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Abstract. We present examples of partially hyperbolic and topolog-
ically transitive local diffeomorphisms defined as skew products over a
horseshoe which exhibit rich phase transitions for the topological pres-
sure. This phase transition follows from a gap in the spectrum of the
central Lyapunov exponents. It is associated to the coexistence of two
equilibrium states with positive entropy. The diffeomorphisms mix hy-
perbolic behavior of different types. However, in some sense the expand-
ing behavior is not dominating which is indicated by the existence of a
measure of maximal entropy with nonpositive central exponent.

1. Introduction

Given a compact metric space Λ and a continuous map f : Λ → Λ, the
arising dynamical system can be studied from various points of view. On
the one hand, one can investigate the topological dynamics determined by
f . On the other hand, one can investigate the set M of f -invariant Borel
probability measures and study measure theoretic aspects of the dynamics.
Both sides are closely linked with each other. This link is characterized
by the thermodynamic formalism and specified by the topological pressure
functional (see [22] for full details). Given a continuous function ϕ : Λ→ R,
its topological pressure P (ϕ) is defined in purely topological terms. It can
be expressed in measure-theoretic terms via the variational principle

P (ϕ) = sup
µ∈M

(
hµ(f) +

∫
ϕdµ

)
, (1.1)

where hµ(f) denotes the entropy of the measure µ.
The set M equipped with the weak topology forms a compact convex

space that can have an extremely complicated structure. It is natural to
aim for a closer understanding of this structure. One way is to characterize
measures that are “relevant” and “designated” in a certain sense, for ex-
ample, to focus on equilibrium measures. An invariant measure ν is said
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to be an equilibrium measure or equilibrium state of ϕ with respect to f if
it attains the supremum in the variational principle (1.1) (the measure ν
maximizes what is sometimes also called the free energy of the potential ϕ).
Note that an equilibrium state ν for the zero potential ϕ = 0 is a measure
of maximal entropy.

To show existence and uniqueness and to establish further specific proper-
ties of equilibrium measures are among the main problems in the thermody-
namic formalism. On the other hand, particularly interesting are examples
where existence or uniqueness fails. In many cases the coexistence of equi-
librium states for some given potential is closely related to so-called phase
transitions. Following nowadays standard notation, we say that the pressure
function t 7→ P (tϕ), t ∈ R, exhibits a phase transition at a characteristic
parameter tc if it fails to be real analytic at tc. We say that it has a first
order phase transition at tc if it fails to be differentiable at tc.

One major line of research in the thermodynamic formalism considers
abstract dynamical systems such as Markov shifts and potentials with a
certain regularity. See the classical texts by Ruelle [20] and Bowen [2] as
well as the collection by Sarig [21]. However, in the present paper we focus
on smooth dynamical systems.

We will follow a classical approach to analyze smooth systems by study-
ing their “basic pieces”. In the realm of uniformly hyperbolic dynamics
such pieces are formed by the basic sets (sets that are compact, invariant,
uniformly hyperbolic, topologically transitive, and locally maximal). Be-
yond uniformly hyperbolic dynamics a natural line of generalization is the
investigation of homoclinic classes (such sets are topologically transitive and
contain a dense subset of hyperbolic periodic points, see Definition 3.1).

Loosely speaking, when a system dynamically splits into basic pieces then
this should also be reflected by the structure of its “dual” M. Certainly,
if a system has several transitive components (though they could be in-
termingled) then this will be reflected dynamically. Dobbs [11], for exam-
ple, explains the mechanism that gives rise to phase transitions related to
non-transitive behavior in renormalizable unimodal maps. If, however, a
dynamical system is topologically transitive but there exist pieces that are
“exposed” in a sense that dynamically and topologically they form extreme
points then we still can observe the phenomenon of phase transitions and
coexistence of equilibrium states. To further support this point of view we
will discuss some examples and explain what we mean by “exposed”.

One well-understood case is when the transitive dynamics “splits” into a
hyperbolic piece and a nonhyperbolic piece. Let us recall those examples of
interval maps f and the classically considered potential ϕ(x) = − log |f ′(x)|.
In the example of Manneville and Pomeau [18] the interval Λ = [0, 1] splits
into the single parabolic fixed point x = 0 and the remaining set (0, 1].
The pressure P (tϕ) exhibits a phase transition at tc = 1 that is related to
a coexistence of the Dirac measure δ0 and an acip (absolutely continuous
invariant probability measure) as equilibrium states. In the case of the
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Chebyshev polynomial x 7→ 4x(1 − x) the interval Λ = [0, 1] is transitive
and exposes the post-critical fixed point x = 0 (though the potential fails
to be continuous due to the singularity) and exhibits a phase transition at
tc = −1. An example of Bruin [3] discusses quadratic maps with (several)
ergodic measures supported on minimal Cantor sets with zero Lyapunov
exponents that are coexisting with an acip. Note that in all these examples
the nonhyperbolic part has zero entropy. See [4, Section 7], [13], and [8] for
further discussion.

Of similar spirit are the examples of the Julia set Λ = J of a polynomial
or rational exceptional map f on the complex plane discussed by Makarov
and Smirnov in [16, 17]. Here, the Julia set possesses periodic points that
are “dynamically exposed” in the sense that they are immediately post-
critical (there is no branch of preimages dense in J and disjoint with critical
points, see also [12]). Chebyshev polynomials of degree d ≥ 2 are particular
examples. In each of these cases the post-critical set is finite and thus
carries only measures with zero entropy. Those measures are equilibrium
states associated to a phase transition of the pressure function t 7→ P (−tϕ)
at a certain characteristic parameter.

In the present paper we present examples of local diffeomorphisms F
with a locally maximal nonhyperbolic set Λ ⊂ R3 that is at the same time
a homoclinic class. We do not aim for generality but instead try to provide
the simplest example possible. For that we choose a map that is a skew-
product of interval diffeomorphisms over a Smale horseshoe with three legs.
Although the dynamics on Λ is topologically transitive, the spectrum of the
Lyapunov exponents associated to the one-dimensional central direction Ec

contains positive and negative values and has a gap. In this example the
potential tϕ(x) = −t log ‖dF |Ec‖ is continuous and equilibrium states for tϕ
exist for every t ∈ R (see [9]). The spectral gap is immediately related to a
phase transition of the pressure function t 7→ P (tϕ) at some characteristic
parameter tc. Moreover, for tcϕ there exist two equilibrium states both of
positive entropy (we call this a rich phase transition). We would like to
remark that Olivier [19] constructed an example of a symbolic dynamical
system exhibiting a rich phase transition. Further, Iommi and Todd [13]
provided an example of a rich phase transition in a circle map. To our
knowledge, the example in the present paper is the first one of a phase
transition in a topologically transitive local diffeomorphism associated to
several equilibrium states with positive entropy. It is an extension of [10, 15]
where topological properties and phase transitions related to homoclinic
classes are studied. In these examples the exposed sets are single fixed
points.

