the Dirac measure on (0Z, 0) has
Lyapunov exponent log f ′0(0) > 0 and the Dirac measure on (0Z, 1) has Lyapunov
exponent log f ′0(1) < 0 together with the fact that Merg(Λex) is path-connected.

Item 2 follows from Proposition 4.3.
Item 3 follows from Proposition 4.2.
Let us now assume (H1), (H2’), (H3), and (H4). By Lemmas A.3 and A.5

there exist hyperbolic periodic points in Λcore with positive and negative exponent,
respectively. This proves item 5. By Proposition 2.2 we can apply 5.1. This implies
item 6. �

5. The core measures

In this section we will investigate a bit further the topological structure of
Merg(Λcore). The overall hypotheses are again (H1) and (H2), and we will dis-
cuss further additional conditions under which we are able to say more than in the
previous sections.

Proposition 5.1. Assume that every pair of fiber expanding hyperbolic periodic
orbits in Λcore are homoclinically related. Then the set Merg,>0(Λcore) is arcwise-
connected. The analogous result holds true for fiber contracting hyperbolic periodic
orbits in Λcore and the set Merg,<0(Λcore).

A map F whose fiber maps f0, f1 satisfy the hypotheses (H1), (H2’), (H3), and
(H4) will satisfy the hypotheses of the above proposition.

We will several times refer to a slightly strengthened version of [5, Proposition
1.4] which, in fact, is contained in its proof in [5] and which can be seen as an ersatz
of Katok’s horseshoe construction (see [19, Supplement S.5]) in the C1 dominated
setting. We formulate it in our setting. Note that to guarantee that the approxi-
mating periodic orbits are indeed contained in Σ2× (0, 1) it suffices to observe that
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in the approximation arguments one can consider any sufficiently large (in measure
µ) set and hence restrict to points which are uniformly away from the “boundary”
Σ2 × {0, 1}. Indeed, the projection to [0, 1] of the support of µ can be the whole
interval [0, 1] but it does not “concentrate” in {0, 1}.

Lemma 5.2. Let ? ∈ {< 0, > 0} and µ ∈Merg,?(Λcore).
Then for every ρ ∈ (0, 1) there exist α > 0 and a set Γρ ⊂ Σ2× (2α, 1− 2α) and

a number δ = δ(ρ, µ) > 0 such that µ(Γρ) > 1− ρ and for every point X ∈ Γρ there
is a sequence (pn)n ⊂ Σ2 × (α, 1− α) of hyperbolic periodic points such that:

• pn converges to X as n→∞;
• the invariant measures µn supported on the orbit of pn are contained in

Merg,?(Λcore) and converge to µ in the weak∗ topology;

Proof of Proposition 5.1. Similar results were shown before, though in slightly dif-
ferent contexts (see [16] and [11, Theorem 3.2]). For completeness, we sketch the
proof.

Assume that µ0, µ1 ∈Merg,>0(Λcore). By Lemma 5.2, µi is accumulated by a se-
quence of hyperbolic periodic measures νin ∈Merg,>0(Λcore) supported on the orbits
of fiber expanding hyperbolic periodic points P in ∈ Λcore, i = 0, 1. Since, by hypoth-

esis, P 0
1 and P 1

1 are homoclinically related, there exists a horseshoe Γ0,1
1 ⊂ Λcore con-

taining these two points. Hence, since M(Γ0,1
1 ) is a Poulsen simplex [22, 27], there is

a continuous arc µ0 : [1/3, 2/3] → Merg,>0(Γ0,1
1 ) ⊂ Merg,>0(Λcore) joining the mea-

sures ν0
1 and ν1

1 . For any pair of measures ν0
n, ν

0
n+1, the same arguments apply and,

in particular, there exists a continuous arc µ0
n : [1/3n+1, 1/3n] → Merg,>0(Λcore)

joining the measure ν0
n with ν0

n+1. Using those arcs and concatenating their domains
(or appropriate parts of), we can construct an arc µ̄0

n : [1/3n+1, 1/3] joining ν0
n+1

and ν0
1 . The same applies to the measures ν1

n, defining arcs µ̄1
n : [1 − 1/3n, 2/3] →

Merg,>0(Λcore) joining ν1
n+1 and ν1

1 . Defining µ∞|(0,1) : (0, 1) → Merg,>0(Λcore)
by concatenating (appropriate parts of) the domains of those arcs, we complete
the definition of the arc µ∞ by letting µ∞(0) = limn→∞ µ̄0

n(1/3n) and µ∞(1) =
limn→∞ µ̄1

n(1 − 1/3n), joining µ0 and µ1. Note that in the last step we assume
that µ1, µ2 do not belong to the image of µ∞, if one of these measures belongs it is
enough to cut the domain of definition of µ∞ appropriately. �

Appendix A. Transitivity and homoclinic relations. Proof of
Proposition 2.2

In this appendix we prove Proposition 2.2. Hence, we will always assume that
hypotheses (H1), (H2’), (H3), (H4) are satisfied.