Inside the locally maximal set Λ coexist intermingled sets of different
type of hyperbolicity which can be seen, for example, from the coexistence
of periodic points with unstable manifolds of different dimensions. How-
ever, there exists a measure of maximal entropy with nonpositive central
Lyapunov exponent. Hence, we may conclude that the dynamics on Λ is not
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predominantly expanding. Moreover, in some parameter range this measure
is unique and its central exponent is negative.

Besides these dynamical features, our examples possess also topologically
a rich structure of the fibers of the skew-product map. Following the ap-
proach in [10], one can show that there exists uncountably many fibers that
contain a single point only and uncountably many fibers that contain a
continuum.

Let us briefly explain to what corresponds an “exposed piece of dynamics”
in our example. We consider genuinely nonhyperbolic homoclinic classes
Λ containing infinitely many hyperbolic periodic points of different type.
Although this class is transitive, it properly contains a “lateral” horseshoe
Λ02 ⊂ Λ whose saddles are not homoclinically related to periodic hyperbolic
points outside Λ02. This lateral horseshoe is a kind of extreme of Λ. One of
the equilibrium states involved in the phase transition is supported on the
horseshoe Λ02 that has positive central Lyapunov exponents and positive
entropy. The other coexisting state lives on Λ \ Λ02 and also has positive
entropy.

Let us conclude with a heuristic remark. That a homoclinic class is prop-
erly contained in a larger one seems to be the underlying mechanism for
the gap in the spectrum and hence for the phase transition. However, this
configuration is somehow atypical. Indeed, for typical C1 diffeomorphisms
homoclinic classes either are disjoint or coincide [6] and the spectrum of
Lyapunov exponents has no gaps [1].

The paper is organized as follows. We provide the details of our example
in Section 2. In Section 3 we explain its topological properties and establish
topological transitivity, we postpone the proof to Section 7. In Section 4 we
prove the existence of a gap in the spectrum of central Lyapunov exponents,
see Proposition 4.2 and Corollary 5.1. In Section 5.1 we prove the exis-
tence of a rich phase transition (see Theorem 1). Moreover, in Section 5.2
we discuss periodic fibers that give rise to a measure of maximal entropy
with nonpositive or even negative central exponent (see Proposition 5.8 and
Corollary 5.12). In Section 6 we briefly discuss more general potentials and
provide a sufficient condition for the existence of a phase transition in our
setting.

2. A class of skew-products

In this section we construct the class of maps that will be studied in this
paper. Consider the cube Ĉ = [0, 1]2 and a diffeomorphism Φ defined on
R2 having a horseshoe Γ in Ĉ conjugate to the full shift σ of three symbols.
Denote by $ : Γ→ Σ3 the conjugation map $◦Φ = σ◦$. Let Ĉi, i = 0, 1, 2,
be naturally associated sub-cubes of Ĉ given by the first level rectangle in
Γ, that is, the connected components Ĉi ⊂ Φ−1([0, 1]2) ∩ [0, 1]2 (compare
Figure 1). Let C = Ĉ × [0, 1] and Ci = Ĉi × [0, 1]. We consider the map
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Ĉ2

Ĉ0

Ĉ1

Figure 1. Construction of the maximal invariant set Λ

F : C→ R3 defined by

F (x̂, x) def= (Φ(x̂), fi(x)) if X = (x̂, x) ∈ Ĉi × [0, 1], (2.1)

where fi : [0, 1]→ [0, 1], i = 0, 1, 2, are assumed to be C1 injective interval
maps satisfying properties that we are going to specify now. To complete
the definition of F in C we consider some appropriate C1-continuation of
F such that F (int(C \

⋃
i Ci)) ∩C = ∅ (compare Figure 1). To produce a

simple example, we will assume that Φ|
Ĉi

is affine. We also assume that
the rate of expansion (contraction) of the horseshoe is stronger than any
expansion (contraction) of f0, f1, and f2. In this way the DF -invariant
splitting Ess ⊕ Ec ⊕ Euu given by

Ess
def= R× {(0, 0)}, Ec def= {(0, 0)} × R, Euu def= {0} × R× {0} (2.2)

is dominated and Ess and Euu are uniformly hyperbolic. We denote by W ss

and W uu the corresponding strong stable and strong unstable manifolds
associated to Ess and Euu.

The following conditions (F0),(F1), and (F2) will imply that the system
of the fiber maps {f0, f1, f2} is of cycle type and mixes expansion and con-
traction behavior – compare also Figure 1.

(F0) The map f0 is increasing and has exactly two hyperbolic fixed points,
the point q0 = 0 (repelling) and the point p0 = 1 (attracting). Let
β0 = f ′0(0) > 1 and λ0 = f ′0(1) ∈ (0, 1). Moreover, λ0 ≤ f ′0(x) for all
x ∈ [0, 1].

(F1) The map f1 is an affine contraction with negative derivative

f1(x) def= γ (1− x),

where γ ≥ λ0. We denote by p1 the attracting fixed point of f1.
Note that f1(1) = 0 (cycle condition).
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f2

0 1p1 p2

Figure 2. The maps of the IFS (in a special case β2 < β0)

(F2) The map f2 is increasing and has two hyperbolic fixed points, the
point q2 = 0 (repelling) and the point p2 ∈ (0, 1) (attracting). We
have β2 = f ′2(0) > 1.

The next condition (F01) guarantees that suitable compositions of f0, f1

exhibit some expanding behavior (see Step 7.3). We formulate this condition
in the simplest case where the derivative f ′0 is decreasing in [0, 1].

(F01) The derivative f ′0 is decreasing in [0, 1] and satisfies

γ

(
λ3

0 (1− λ0)
1− β−1

0

)
> 1.

Note that given γ, λ0 ∈ (0, 1), this condition is clearly satisfied if β0 > 1 is
sufficiently close to 1.

To establish the existence of phase transitions, we will require one further
property (F012) giving constraints to the variation of f ′0 and f ′2 and to f ′0(1).
It will be specified in Section 4.

3. Dynamical properties

We introduce some notations and state some dynamical properties of F .
The skew product structure of F allows us to reduce the study of its dynam-
ics to the study of the IFS associated by the maps fi (see also Section 4).