A.1. The underlying IFS. Studying the iterated function system (IFS) associ-
ated to the maps {f0, f1}, we use the following notations. Every sequence ξ =

(. . . ξ−1.ξ0ξ1 . . .) ∈ Σ2 is given by ξ = ξ−.ξ+, where ξ+ ∈ Σ+
2

def
= {0, 1}N0 and

ξ− ∈ Σ−2
def
= {0, 1}−N. Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0... ξn]
def
= fξn ◦ · · · ◦ fξ1 ◦ fξ0 and

f[ξ−m... ξ−1.]
def
= (fξ−1

◦ . . . ◦ fξ−m)−1 = (f[ξ−m... ξ−1])
−1.
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A.1.1. Expanding itineraries. Under hypotheses (H1) and (H4) there are a positive
number ε arbitrarily close to 0, a positive integer N(ε), and fundamental domains
I0(ε) = [ε, f0(ε)] and I1(ε) = [1− ε, f0(1− ε)] of f0 having the following properties3

(A.1) f
N(ε)
0 (I0(ε)) = I1(ε) and (f

N(ε)
0 )′(x) ≥ λ−1κ > 1 for all x ∈ I0(ε).

In what follows we fix small ε > 0 satisfying the above conditions and for simplicity
we write I0, I1, and N instead of I0(ε), I1(ε), and N(ε).

Our construction now is analogous to the one in [8]. We sketch the main steps
for completeness. Assuming additionally (H2’), given an interval H ⊂ f−1

0 (I0)∪ I0
we let N(H) = N if H ⊂ I0 and N(H) = N + 1 otherwise and consider the
interval f[0N(H)1](H). By construction, this interval is contained in [δ(ε), ε], where

δ(ε) = 1−f2
0 (1−ε). Note that, by construction, δ(ε) < ε. Therefore there is a first

M(H) such that
f[0N(H)10M(H)](H) ∩ (ε, f0(ε)] 6= ∅.

The expanded successor of H is the interval H ′
def
= f[0N(H)10M(H)](H). The expand-

ing return sequence of H is the finite sequence 0N(H)10M(H) By construction the
interval H ′ intersects the interior of I0 and is contained in [δ(ε), f0(ε)]. Also ob-
serve that there is M such that M(H) ∈ {1, . . . ,M} for every subinterval H in
f−1

0 (I0) ∪ I0. The following lemma justifies our terminology expanded successor.

Lemma A.1 (Expanding itineraries [8, Lemma 2.3]). For every closed subinterval
H of f−1

0 (I0) ∪ I0 and every x ∈ H it holds∣∣(f[0N(H)10M(H)]

)′
(x)
∣∣ ≥ κ > 1.

Proof. By (A.1) and the choice of H we have
∣∣(f[0N(H)])

′(x)
∣∣ ≥ κ for all x ∈ H.

The assertion follows noting that f1(x) = 1−x, (f[0N(H)1])(x) ∈ [0, ε] if x ∈ H, and

f ′0(y) > 1 if y ∈ [0, ε]. �

Lemma A.1 and an inductive argument immediately implies the following:

Lemma A.2 ([8, Lemma 2.3]). For every closed subinterval H of f−1
0 (I0)∪I0 there

is a finite sequence (ξ0 . . . ξ`(H)) such that

1.
∣∣(f[ξ0... ξ`(H)]

)′
(x)
∣∣ ≥ κ for every x ∈ H and

2. f[ξ0... ξ`(H)]
⊃ f−1

0 (I0).

Proof. Write H0 and let H1 = H ′0 be its expanding successor. We argue recursively,
if H1 contains f−1

0 (I0) we stop the recursion, otherwise we observe that |H1| ≥
κ|H0| and consider the expanding successor H2 = H ′1. Since Hi ≥ κi|H0| there is
a first i such that Hi contains f−1

0 (I0). We let (ξ0 . . . ξ`(H)) be the concatenation
of the successive expanding returns. �

Given a set H ⊂ [0, 1] denote its forward orbit by the IFS by

O+(H)
def
=
⋃
k≥0

⋃
(ξ0... ξk)∈{0,1}k+1

f[ξ0... ξk](H).

A special case occurs when the set H is a point.

3Just note that, by the mean value theorem, there is z ∈ I0(ε) with (f
N(ε)
0 )′(z) =

|I1(ε)|/|I0(ε)|, that by monotonicity of the derivative of f ′0 we have (f
N(ε)
0 )′(f0(z)) ≥

λ |I1(ε)|/(β |I0(ε)|) and that (f
N(ε)
0 )′(x) ≥ (f

N(ε)
0 )′(f0(z)) for all x ∈ I0(ε), and that for small ε

we have |I0(ε)| ' (β − 1) ε and |I1(ε)| ' (1− λ) ε.
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Lemma A.3. For every point p ∈ (0, 1) there are a small neighborhood I(p) of p
and a finite sequence η0 . . . ηr, r = r(I(p)), such that

(1) f[η0...ηr](I(p)) ⊃ I(p),

(2)
∣∣(f[η0...ηr])

′(x)
∣∣ > 1 for all x ∈ I(p), and

(3) O+(I(p)) = (0, 1).

Proof. Without loss of generality (considering some backward iterate of p and pos-
sibly shrinking ε) we can assume that p ∈ (f−1

0 (ε), ε]. Let us suppose, for simplicity
that p 6= ε (the case p = ε would require a small additional step). In such a case
we can take I(p) ⊂ (f−1

0 (ε), ε) and apply Lemma A.2 to H = I(p). This gives
conditions (1) and (2) in the lemma. To get (3) note that we can assume that
f[η0...ηr](I(p)) covers the fundamental domain f−1

0 (I0). Therefore⋃
j≥0

f j0 (f[η0...ηr](I(p))) ⊃ (ε, 1)

and ⋃
j≥0

f1 ◦ f j0 (f[η0...ηr](I(p))) ⊃ (f1(1), f1(ε)) = (0, f1(ε)).

Since f1(ε) > ε the claim follows. �

A.1.2. Contracting itineraries. For the contracting itineraries we will now in partic-
ular focus on (H3), which plays the role of (H4) in the previous subsection. Recall
that c ∈ (0, 1) is given by the condition f ′0(c) = 1. Note that, since f ′0 is decreasing,
we have f ′0(f0(c)) < 1 and hence

(A.2) υ
def
=

1

f ′0(f0(c))
> 1.

In what follows, for notational simplicity let g0
def
= f−1

0 and g1
def
= f−1

1 (= f1) and
below consider the IFS generated by {g0, g1}.

Next lemma is a variation of [8, Lemma 2.6], where an important difference is
that in our case g1 is not expanding.

Lemma A.4 (Contracting itineraries). Let H be a closed subinterval of [c, f2
0 (c)].

Then there are a subinterval H0 of H and a sequence ξ0 . . . ξk such that

g[ξ0...ξk](H0) ⊃ [f0(c), f2
0 (c)] and |g′[ξ0...ξk](x)| ≥ υ for every x ∈ H0.

Proof. Note that for every x ∈ [f0(c), f2
0 (c)] it holds |g′[01](x)| ≥ υ. Condition

f1 ◦ f2
0 (c) > f2

0 (c) implies that g[01](x) > f2
0 (c). Thus, there is a first i ≥ 0 such

that g[010i](x) ∈ [f0(c), f2
0 (c)]. Note that |g′[010i](x)| ≥ υ. Now the result follows

arguing as in Lemma A.2. �

Define the backward orbit O−(·) by the IFS of a set in the natural way. Arguing
as in the expanding case, we have the following version of Lemma A.3.

Lemma A.5. For every point p ∈ (0, 1) there are a small neighborhood J(p) of p
and a finite sequence (ν0 . . . νr), r = r(J(p)), such that

(1) f[.ν0...νr](J(p)) ⊃ J(p),

(2)
∣∣(f[.ν0...νr])

′(x)
∣∣ > 1 for all x ∈ J(p), and

(3) O−(J(p)) = (0, 1).
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A.1.3. Almost forward and backward minimality.

Corollary A.6 (Almost minimality). For every x ∈ (0, 1) the sets O+(x) and
O−(x) are both dense in [0, 1].

Proof. Fix any x ∈ (0, 1). To prove the backward minimality fix p ∈ (0, 1) and an
arbitrarily small neighborhood J(p) of it. By Lemma A.5 item (3) we have that
x ∈ O−(J(p)) and hence J(p) ∩ O+(x) 6= ∅. The proof of the forward minimality
is analogous using Lemma A.3 item (3). �

A.2. Transitive dynamics. Homoclinic relations. To prove that F is topo-
logically transitive, we use the notion of a homoclinic class adapted to the skew
product setting. For that we need some definitions. Observe that if P = (ξ, p) is a
periodic point of F of period k + 1, then ξ = (ξ0 . . . ξk)Z and f[ξ0... ξk](p) = p. Note
that

1

k + 1
log |f ′[ξ0... ξk](p)| = χ(P ).

If χ(P ) 6= 0 then we call P (fiber) hyperbolic. There are two types of such points: if
χ(P ) > 0 then we call P (fiber) expanding, otherwise χ(P ) < 0 and we call P (fiber)
contracting. We denote by Perhyp(F ) the set of all fiber hyperbolic periodic points
of F and by Per>0(F ) and Per<0(F ) the (fiber) expanding and (fiber) contracting
periodic points, respectively. Clearly, Perhyp(F ) = Per>0(F ) ∪ Per<0(F ). Given
a fiber hyperbolic periodic point P we consider the stable and unstable sets of its
orbit O(P ) denoted by W s

(
O(P1), F

)
and Wu

(
O(P1), F

)
.

Two periodic points P1, P2 ∈ Perhyp(F ) of the same type of hyperbolicity (that
is, either both points are fiber expanding or both are fiber contracting) with different
orbits O(P1) and O(P2) are homoclinically related if the stable and unstable sets of
their orbits intersect cyclically:

W s
(
O(P1), F

)
∩Wu

(
O(P2), F

)
6= ∅ and Wu

(
O(P1), F

)
∩W s

(
O(P2), F

)
6= ∅.

A point X 6∈ O(P ) is a homoclinic point of P if

X ∈W s
(
O(P ), F

)
∩Wu

(
O(P ), F

)
.

Observe that our definitions do not involved any transversality assumption (indeed
in our context of a skew product such a transversality does not make sense, see also
[6, Section 3] for more details on homoclinic relations for skew products). However,
due to the fact that the maps f0 and f1 have no critical points, the homoclinic
points behave as the transverse ones in the differentiable setting.

The homoclinic class H(P ) of a fiber hyperbolic periodic point P is the closure
of the orbits of the periodic points of the same type as P which are homoclinically
related to P . As in the differentiable setting, the set H(P ) coincides with the
closure of the homoclinic points of P . This set is transitive.

Let us introduce some notation. For ? ∈ {< 0, > 0}, define

Percore,?(F )
def
= Per?(F ) ∩ Λcore and Perex,?(F )

def
= Per?(F ) ∩ Λex.