Consider the sequence space Σ3 = {0, 1, 2}Z endowed with the metric
d(ξ, η) =

∑
i∈Z 2−|i||ξi−ηi|∗ for ξ = (. . . ξ−1.ξ0ξ1 . . .), η = (. . . η−1.η0η1 . . .) ∈

Σ3, where |ξi − ηi|∗ = 1 if ξi 6= ηi and 0 otherwise. Every sequence ξ ∈ Σ3

is given by ξ = ξ−.ξ+, where ξ+ ∈ Σ+
3

def= {0, 1}N0 and ξ− ∈ Σ−3
def= {0, 1}−N.

We denote by (ξ0 . . . ξm−1)Z the periodic sequence of period m such that
ξi = ξi+m for all i and always refer to the least period of a sequence.

3.1. Fixed points and invariant sets. Denote by θi = (θsi , θ
u
i ) = $−1(iZ),

i = 0, 1, 2, the fixed points of the horseshoe map Φ. The structure of the
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horseshoe and the choice of f0, f1, f2 imply that F possesses five fixed points
given by

P0
def= (θ0, 1), P1

def= (θ1, p1), P2
def= (θ2, p2),

Q0
def= (θ0, 0), Q2

def= (θ2, 0).
(3.1)

Observe that the u-index (dimension of the unstable manifold) of Pi is 1
while the one of Qi is 2, for all i.

Let us consider the lateral two-legged horseshoe of F

Λ02
def= Γ02 × {0}, where Γ02

def= $−1({0, 2}Z). (3.2)

Notice that Λ02 is invariant with respect to F since for every θ ∈ $−1({0, 2}Z)
and i = 0, 2 we have F (θ, 0) = (Φ(θ), fi(0)) = (θ′, 0) with θ′ ∈ $−1({0, 2}Z).
This lateral horseshoe is topologically transitive, uniformly hyperbolic, and
contains the saddles Q0 and Q2.

3.2. Homoclinic classes. We will focus on the maximal invariant set Λ of
F in the cube C = [0, 1]3,

Λ def=
⋂
i∈Z

F i(C),

that will be a special type of transitive set called a homoclinic class. Inside
the set Λ coexist intermingled hyperbolic sets of different “types” (u-indices).
This will give rise to the existence of heterodimensional cycles associated to
periodic points in Λ. This is the underlying mechanism to produce a rich
dynamics mixing hyperbolicity of different types.

Definition 3.1 (Homoclinic class). Given a saddle point P of F its homo-
clinic class is the closure of the transverse intersections of the stable and
unstable manifolds of the orbit of P . Two saddles P and Q are homoclin-
ically related if the invariant manifolds of their orbits meet cyclically and
transversely. A homoclinic class is non-trivial if it contains at least two
different orbits.

In the following we restrict our attention to the dynamics inside the cube
C. We call the closure of the set of points that are in the transverse inter-
sections of the stable and unstable manifolds of the orbit of P and whose
orbit is entirely contained in C the homoclinic class of P relative to C. We
denote this set by H(P, F ).

Remark 3.2. Observe first that homoclinically related saddles all have the
same u-index. Note also that the (relative) homoclinic class H(P, F ) coin-
cides with the closure of all saddle points that are homoclinically related
to P relative to the cube C (i.e., the orbits of the transverse intersections
are contained in C). However, this closure may contain periodic points that
are not homoclinically related to P . Indeed, this paper illustrates such a
situation and, in fact, is an essential ingredient of our example. Finally,
a homoclinic class is always transitive (existence of a dense orbit) and un-
countable if non-trivial.
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Finally, we see that Λ = ∩i∈ZF
i(C) is nonhyperbolic and transitive.

Proposition 3.3. There is a saddle Q∗ of u-index two such that the set Λ is
the homoclinic class of Q∗ relative C. In particular, the set Λ is topologically
transitive.

This proposition is a version of the results in [10] considering skew product
dynamics over the shift of two symbols whose central dynamics is given by
the maps f0 and f1. The only difference is that the structure of Λ here is
slightly more complicated due to the existence of the additional “leg” of the
horseshoe and its associated map f2. This extra “leg” is also responsible for
the existence of the lateral horseshoe and gives rise to more combinatorics
in the orbits. We postpone the proof to Section 7.

From similar observations we conclude also the following relations showing
the special nature of the lateral horseshoe

Λ02 = H(Q0, F ) = H(Q2, F ) ( H(P0, F ) ⊂ Λ.

4. Lyapunov exponents of the IFS. Spectral gap

In this section we study dynamical properties of the underlying iterated
function system (IFS) generated by the maps fi, establishing the existence
of a gap in the spectrum of central Lyapunov exponents (Proposition 4.2).
This gap will correspond to a gap in the spectrum of the central exponents
of diffeomorphism F due to the skew product structure (see Corollary 5.1).

We use the following notation for concatenated maps of the IFS. Given a
finite sequence (ξ0 . . . ξm), ξi ∈ {0, 1, 2}, let

f[ξ0... ξm]
def= fξm ◦ · · · ◦ fξ1 ◦ fξ0 : [0, 1]→ [0, 1].

Given a finite sequence (ξ−m . . . ξ−1) let

f[ξ−m... ξ−1.]
def= (fξ−1 ◦ . . . ◦ fξ−m)−1.

Similarly, given a finite sequence (ξ−m . . . ξ−1.ξ0 . . . ξn), let

f[ξ−m... ξ−1.ξ0... ξn]
def= f[ξ0... ξn] ◦ f[ξ−m... ξ−1.].

A one-sided infinite sequence (. . . ξ−2ξ−1.) ∈ Σ−3 is said to be admissible for
a point x if the map f[ξ−m... ξ−1.] is well-defined at x for all m ≥ 1. A two-
sided infinite sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ3 is said to be admissible if
(. . . ξ−2ξ−1.) is. By writing (x, ξ) we always mean that ξ is admissible for x.

Given p ∈ [0, 1] and a sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ3 that is admissi-
ble for p, the (forward) Lyapunov exponent of p with respect to ξ is defined
by

χ(p, ξ) def= lim
n→∞

1
n

log
∣∣(f[ξ0... ξn−1])

′(p)
∣∣

whenever this limit exists. Otherwise we denote by χ(p, ξ) and χ(p, ξ) the
lower and the upper Lyapunov exponent defined by taking the lower and
the upper limit, respectively. Note that, in fact, χ(p, ξ) depends only on the
positive part ξ+ of ξ = (ξ−.ξ+) only. Hence, when considering exponents
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of a pair (p, ξ) in the following, we will disregard the hypothesis that ξ is
admissible.

Let us consider the symbolic description of the lateral horseshoe Λ02 to-
gether with its stable manifold. This is given by the set E of “exceptional
points” of the IFS:

E def=
{

(0, ξ) : ξ ∈ {0, 2}Z
}
∪{(

1, (0−N.0k 1 ξ+)
)
,
(
0, (0−N1 ξk.ξ+)

)
: k ≥ 0, ξk ∈ {0, 2}k, ξ+ ∈ {0, 2}N

}
.

As E codes all points in the lateral horseshoe Λ02 together with its stable
manifold, its central Lyapunov spectrum is an interval.

Let
β−02

def= min{β0, β2}, β+
02

def= max{β0, β2}.
To show the following lemma, it is enough to observe that, by construction,
β−02 and β+

02 are the smallest and largest central exponents of Λ02.

Lemma 4.1.
{
χ(p, ξ) : (p, ξ) ∈ E

}
= [log β−02, log β+

02 ].

To prove the main result of this section, we need an additional assumption
to be satisfied.

(F012) We have f ′0(x), f ′2(x) ≤ β+
02 for all x ∈ [0, 1]. There exists an interval

H = [0, δ] such that H and H ′ = f−1
1 (H) satisfy

f1(H) ∩H = ∅, f1(H ′) ∩H ′ = ∅, f1([0, 1]) ∩H ′ = ∅,
f2([0, 1]) ∩H ′ = ∅.

(4.1)

Assume that

β′
def= max{f ′0(x), f ′2(x) : x /∈ H} < β−02.

Moreover, let

βH
def= min{f ′0(x), f ′2(x) : x ∈ H} < β−02,

λ′
def= max{f ′0(x) : x ∈ H ′} < 1

and assume that

|log λ0|
log β+

02

log βH
− |log λ′|+ 2

3
log β+

02 <
3
4

log β′. (4.2)

Finally, let us also assume that with L ≥ 1 satisfying

L > 4
|log λ0| log β+

02

log βH log β′
(4.3)

we have
log((β+

02)L γ)
L+ 1

< log β′. (4.4)
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Clearly, (F012) can be guaranteed if β2 is close enough to β0 and if f2 is
non-linear close to 0 and does not contract the length of the unit interval
too much. Then we can choose δ very small and can guarantee that βH is
close to β+

02 and that λ′ is close to λ0 in order to guarantee (4.2).

We obtain the following gap of the full range of possible exponents.

Proposition 4.2. Let

χ̃
def= sup

{
χ(p, ξ) : (p, ξ) /∈ E

}
.

Under the hypothesis (F012) we have β̃ def= exp χ̃ ∈ (1, β−02).

Proof. Arguing by contradiction, let us assume that for every ε > 0 there
exist a point p ∈ [0, 1] together with a sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ3

such that (p, ξ) /∈ E and that χ(p, ξ) > log β−02 − ε.
The Lyapunov exponent of a trajectory is the average of log |f ′i | along the

trajectory. Hence, if the upper Lyapunov exponent of a trajectory is greater
than log β−02−ε, the trajectory must return to H infinitely many times. The
only way to enter H is by coming from H ′ after applying f1, and the only
way to get into H ′ is by applying f0. To reach a contradiction, we only need
to prove that the average of log |f ′i | along the piece of trajectory between
two such consecutive visits to H is not greater than log β−02 − ε.

Note that it is enough to consider the case that ξi 6= 1 for infinitely many
i ≥ 0 since otherwise we would have χ(p, ξ) < 0. Further, we can freely
assume that p 6= 0 as otherwise we could replace p by some iterate. Note
that

β′ = max{f ′0(x), |f ′1(x)|, f ′2(x) : x /∈ H} < β−02.

Thus, we can further assume that the orbit {f[ξ0... ξm](p)}m≥0 hits the interval
H infinitely many times. Indeed, otherwise this orbit would be contained
in the interval (δ, 1] in which the derivatives f ′0, |f ′1|, and f ′2 are bounded
from above by β′ and thus the upper Lyapunov exponent χ(p, ξ) would be
bounded from above by log β′ < log β−02. Hence, without loss of generality,
possibly replacing p by some positive iterate, we can assume that p ∈ H and
fξ0(p) /∈ H.

For every m ≥ 0 we write pm+1
def= f[ξ0... ξm](p). Note that by our choices

in (4.1) the only way of entering in H is by coming from H ′ after applying
f1 and the only way of entering and staying in H ′ is by applying f0.

... ...... ...
0 1

prk pek pik prk−1
H H ′

Figure 3. Definition of the sequences (rk)k, (ek)k, (ik)k
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We define three increasing sequences (rk)k, (ek)k, and (ik)k of positive
integers as follows: ik < rk ≤ ek < ik+1,

pj ∈ H if and only if rk ≤ j ≤ ek for some k, (4.5)

and
pj ∈ H ′ for all ik ≤ j ≤ rk − 1 for some k, (4.6)

where ik is the smallest number with this property. By the above obser-
vation ξrk−1 = 1. Condition (4.1) implies that ξj 6= 1 for every index
j ∈ {rk, . . . , ek − 1} whenever rk < ek. By (4.1) we also have ξj = 0 for
every index j ∈ {ik − 1, . . . , rk − 2}. In particular, writing H ′ = [δ′, 1], the
latter implies

δ′ ≤ pik < f0(δ′). (4.7)
Moreover, we have pj /∈ H for all j ∈ {ek + 1, ik+1 − 1}, which implies

log
∣∣(f[ξek+1 ... ξik+1−1]

)′(pek+1)
∣∣ < (β′)ik+1−ek−1. (4.8)

Let us denote by Nk the number of iterates of the point pik staying in H ′

before entering H:
Nk

def= rk − ik − 1.

Claim 4.3. We have prk ≥ λ
Nk+1
0 δ.

Proof. By (4.7) we have

fNk0 (pik) = prk−1 < fNk0 (f0(δ′)) = fNk+1
0 (δ′).

Since δ′ = f−1
1 (δ) and since f1 is affine, we have 1 − δ′ = γ−1δ. Hence, as

f ′0 ≥ λ0 and f0(1) = 1, we have

1− prk−1 > 1− fNk+1
0 (δ′) ≥ λNk+1

0 γ−1δ .

Finally, we have

prk = f1(prk−1) ≥ γ λNk+1
0 γ−1δ = λNk+1

0 δ,

which proves the claim. �

By Claim 4.3, ek − rk is bounded from above by M̃k + 1, where M̃k is
defined by

(βH)M̃kλNk+1
0 δ = δ,

that is,

M̃k + 1 ≤Mk
def=
⌊

(Nk + 1) |log λ0|
log βH

⌋
+ 2. (4.9)

Let us now estimate the finite-time Lyapunov exponent associated to the
sequence (ξik . . . ξek).