Proposition A.7 (Homoclinic relations). Let ? ∈ {< 0, > 0}.
(1) Every pair of points R1, R2 ∈ Percore,?(F ) are homoclinically related.
(2) Every pair of points R1, R2 ∈ Perex,?(F ) are homoclinically related and their

homoclinic classes coincide with Λex.
(3) No point in Percore,?(F ) is homoclinically related to any point of Perex,?(F ).



22 L. J. DÍAZ, K. GELFERT, T. MARCARINI, AND M. RAMS

(4) The set Σ2 × [0, 1] is the homoclinic class of any R ∈ Percore,?(F ). As a
consequence, the set Percore,?(F ) is dense in Σ2 × [0, 1].

Proof. As the arguments in this proof are similar to the ones in [7, Section 2] we willl
just sketch them. We prove (1) for fiber contracting periodic points only. Fix P =
((ξ0 . . . ξk)Z, p) and R = ((η0 . . . η`)

Z, r), r, p ∈ (0, 1). Take an open interval I(r)
containing r such that I(r) ⊂W s

loc(r, f[η0...η`]). By Corollary A.6, there is ρ0 . . . ρm
such that f[ρ0...ρm](p) ∈ I(r). Take X = ((ξ0 . . . ξk)−N.ρ0 . . . ρm(η0 . . . η`)

N, p). By
construction, X ∈ Wu(O(P ), F ) ∩ Wu(O(R), F ). Reversing the roles of P and
R we obtain a point in Wu(O(R), F ) ∩W s(O(P ), F ), proving that P and R are
homoclinically related.

The proof of (2) is an immediate consequence of the fact that FΛex can be seen
as an “abstract horseshoe”.

To prove item (3) note that O±(0),O±(1) ⊂ {0, 1}. This prevents any periodic
point with fiber coordinate 0 or 1 to be homoclinically related to points in Λcore.

We prove item (4) for expanding points only. Fix an expanding periodic point
R ∈ Λcore. Consider any point X = (ξ, x), x ∈ (0, 1). Fix m ≥ and δ > 0
and consider (ξ−m . . . ξm) and I(δ) = (x′ − δ, x′ + δ), where x′ = f[ξ−m...ξ−1.](x).
Consider now I ′(δ) = f[ξ−m...ξ0...ξm](I(δ)). Applying Lemma A.3 to I(δ)′, we get
η0 . . . ηr such that f[η0...ηr](I(δ)′) covers I(δ) and f[ξ−m...ξ0...ξmη0...ηr] is expanding
on I(δ)′. This provides an expanding periodic point Pδ,m close to X. Note that
Pδ,m → X as δ → 0 and m → ∞. By item (1) this point is homoclinically related
to R. As a consequence, we have X ∈ H(R,F ). �

A.3. The parabolic case. In this section we will prove Theorem 2.9. For that we
see how the constructions above can be modified to construct examples where the
set Λ has an ergodic measure of maximal entropy which is nonhyperbolic. For this
we modify the map f0 satisfying conditions (H1), (H3), and (H4) to get a new map

f̃0 such that the points 0 and 1 are parabolic (0 is repelling and 1 is attracting)

and consider the skew product F̃ associated to f̃0 and f1(x) = x− 1.

Proof of Theorem 2.9. We start with a map f0 satisfying hypotheses (H1), (H3),
and (H4) and consider exactly as in Appendix A.1 the fundamental domains I0(ε) =
[ε, f0(ε)] and I1(ε) = [1 − ε, f0(1 − ε)) (for small ε > 0) and the natural number

N(ε) with f
N(ε)
0 (I0(ε)) = I1(ε). Note that the estimate in (A.1) holds. We define

for a subinterval H of f−1
0 (I0(ε)) ∪ I0(ε) the number N(H) ∈ {N(ε), N(ε) + 1}.

Similarly we define M(H) ∈ {0, . . . ,M} (M independent of H).
Assume not that f1 satisfies (H2’). Let

a1
def
= min{f−1

0 (ε), 1− fN(ε)+1
0 (ε)}, b1

def
= f

N(ε)+1
0 (ε).

Note also that the definition of the expanding successors only involves iterates in
the set

[f−1
0 (ε), f

N(ε)+1
0 (ε)] ∪ f1

(
[f−1

0 (ε), fN(ε)+1(ε)]
)

= [a1, b1] ⊂ [δ, 1− δ],

for some small δ > 0. We now fix very small τ � δ and consider a new map f̃0

such that

(i) f̃0 = f0 in [δ, 1− δ],
(ii) (f̃0)′(0) = 1 and 0 is repelling,

(iii) (f̃0)′(1) = 1 and 1 is attracting, f̃0 has no fixed points in (0, 1),
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see Figure 5. Note that for this new map f̃0 we can define expanding returns in
I0(ε) as before. Note also that every point x ∈ (0, 1) has some forward and some

backward iterate in I0(ε) by the IFS associated to {f̃0, f1} (here we use that 0 is

repelling, 1 is attracting and f̃0 has no fixed points in (0, 1). We now have versions

of Lemmas A.1, A.2, and A.3 for the IFS associated to {f̃0, f1}. This concludes the
part corresponding to the expanding itineraries.

f0

f̃0

f1

0 1δ 1− δ
Figure 5. Fiber maps: The parabolic case

It remains to check that the arguments corresponding to the contracting itineraries
in Appendix A.1.2 also hold. Recall the definition of the point c in hypothesis
(H3), see also (A.2). Let g0 = f−1

0 and g1 = f−1
1 . Note that if δ is small we

can assume that δ < g0(c) < 1 − g0(c)] < 1 − δ. Note that for closed intervals
H ⊂ [c, f2

0 (c)] the definition of their expanding successor only involves iterations in
the set [g0(c), 1 − g0(c)]. Since in this interval g̃0 = g0 we obtain versions of Lem-
mas A.4 and A.5 for the IFS associated to {g̃0, g1}. In the same way we recover

Corollary A.6 for the IFS associated to {f̃0, f1}.
We can now consider the skew product F̃ associated to f̃0, f1 and prove Propo-

sition A.7 for F̃ , obtaining, in particular, that the set Σ2 × [0, 1] is a homoclinic

class of F̃ . By Theorem 2.7 the unique measure µex
max of maximal entropy log 2 in

Merg(Λex) is nonhyperbolic. �

A.4. Nontransitive case with a unique measure of maximal entropy. In
this section we prove Theorem 2.10 by presenting an example which is not transitive
and for which there exists just one measure of maximal entropy, which is nonhy-
perbolic. This measure is supported on Λex and there is no measure of maximal
entropy in Λcore.

Proof of Theorem 2.10. Let us consider a C1 orientation preserving homeomor-
phism φ : R→ (0, 1) satisfying

(A.3) φ(y) = 1− φ(−y)

and

lim
y→∞

φ′(y + 1)

φ′(y)

def
= 1 ∈ (0,∞).
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(For example, φ(y) = 1
π arctan y + 1

2 satisfies the conditions above.) Now define
f0 : [0, 1]→ [0, 1]

f0(x)
def
=


φ(φ−1(x) + 1) if x ∈ (0, 1),

0 if x = 0,

1 if x = 1,

and f1 : [0, 1]→ [0, 1] by f1(x) = 1− x. Note that f0 is a C1 map which satisfies

(A.4) f ′0(0) = 1 = f ′0(1).

Moreover, note that f0 ◦ φ = φ ◦ θ, where θ : R → R denotes the unit translation

on the real line defined by θ(y)
def
= y + 1. The symmetry assumption (A.3) means

that f1 ◦ φ = φ ◦ γ where γ : R → R is defined by γ(y)
def
= −y. Observe that

φ(−φ−1(x)) = 1− x implies

(A.5) f0f1 = f1f
−1
0 ,

that is, f0 is conjugate to its inverse by f1. This provides us fiber maps f0, f1

satisfying item 1. and 2. in the theorem.

Proposition A.8. F is not topologically transitive.

Proof. It suffices to prove that for any x ∈ [0, 1] the set O+(x)
def
= {f[ω1... ωn](x) : ωi ∈

{0, 1}, i ∈ {1, . . . , n}} is not dense in [0, 1]. This is obvious if x ∈ {0, 1}. Thus, in
what follows, we let x ∈ (0, 1).

Given n ∈ N, consider some finite sequence (ω1 . . . ωn) ∈ {0, 1}n. First, recall
that f2

1 (x) = x we can replace this sequence by one in which we eliminated all
blocks 11. Hence, without loss of generality, we can assume that the sequence
(ω1 . . . ωn) does not contain two consecutive 1s. Assume first that this sequence
contains an even number of symbols 1, that is, we can divide it into a finite number
of pieces of the form 0k10`10m. By (A.5), f[0k10`10m](x) = fk+m−`

0 (x). Hence, we

have f[ω1...ωn](x) = f j0 (x) for some integer j. Similarly, if this sequence contains

an odd number of symbols 1, we can write ω1 . . . ωn = 0k1ω′ with ω′ containing
an even number of symbols 1. As f[0k1](x) = f−k0 (1 − x), applying the previous

argument, we have that f[ω1...ωn](x) = f j0 (1− x) for some integer j.

This proves that the full forward orbit of x by the IFS, O+(x), is contained

in two sets {f j0 (x) : j ∈ Z} and {f j0 (1 − x) : j ∈ Z}, each of which has just two
accumulation points: 0 and 1. This proves the proposition. �

Proposition A.9. F has a unique measure of maximal entropy, which is nonhy-
perbolic.

Proof. By Theorem 2.7, the measure µex
max is unique and nonhyperbolic by our

choice (A.4). Hence, it is enough to prove that there cannot exist a measure of
maximal entropy supported on Σ2 × (0, 1).

Arguing by contradiction, assume that such a measure exists, denote it by µ. Its
projection to Σ2 must be the measure ν̂max of maximal entropy for σ : Σ2 → Σ2, that
is, the (1/2, 1/2)-Bernoulli measure (recall Section 3). We shortly write ν = ν̂max.
The measure µ admits a disintegration, that is, there exists a family {µξ : ξ ∈ Σ2}
of probabilities such that ξ 7→ µξ is measurable and every µξ is supported on
{ξ} × (0, 1) and satisfies

µ(E) =

∫
µξ(E) dν(ξ)
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for any measurable set E. With a slight lack of precision we will consider each µξ
as a measure on (0, 1).

To investigate what happens to µξ under our dynamics, we will use the following

result whose proof we postpone. Recall our notation fnω
def
= fωn−1 ◦ . . . ◦ fω0 .