Claim 4.4. We have
log
∣∣(f[ξik ... ξek ]

)′(pik)
∣∣

ek − ik + 1
< log β′.
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Proof. First observe that if ek − ik ≤ L, with

log
∣∣(f[ξik ... ξek ]

)′(pik)
∣∣

ek − ik + 1
≤ max

`=1,...,L

log((β+
02)` γ)

`+ 1
≤ log((β+

02)L γ)
L+ 1

by our hypothesis (4.4) the claim is automatically satisfied.
To prove the claim in the other case ek−ik > L, it is enough to assume that

the number of iterations in the interval H is the maximum possible (clearly
this is the case which bounds the derivative (f[ξik ... ξek ])′ from above), that
is, let us suppose that ek − rk = Mk. Then

log
∣∣(f[ξik ... ξek ]

)′(pik)
∣∣

ek − ik + 1
≤ Mk log β+

02 + log γ −Nk |log λ′|
Mk +Nk + 1

.

From log γ < 0 and (4.9) we conclude

log
∣∣(f[ξik ... ξek ]

)′(pik)
∣∣

ek − ik + 1

≤
[

(Nk + 1) |log λ0|
log βH

log β+
02 + 2 log β+

02 −Nk|log λ′|
]

1
Mk +Nk + 1

≤ Nk

Mk +Nk + 1

(
|log λ0|

log β+
02

log βH
− |log λ′|

)
+
(
|log λ0|+ 2 log βH

) log β+
02

log βH
1

Mk +Nk + 1

≤
(
|log λ0|

log β+
02

log βH
− |log λ′|+ 2

3
log β+

02

)
+ |log λ0|

log β+
02

log βH
1

Mk +Nk + 1
.

Hence, noting that Mk +Nk ≥ L by (4.2) and (4.3) we conclude that

log
∣∣(f[ξik ... ξek ]

)′(pik)
∣∣

ek − ik + 1
<

3
4

log β′ +
1
4

log β′ = log β′.

We have proved the claim. �

We are now ready to get an upper bound for χ(p, ξ). It is enough to
consider segment of orbits corresponding to exit times ek and starting at
the point p1:

log
∣∣(f[ξ1... ξek ]

)′(p1)
∣∣

ek
=

k∑
j=0

(
ej − ij + 1

ek

) log
∣∣(f[ξij ... ξej ]

)′(pij )∣∣
ej − ij + 1

+
(
ij+1 − ej − 1

ek

) log
∣∣(f[ξej+1... ξij+1−1]

)′(pej+1)
∣∣

ij+1 − ej − 1
.

By equation (4.8) and Claim 4.4 we get that this derivative is bounded from
above by log β′ < log β−02. This completes the proof of the proposition. �
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5. Thermodynamical formalism

In the first part of this section we establish the existence of rich phase
transitions using the gap in the Lyapunov spectrum (Theorem 1). In the sec-
ond part we construct a maximal entropy measure with nonpositive central
exponent.

5.1. Co-existence of equilibrium states with positive entropy. Due
to the skew product structure and our hypotheses, the splitting in (2.2) is
dominated and for every Lyapunov regular point R ∈ ΛF coincides with
the Oseledec splitting provided by the multiplicative ergodic theorem. In
particular, the Lyapunov exponent associated to the central direction Ec at
such a point R is well-defined and, in fact, is the Birkhoff average of the
continuous function R 7→ log ‖dF |EcR‖

χc(R) def= lim
n→∞

1
n

log ‖dFn|EcR‖ = lim
n→∞

1
n

n−1∑
k=0

log ‖dF |Ec
Fk(R)

‖.

Observe that given a Lyapunov regular point R = (rs, ru, r) ∈ Λ and a
sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ Σ3 given by ξ = $(rs, ru), we have

χc(R) = lim
n→∞

1
n

log |(f[ξ0... ξn−1])
′(r)|.

Finally note that the remaining exponents are associated to the stable and
the unstable directions Es and Eu, respectively, and are uniformly bounded
away from zero.

Let us first recall some general facts. We denote by M(A) the set of
F -invariant Borel probability measures supported on a set A ⊂ Λ and by
Me(A) the subset of ergodic measures. For µ ∈M(Λ) let

χc(µ) def=
∫

log ‖dF |Ec‖ dµ.

Considering the spectrum of ergodic measures, based on Proposition 4.2,
the following result about the set of all possible central exponents is an
immediate consequence.

Corollary 5.1.
{
χc(µ) : µ ∈Me(Λ)

}
⊂ [log λ0, log β̃ ] ∪ [log β−02, log β+

02].

Remark 5.2. Note that there are two possibilities for an ergodic measure.
If its support is contained in Λ02 then its central Lyapunov exponent is
contained in [log β−02, log β+

02]. Otherwise, any generic point is outside Λ02

and then by Proposition 4.2 has central Lyapunov exponent in [log λ0, log β̃ ].

Given a continuous potential ϕ : Λ→ R, an F -invariant Borel probability
measure ν is called an equilibrium state of ϕ with respect to F |Λ if

hν(F ) +
∫
ϕdν = max

µ∈M(Λ)

(
hµ(F ) +

∫
ϕdµ

)
,
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where hµ(F ) denotes the measure theoretic entropy of µ. Since the central
direction is 1-dimensional such maximizing measure indeed exists by [9,
Theorem A]. Note that we have the following variational principle

PF |Λ(ϕ) = max
µ∈Me(Λ)

(
hµ(F ) +

∫
ϕdµ

)
, (5.1)

where PF |Λ(ϕ) is the topological pressure of ϕ with respect to F |Λ (see [22] for
the definition and further properties that are used in the following). Denote
by h(F ) = h(F |Λ) = PF |Λ(0) the topological entropy of F |Λ. Note that an
equilibrium state ν for the zero potential ϕ = 0 is a measure of maximal
entropy hν(F ) = h(F ). It is immediate that the two-legged horseshoe Λ02 ⊂
Λ defined in (3.2) satisfies

h(F |Λ02) = log 2. (5.2)

As the central direction does not contribute to the entropy, we also have

h(F |Λ) = log 3 (5.3)

(compare arguments in [9, Section 3] and [5]).
Let us investigate the following one-parameter family ϕt of continuous

potentials defined by

ϕt
def= −t log ‖dF |Ec‖, t ∈ R,

and will denote P (t) def= P (ϕt). Note that t 7→ P (t) is convex (and hence
continuous and differentiable on a residual set). One says that P exhibits a
phase transition at a characteristic parameter tc if it fails to be real analytic
at tc. We say that it has a first order phase transition at tc if it fails to be
differentiable at tc.

Remark 5.3. Let us recall some basic facts. A number α ∈ R is said to
be a sub-gradient at t if P (t + s) ≥ P (t) + s α for all s ∈ R. Note that
any equilibrium state µt of the potential ϕt with respect to F |Λ provides a
sub-gradient of s 7→ P (s) at s = t given by −χc(µt). By definition

P (t)− tχc(µt) = hµt(F ). (5.4)

In particular, the entropy of µt is the intersection of the tangent line s 7→
P (t)− χc(µt)(s− t) with the y-axis. Moreover, if s 7→ P (s) is differentiable
at s = t then

χc(µt) = α(t) def= −P ′(t). (5.5)
In particular, in this case, all equilibrium states of ϕt have the same ex-
ponent. In our case, non-differentiability is equivalent to the existence of a
parameter t and (at least) two equilibrium states for ϕt with different central
exponents.

A first order phase transition of P is said to be rich if there are two asso-
ciated equilibrium states with different central exponents and with positive
entropy.

The next result establishes the existence of a rich phase transition.
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t

P (t)

PF |Λ02
(ϕt)

log 3

log 2

t

P (t)

PF |Λ02
(ϕt)

log 3

log 2

Figure 4. The functions t 7→ P (t) and t 7→ PF |Λ02
(ϕt) for

β0 6= β2 (left) and β0 = β2 (right).

Theorem 1 (Rich phase transition). There are numbers β−c ∈ [β−02, β
+
02] and

β+
c ∈

(
λ0, β̃

)
, β−c > β+

c , and a parameter tc < 0 such that P is real analytic
in (−∞, tc) and not differentiable at tc. Moreover it satisfies

D−P (tc) = − log β−c and D+P (tc) = − log β+
c .

Further, there exist equilibrium states µ+ and µ− for ϕtc with respect to F |Λ
that both have positive entropy and central Lyapunov exponents log β+

c and
log β−c , respectively.

Indeed the number tc is the largest parameter where the pressure of the
lateral horseshoe F |Λ02 and of the full system F |Λ coincide.

We need the following preliminary result.

Lemma 5.4. We have

lim
t→∞

P (t)
t

= − inf
ν∈M

χ(ν) = lim
t→∞

D+P (t)

and

lim
t→−∞

P (t)
t

= − sup
ν∈M

χ(ν) = lim
t→−∞

D−P (t).

If t 7→ P (t) is differentiable on R then

{P ′(t) : t ∈ R} = {−χ(ν) : ν ∈M(Λ)}.

Proof. Note that 0 ≤ hν(F ) and the variational principle imply

1
t

sup
ν∈Me

(−tχ(ν)) ≤ P (t)
t
≤ h(F |Λ)

t
+

1
t

sup
ν∈Me

(−tχ(ν))

and hence the first equality. By convexity, for any t > s

P (s) + sup
τ≥s

D+P (τ) · (t− s) ≥ P (t) ≥ P (s) +D+P (s) · (t− s)

and hence limt→∞ P (t)/t = lims→∞D
+P (s). Similar arguments can be

made for the other equalities.
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If P is differentiable, by convexity {P ′(t) : t ∈ R} is an interval I. For
every t any equilibrium state νt for ϕt satisfies −χ(νt) = P ′(t) ∈ I. Thus
proving the inclusion “⊂”. On the other hand, by the first part of the
lemma, for every ν ∈Me, −χ(ν) ∈ I, proving “⊃”. �

Proof of Theorem 1. We now prove that P is not differentiable everywhere.
Arguing by contradiction, suppose that t 7→ P (t) is differentiable at every
point. By Lemma 5.4 and our construction

{P ′(t) : t ∈ R} = [− log β+
02,− log λ0].

Thus, in this case, for every α ∈ (λ0, β
+
02) there would exist t ∈ R with

P ′(t) = − logα. In particular, there is an equilibrium state ν of ϕt with
χc(ν) = − logα. Recall that any ergodic component of ν is also an equilib-
rium state of ϕt, and hence, with the above, has the same central exponent.
But if α ∈ (β̃, β−02) this contradicts Corollary 5.1. This implies that P is not
differentiable at some point.

Any equilibrium state in the two-legged horseshoe Λ02 ⊂ Λ has expo-
nent within [log β−02, log β+

02]. Moreover, as F |Λ02 is a locally maximal uni-
formly hyperbolic set, the function t 7→ PF |Λ02

(ϕt) is real analytic. It is
strictly convex if and only if β2 6= β0. Otherwise, it is linear and equal
to log 2 − t log β0. Further, inside the hyperbolic horseshoe Λ02, for ev-
ery α ∈ (β−02, β

+
02) there exists a unique equilibrium state να with respect to

F |Λ02 with exponent χc(να) = logα. Finally note that Λ02 ⊂ Λ immediately
implies PF |Λ02

(ϕt) ≤ P (t) for all t.

Proposition 5.5. There exists tc ∈ R such that

tc = sup{s : P (t) = PF |Λ02
(ϕt) for all t ≤ s} < 0.

In particular, P is real analytic in (−∞, tc). Moreover, we have

D−P (tc) < D+P (tc).

Proof. Note that t 7→ PF |Λ02
(ϕt) is analytic and all of its derivatives are

in the interval [− log β+
02,− log β−02]. By Lemma 5.4, for t small enough the

equilibrium state µt for ϕt has central Lyapunov exponent arbitrarily close to
log β+

02 and hence not contained in the interval [log λ0, log β̃ ]. By Remark 5.2
this state is thus supported in Λ02. Therefore, PF |Λ02

(ϕt) = P (t) for every t
small enough. Thus, tc > −∞. Note that Lemma 5.4 implies that tc < ∞.
To see that tc < 0, just note that

P (0) = h(F |Λ) = log 3 > PF |Λ02
(0) = h(F |Λ02) = log 2.

This proves the first part of the proposition.
Arguing by contradiction, let us assume that P is differentiable at tc,

D−P (tc) = D+P (tc) = P ′(tc) = P ′F |Λ02
(tc).

This implies that D+P (tc) ≤ − log β−02. As for t > tc and close to tc we
have P (t) > PF |Λ02

(ϕt) there exists an ergodic equilibrium state µt of ϕt
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with respect to F |Λ. By Remark 5.2 it has generic points outside Λ02. Thus
χ(µt) ≤ log β̃ < log β−02 and hence D+P (t) ≥ − log β̃ > − log β−02.

Consider κ def= inft>tc D+P (t) ≥ − log β̃ and observe that for t > tc and
s ≥ t we have P (s) ≥ P (t)+κ(s− t) and thus P (s) ≥ P (tc)+κ(s− tc). This
implies P ′(tc) ≥ κ ≥ − log β̃, contradicting that P ′(tc) ≤ − log β−02. Hence,
P is not differentiable at tc. �

Let

β−c
def= exp(−D−P (tc)) and β+

c
def= exp(−D+P (tc)).