Lemma A.10. For ν-almost every ω ∈ Σ2, for every ε > 0 and for every measure
µ supported on (0, 1) we have

lim
n→∞

1

n

n∑
i=1

(f iω)∗µ((ε, 1− ε)) = 0.

We postpone the proof of the above lemma to the following subsection. Assuming
that the above lemma was proven, we can now complete the proof of the theorem.
In particular, we can, for a ν-generic ω, apply Lemma A.10 to the measure µ = µω.
Thus, recalling that µ is F -invariant, for every n ≥ 1 we have

µ(Σ2 × (ε, 1− ε)) = F∗µ(Σ2 × (ε, 1− ε)) =
1

n

n∑
i=1

(F i)∗µ(Σ2 × (ε, 1− ε))

=
1

n

n∑
i=1

∫
(f iω)∗(µω)((ε, 1− ε))dν(ω)

=

∫
1

n

n∑
i=1

(f iω)∗(µω)((ε, 1− ε))dν(ω).

Now, by Lemma A.10, taking the limit n → ∞ and apply the dominated conver-
gence theorem, we obtain µ(Σ2 × (ε, 1 − ε)) = 0. As ε is arbitrary, this implies
µ(Σ2× (0, 1)) = 0, contradiction to the fact that we assumed that µ was supported
on Σ2 × (0, 1). This finishes the proof of the proposition. �

This proves the theorem. �

A.4.1. Random walks – Proof of Lemma A.10. To proof Lemma A.10 we need
to introduce several auxiliary objects in order to reduce it to well-known results.
Heuristically, a ν-typical ω ∈ Σ2 can be treated as a random process with no
memory, and then the dynamics generated by f iω is given by a certain random
walk. The result we will prove below is a version of a well-known statement that a
random walk does not stay in any bounded region.

For what we study below, we will consider the one-sided shift space Σ+
2 only and

by a slight abuse of notation continue to denote the (1/2, 1/2)-Bernoulli measure on
it by ν. We consider a ν-typical ω = (ω1ω2 . . .) ∈ Σ+

2 and interpret the values ωi as
random variables, with ν giving their joint distribution. That is, each ωi takes val-
ues 0 and 1 with probabilities 1/2 each, independently of any other ωj ’s. Denoting
ωn = ω1 . . . ωn, let Ωn be the σ-algebra generated by the cylinders [ω1], . . . , [ωn].

We first introduce the following auxiliary IFS of maps g0, g1. Let Ω = (0, 1) ×
{+1,−1} and define g0, g1 : Ω→ Ω by

g0(x,+1)
def
= (f0(x),+1), g0(x,−1)

def
= (f−1

0 (x),−1),

and

g1(x,+1)
def
= (x,−1), g1(x,−1)

def
= (x,+1).
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Consider the projections π1, π2 : Ω→ (0, 1) defined as follows

π1(x, k)
def
=

{
x if k = +1,

1− x if k = −1,
π2(x, k)

def
= x.

One immediately checks that π1 ◦ gi = fi ◦ π1, i = 0, 1, that is, the original IFS
{f0, f1} on (0, 1) is a factor of the IFS {g0, g1} on Ω under π1. Note that, given
x ∈ (0, 1), for every n ≥ 1 we have

(A.6) (π1 ◦ g[ωn])(x,+1) = f[ωn](x),

that is, we can consider (0, 1) as (0, 1)×{+1}, apply the maps gi instead of fi and
then project back the results by π1 and get the same result as if we applied maps
fi and never left (0, 1). Indeed, this is a consequence of our symmetry assumptions
on f0 and (A.5).

To model the claimed random walk, we consider now (0, 1) × {+1} instead of
(0, 1) and apply the maps gi instead of fi and then project the results by φ−1 ◦ π2.
That is, let

Ri(x) = Ri(x, ω)
def
= (φ−1 ◦ π2 ◦ g[ωi])(x,+1).

This defines a random walk on R. The main aim of this section is to proof the
following result.

Lemma A.11. For every probability measure µ on R and for any bounded A ⊂ R,
ν-almost surely we have

lim
n→∞

1

n

n∑
i=1

(Ri)∗µ(A) = 0.

The above result now will provide the

Proof of Lemma A.10. Note that, for any ε > 0 we have

π−1
1 ((ε, 1− ε)) = π−1

2 ((ε, 1− ε)) = (ε, 1− ε)× {0, 1}.
Hence, by (A.6) for A = φ−1((ε, 1− ε)) we have

(f[ωi])∗µ(ε, 1− ε) = (π1 ◦ g[ωi])∗µ(ε, 1− ε) = (Ri)∗µ(A).

Applying now Lemma A.11 implies the lemma, proving Lemma A.10. �

A.4.2. Random walks – Analysis of the random walk Ri. This random process has
a complicated behavior. We will introduce a sequence of simpler auxiliary random
processes which will help to prove Lemma A.11.

Without loss of generality, we assume ω1 = 0. Given ω, let ni, i ≥ 0, enumerate
the positions at which in the sequence ω there appears the symbol 0. With this
notation, we have the following relation

Rni(x, ω) = φ−1 ◦ π2 ◦ g[ωni ])(x,+1)

=

{
(φ−1 ◦ π2 ◦ g[ωni−1 ])(x,+1) + 1 if #{k ∈ {ni−1, . . . , ni} : ωk = 1} is even,

(φ−1 ◦ π2 ◦ g[ωni−1 ])(x,+1)− 1 if #{k ∈ {ni−1, . . . , ni} : ωk = 1} is odd.