With the above, β+
c ≤ β̃ and either β−c = β2 = β0 or β−c ∈ (β−02, β

+
02). Let

us restrict to the latter case (the other one is similar and simpler). There
exists a unique (hence ergodic) equilibrium state µ− of ϕtc with respect to
F |Λ02 that has exponent β−c . On the other hand, there exists an ergodic
equilibrium state µ+ of ϕtc with respect to F |Λ that has exponent β+

c .

Proposition 5.6. 0 < hµ−(F ) < hµ+(F ).

Proof. Recall (5.4) and observe that hµ−(F ) is equal to the intersection of
the tangent line to the pressure PF |Λ02

(ϕt) at t = tc with the y-axis. If
hµ−(F ) = 0 then, by strict convexity of t 7→ PF |Λ02

(ϕt), the corresponding
tangent line at t < tc would intersect the y-axis at some negative value
providing negative entropy, which is impossible. This shows hµ−(F ) > 0.

Finally, to see that hµ+(F ) is also positive, recall that tc < 0 and that
the line s 7→ P (tc)− χ(µ+)(s− tc) is above the tangent line to the pressure
PF |Λ02

(ϕt) at t = tc. Thus, its intersection with the y-axis is above hµ−(F )
and hence is positive. �

This proves the theorem. �

5.2. Lifts of Bernoulli measures. In this section we study closer Lya-
punov exponents of periodic pairs constructing lifts of Bernoulli measures
and, in particular, a measure with maximal entropy. Note that, for a periodic
sequence (ξ0 . . . ξm−1)Z ∈ Σ3 and a fixed point p = f[ξ0... ξm−1](p(ξ0... ξm−1)Z),
we have

χ(p, (ξ0 . . . ξm−1)Z) =
1
m

log
∣∣(f[ξ0... ξm−1])

′(p)
∣∣. (5.6)

To the skew-product structure there is naturally associated a semiconju-
gation π : Λ → Σ3 such that σ ◦ π = π ◦ F . Recall also that $ : Γ → Σ3

conjugates the planar three-legs horseshoe and the shift, see Section 2. Given
a m-periodic sequence ξ = (ξ0 . . . ξm−1)Z (we do not assume that this period
is minimal), consider the fiber π−1(ξ), that is, the intersection of Λ with the
line {$−1(ξ)}× [0, 1] (it might be degenerated to a single point). Note that
for the periodic sequence ξ we have

π−1(ξ) = {$−1(ξ)} × I[ξ], I[ξ]
def=
⋂
n≥1

(
f[ξ0... ξm−1]

)n([0, 1]).
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Remark 5.7. Note that for a periodic sequence ξ the set I[ξ] is the maximal
invariant set of the homeomorphism g = f[ξ0... ξm−1] on the interval [0, 1]. If
this set is a single point then it is a topologically attracting fixed point for g.
If this set is an interval, its endpoints must either be fixed points for g (if g
is orientation-preserving) or for g2 (if g is orientation-reversing). Moreover,
any endpoint of such an interval that is not an endpoint of the interval [0, 1]
is (topologically) attracting. The point 1 is an endpoint if and only if ξ = 0Z,
and in this case it is an attracting point for g. The point 0 is an endpoint if
and only if ξ ∈ {0, 2}Z, and in this case it is a repelling point for g.

In view of the above remark we obtain following properties. Let p−ξ and p+
ξ

be the left and right endpoints of I[ξ] (they might be equal if I[ξ] is one point).
If the symbol 1 appears an even but nonzero number of times in the finite
sequence (ξ0 . . . ξm−1) then ($−1(ξ), p−ξ ) and ($−1(ξ), p+

ξ ) are fixed points
of Fm and (topologically) attracting with respect to the central dynamics
in the fibers. If the symbol 1 appears an odd number of times, both those
points are (topologically) attracting fixed points of F 2m. If the symbol 1
does not appear, then p−ξ = 0 and ($−1(ξ), p+

ξ ) is a (topologically) attracting
fixed point of Fm. Finally note that the central Lyapunov exponent at any
periodic point which is topologically attracting in the central direction must
be nonpositive.

Proposition 5.8. There exists an ergodic F -invariant measure µ satisfying

hµ(F ) = log 3 and χ(µ) ≤ 0.

Proof. Denote by Sm the set of all sequences of period m that contain at
least one symbol 1. For ξ ∈ Sm define

µm
def=

1
cardSm

∑
ξ∈Sm

1
2

(δ($−1(ξ),p−ξ ) + δ($−1(ξ),p+ξ ))

and let µ be a weak accumulation of µm. Then µ is F -invariant and sat-
isfies χ(µ) ≤ 0 by the above considerations. To calculate the entropy of µ
consider the projection νm = π∗µm of µm to Σ3. The measure νm is equally
distributed on all sequences which are m-periodic with respect to σ and
which do not contain a symbol 1. The proportion of these sequences in the
set of all m-periodic ones is 1− (2/3)m, that is, it converges to 1 as m→∞.
Hence, the sequence νm converges weakly to the (1/3, 1/3, 1/3)-Bernoulli
measure that has entropy log 3. This Bernoulli measure is the projection of
µ. Hence, together with (5.3) we can conclude that hµ(F ) = log 3. �

The following fact is a consequence of Proposition 5.8 and Remark 5.3.

Corollary 5.9. We have D+P (0) ≤ 0.

An analogous construction can be done over {0, 2}Z.

Proposition 5.10. There exist ergodic F -invariant measures µ1, µ2 with

hµ1(F ) = hµ2(F ) = log 2 and χ(µ1) ≤ 0 < χ(µ2).
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Moreover, π∗µ1 = π∗µ2 is the (1
2 , 0,

1
2)-Bernoulli measure.

Proof. We will modify the construction in the proof of Proposition 5.8. Con-
sider the set of all m-periodic sequences Tm ⊂ {0, 2}Z and define

µ1
m

def=
1

cardTm

∑
ξ∈Tm

δ($−1(ξ),p+ξ ) and µ2
m

def=
1

cardTm

∑
ξ∈Tm

δ($−1(ξ),0).

and let µ1 and µ2 be a weak accumulation of µ1
m and µ2

m, respectively.
By construction, χ(µ1) ≤ 0 follows as in the proof above. Further, by
construction µ2 is supported on Λ02, projects to the (1

2 ,
1
2)-Bernoulli measure

in {0, 2}Z and hence hµ2(F ) = log 2 and χ(µ2) = 1
2 log(β0β2) > 0. As µ1

and µ2 have identical projections, they carry the same entropy. �

The above construction can be performed for more general Bernoulli mea-
sures. In particular, we obtain the following result.

Proposition 5.11. Any Bernoulli measure on Σ3 has a lift to a F -invariant
measure with nonpositive central Lyapunov exponent.