An elementary calculation shows that the number of 1’s between any two con-
secutive 0’s is even with probability 2/3 and odd with probability 1/3. That is,
the random variable ni − ni−1 takes an even value with probability 1/3 and an
odd value with probability 2/3, moreover this random variable is independent from
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Ωni−1
. Considering then the subsequence (ni)i, we will now pass from the random

walk Ri to the following “induced” walk Si, which is defined by

Si(x)
def
= (φ−1 ◦ π2 ◦ g[ωni ])(x,+1).

The latter is a random walk on the real line composed by translations

Si(x) =

{
Si−1(x) + 1 if #{k ∈ {ni−1, . . . , ni} : ωk = 1} is even,

Si−1(x)− 1 if #{k ∈ {ni−1, . . . , ni} : ωk = 1} is odd,

where each step being independently and identically distributed: in the same di-
rection as the previous one with probability 2/3 and in the opposite direction with
probability 1/3 (with the convention that the ‘zeroth step’ was in the positive di-
rection).

Since Si does not encode explicitly the information in which direction the walk
is moving (it does not carry the second coordinate), we will instead consider the
following auxiliary walk. Let Ui be a random walk on R× {−1,+1} given by

Ui(x, j)
def
=

{
(x+ j, j) with probability 2/3,

(x− j,−j) with probability 1/3.

which is just Si adding the information about the direction of the last step: there ex-
ists a measure preserving isomorphism under which the first coordinate of Ui(x,+1)
is equal to Si(x).

Recall that we want to show that the evolution of a measure under the application
of the fiber maps of the IFS is eventually moving to the boundary of (0, 1), that
is, to ±∞ for the walk lifted by φ−1 to R. For that reason, let us now consider
an “induced” walk that only looks at times immediately after we moved in positive
direction. Let V +

i denote the random walk which is the first return of Ui to R×{+1}.
That is,

V +
i (x)

def
=

{
x+ 1 with probability 2/3,

x− k, k = 0, 1, . . . with probability 2k/3k+2.

At last we got an usual random walk. Note that the walk V +
i is recurrent. In-

deed, an elementary calculation gives that its expected displacement is zero, that
is E(V +

i (x)− x) = 0. Given A ⊂ R, let us define 1A(y) = 1 if y ∈ A and 1A(y) = 0
otherwise.

The Chung and Erdös Theorem [4] immediately implies

Lemma A.12. For any bounded A ⊂ R, ν-almost surely

lim
n→∞

1

n

n∑
i=1

1A(V +
i (0)) = 0.

Proof. By [4, Theorem 3.1], for any a, b ∈ Z we have

lim
i→∞

P(V +
i (0) = a)

P(V +
i (0) = b)

= 1.

Hence, for any bounded set A ⊂ Z for every a ∈ A we have

lim
i→∞

P(V +
i (0) = a) ≤ 1

|A|
,
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where |A| denotes the cardinality of A and hence

lim
i→∞

P(V +
i (0) ∈ A) = 0.

In particular, for every a ∈ Z we have

(A.7) lim
i→∞

P(V +
i (0) = a) = 0.

Let Tk denote the kth return time of V +
i (0) to 0. Note that Tk equals the sum

of k independent copies of T1.

Claim 1. E(T1) =∞.

Proof. By contradiction, assume that E(T1) would be finite. Hence, by the strong
law of large numbers, almost surely we would have limn→∞

1
nTn = E(T1). Hence,

by Egorov’s theorem, for any ε ∈ (0, 1) there would exist N ≥ 1 such that for all
k ≥ N with probability at least 1− ε we would have 1

kTk ≤ E(T1) + ε. This would
imply

k(E(T1)+ε)∑
i=1

P(V +
i (0) = 0) =

∫
dω

k(E(T1)+ε)∑
i=1

1{0}(V
+
i (0)) ≥ (1− ε)k(E(T1) + ε),

which would imply lim supi→∞ P(V +
i (0) = 0) > 0. Contradiction with (A.7). �

Analogously, given a ∈ Z, let T a1 denote the first hitting time of V +
i (0) at a.

Observe that the return times of V +
i+Ta1

(0) to a have the same distribution as the

return times of V +
i (0) to 0. Hence, if T ak denotes the kth return time of V +

i (0) to a,
then analogously to the above claim we conclude E(T a1 ) =∞. Hence, by the strong
law of large numbers almost surely we have 1

kT
a
k →∞, which in turn implies

0 = lim sup
k→∞

k

T ak
= lim sup

n→∞

1

n

n∑
i=1

1{a}(V
+
i (0)).

Writing now 1A =
∑
a∈A 1a, we obtain

lim
n→∞

1

n

n∑
i=1

1A(V +
i (0)) = 0

almost surely. This proves the lemma. �

Looking at the random walk Ui, we get the corresponding statement for the set
A× {+1}, that is

lim
n→∞

1

n

n∑
i=1

1A×{+1}(Ui(0,+1)) = 0.

The proof for A × {−1} is similar, only instead of V +
i we need to take the first

return to R × {−1}. Recalling that the projection of Ui to the first coordinate is
just Si, we obtain the following corollary.

Corollary A.13. For any bounded A ⊂ R, ν-almost surely

lim
n→∞

1

n

n∑
i=1

1A(Si(0)) = 0.
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Recall that Si takes into account only the steps of the initial walk when the
symbol 0 appeared. Vaguely speaking, Si takes only into account whether ni−ni−1

is even or odd. Let Ω′ be the σ-algebra generated by Si. We will consider the
following auxiliary random variable di defined by

di
def
=

{
ni − ni−1 if ni − ni−1 is odd,

ni − ni−1 − 1 if ni − ni−1 is even.

Below we will argue that di is independent of Ω′. The remaining information
(needed to recover Ω =

⋂
n Ωn) is in exact values of ni − ni−1. Knowing (Si)

n
i=1

and (di)
n
i=1, we can recover (Ri)

n
i=1. Note that di being independent from Ω′ means

that we can decompose the measure ν (the (1/2, 1/2)-Bernoulli measure on (Σ2,Ω))
as µs × µd, where µs is the distribution of (Si) and µd is the joint distribution of
the i.i.d. random variables di. Hence then we can conclude that if for µs-almost
every realization (Si) for µd-almost every realization (di) an event holds, then it
holds for ν-almost every ω.

Lemma A.14. The random variable (di) is independent of Ω′ and has finite ex-
pectation E(di).

Proof. Whether ni − ni−1 is even or odd, di always has the same distribution

P(di = 2k + 1|ni − ni−1 even) = P(ni − ni−1 = 2k + 1|ni − ni−1 odd) =
3

4k+1
,

which follows from an elementary calculation. Hence, in particular, the expected
value of di is finite. This proves the lemma. �

With the above, we now return to the random walk Ri.

Corollary A.15. For any bounded A ⊂ R, ν-almost surely,

lim
n→∞

1

n

n∑
i=1

1A(Ri(0)) = 0.

Proof. Note that Rn(0) = Rni−1
(0) = Si−1(0) for every n ∈ {ni−1, . . . , ni − 1}.

Hence, we have

1

ni

ni−1∑
k=0

1A(Rk(0)) =
1

ni

i−1∑
`=0

(n`+1 − n`)1A(S`(0)).

In particular, to show the claim, it is enough to consider the specific subsequence
from above proving that

0 = lim
i→∞

1

ni

ni−1∑
k=0

1A(Rk(0)) = lim
i→∞

1

ni

i−1∑
`=0

(n`+1 − n`)1A(S`(0)).



30 L. J. DÍAZ, K. GELFERT, T. MARCARINI, AND M. RAMS

Thus, we have

lim sup
n→∞

1

n

n−1∑
k=0

1A(Rk(0)) = lim sup
i→∞

1

ni

ni−1∑
k=0

1A(Rk(0))

= lim sup
i→∞

1

ni

i−1∑
`=0

(n`+1 − n`)1A(S`(0))

= lim sup
i→∞

i

ni
·
∑i−1
`=0 1A(S`(0))

i
·
∑i−1
`=0(n`+1 − n`)1A(S`(0))∑i−1

`=0 1A(S`(0))

≤ lim sup
i→∞

i

ni
· lim sup

i→∞

∑i−1
`=0 1A(S`(0))

i
· lim sup

i→∞

∑i−1
`=0(n`+1 − n`)1A(S`(0))∑i−1

`=0 1A(S`(0))

=: L1 · L2 · L3.

Claim. Almost surely, we have that L1 and L3 are finite and L2 = 0.

With this claim and also using Lemma A.14, obtain that ν-almost surely we have
L1 · L2 · L3 = 0 and we conclude that ν-almost surely

lim sup
n→∞

1

n

n−1∑
k=0

1A(Rk(0)) = 0,

proving the corollary. What remains is to prove the claim.
To estimate these latter terms, first observe that almost surely

ni
i

=
(ni − ni−1) + . . .+ (n1 − 0)

i
→ E(ni − ni−1).

Hence

E(ni − ni−1) =
∑
i≥1

(
diP(ni − ni−1 even) + (di + 1)P(ni − ni−1 odd)

)
≥ E(di)

and therefore L1 ≤ (E(di))
−1 <∞. Moreover, this calculation also gives

(A.8) E(ni − ni−1) ≤ E(di) + 1.

By Corollary A.13, we have L2 = 0.
To estimate L3, first observe that, as the expected value of di is finite, if we fix

(Si) then, by the law of large numbers, almost surely the average of {di : Si(0) ∈ A}
and the average of {di : Si(0) /∈ A} converge to the same limit E(di). Thus, almost
surely

lim
i→∞

∑i−1
`=0(n`+1 − n`)1A(S`(0))∑i−1

`=0 1A(S`(0))
= lim
i→∞

∑i−1
`=0(n`+1 − n`)

i
≤ E(di) + 1,

where the latter follows from (A.8). Thus, L3 is finite. This proves the claim. �

The statement for random walk starting from 0 can be generalized to any starting
distribution which allows us to finally prove Lemma A.11.

Proof of Lemma A.11. Fix µ. For any ε > 0 we can find some N such that
µ([−N,N ]) > 1 − ε. As φ−1 ◦ π2 ◦ gi is a translation, if Rn(0) /∈ BN (A) then
(Rn)∗µ(A) < ε. Hence,

lim sup
n→∞

1

n
(Rn)∗µ(A) ≤ ε+ lim

n→∞

1

n
1BN (A)(Rn(0)) = ε.
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Passing with ε to 0 ends the proof. �
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