Given a (p0, p1, p2)-Bernoulli measure ν on Σ3, then any of its lifts to a
F -invariant measure µ has central Lyapunov exponent bounded from above
by

χ(µ) ≤ p1 log γ + (p0 + p2) log β+
02.

Moreover, if this bound is negative, then for ν-almost every ξ the fiber I[ξ]

is trivial and hence the lifted measure is unique.

We conclude this section by drawing a number of corollaries.

Corollary 5.12. If γ (β+
02)2 < 1, then the measure of maximal entropy is

unique and has negative central Lyapunov exponent.

Corollary 5.13. F |Λ does not satisfy the specification property.

Proof. We apply [7, Proposition 21.14] to conclude that for a specified dy-
namical system every invariant measure (not necessarily ergodic) has a
generic point. The existence of the spectral gap concluded in Corollary 5.1
hence implies that our system cannot be specified. �

We finally argue that our systems are “essentially contracting” in the
sense that the part of the phase space with non-positive central Lyapunov
exponent carries larger entropy. Let

h1,2
def= sup

{
h(F |A) : A ⊂ Λ (1, 2)-horseshoe

}
,

h2,1
def= sup

{
h(F |A) : A ⊂ Λ (2, 1)-horseshoe

}
,

where A is said to be a (1, 2)-horseshoe (a (2, 1)-horseshoe) if it is a basic set
with hyperbolic splitting Ess⊕Euu whose stable bundle is one-dimensional
(two-dimensional).

Corollary 5.14. We have h1,2 ≤ h2,1. If the measure of maximal entropy is
unique and has negative central Lyapunov exponent, then h1,2 < h2,1 = log 3.
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Proof. Let us consider the following pressure functions

P1,2(t) def= max
µ∈Me(Λ),χ(µ)>0

(
hµ(F )− tχc(µ)

)
P2,1(t) def= max

µ∈Me(Λ),χ(µ)<0

(
hµ(F )− tχc(µ)

)
h0

def= max
µ∈Me(Λ),χ(µ)=0

hµ(F ).

By the variational principle, clearly for every t ∈ R we have

P (t) = max
{
P1,2(t), P2,1(t), h0

}
.

Based on the fact that for every hyperbolic measure µ one can construct basic
sets with entropy arbitrarily close to hµ(F ), one can conclude that P1,2(0) =
h1,2 and P2,1(0) = h2,1 (compare [14, Chapter 20]. This immediately implies
the claim. �

6. More general potentials

Let mention how the observations in Sections 4 and 5.1 can be extended to
more general potentials than the one ϕ = − log ‖dF |Ec‖. Given a continuous
function φ : Λ→ R and a point R ∈ Λ, let us consider the (forward) Birkhoff
average of φ at R defined by

χφ(R) def= lim
n→∞

1
n

n−1∑
n=0

φ
(
Fn(R)

)
,

whenever this limit exists. Indeed, having a gap in the spectrum of such
averages is open in the space of continuous potentials with the supremum
topology.

Note that condition (F012) gives constraints to the variation of the poten-
tial ϕ on the lateral horseshoe Λ02 and to the value of ϕ(P0). If we assume
that a condition similar to (F012) is satisfied for the potential φ then as
in Sections 4 and 5.1 we get a gap in the spectrum of values χφ. Roughly
speaking, we need to require that the range [α−02, α

+
02] of the potential φ|Λ02

should be sufficiently small on Λ02 and that sup{φ(R) : R = (θ, 1) ∈ Λ} is
sufficiently smaller than α−02.

Using these properties, we can show that there exists numbers α̃ < α−02 ≤
α+

02 such that χφ(R) ∈ [α−02, α
+
02] for every R ∈ Λ02 and χφ(R) ≤ α̃ whenever

R ∈ Λ\Λ02. We refrain ourselves from stating the precise conditions for the
potentials and giving all details of the proof of this fact. Then a statement
analogous to Corollary 5.1 can be obtained saying that for every ergodic
measure µ ∈Me(Λ) and the average

χφ(µ) def=
∫
φdµ

we have that

{χφ(µ) : µ ∈Me(Λ)} ⊂ [minφ, α̃ ] ∪ [α−02, α
+
02].
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If, moreover, φ|Λ02 is Hölder continuous, then it is an immediate consequence
that there exists a parameter tc ∈ R such that t 7→ P (tφ) is, in fact, real
analytic on (−∞, tc).

Finally, let us formulate a general sufficient condition for a phase transi-
tion. It is an immediate consequence of the fact that every equilibrium state
is a sub-gradient of the pressure function and of the gap in the range of av-
erages with respect to ergodic measures supported on the lateral horseshoe
Λ02 and on Λ \ Λ02, respectively.

Proposition 6.1. Given a continuous potential φ : Λ→ R. If

inf
R∈Λ02

φ(R) > sup
µ∈Me(Λ)\Me(Λ02)

χφ(µ)

then there exists tc ∈ R such that t 7→ P (tφ) is continuous in R and not
differentiable in tc.

7. Transitivity of Λ

In this section we prove Proposition 3.3 claiming that Λ is a homoclinic
class and hence is topologically transitive.

We start by describing the invariant manifolds of the saddles Pi and Qj
of the diffeomorphism F , see (3.1). Recall that by hypothesis the planar
horseshoe map Φ is affine, thus we have

[0, 1]× {θui } = W s
loc(θi,Φ) and {θsi } × [0, 1] = W u

loc(θi,Φ).

The definition of F in (2.1) implies that

[0, 1]× {θui } × (0, 1] ⊂W s(Pi, F ),

{θsi } × [0, 1]× {pi} ⊂W u(Pi, F ),

[0, 1]× {θui } × {0} ⊂W s(Qi, F ),

{θsi } × [0, 1]× [0, pi) ⊂W u(Qi, F ).

(7.1)

In what follows we write

W s
loc(Qi, F ) = [0, 1]× {(θsi , qi)} and W u

loc(Pi, F ) = {θsi } × [0, 1]× {pi}.

Remark 7.1. The definition of F and (7.1) immediately imply that the
point P0 and the saddles Q0, Q2 are involved in a heterodimensional cycle,
that is, the stable manifold of P0 meets the unstable one of Qi and the
unstable manifold of P0 meets the stable one of Qi.

To prove Proposition 3.3, we follow closely the arguments in [10], so we
only sketch the main ideas and explain the differences.

Proof of Proposition 3.3. It follows from the construction that the set Λ
splits into the following three sets:

1) the lateral horseshoe Λ02,
2) the cycle set W u(P0, F ) ∩W s(Λ02, F ) corresponding to “heterodi-

mensional cycles”, and
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3) the inner points X = (xs, xu, x) ∈ Λ for which F i(X) = (xsi , x
u
i , xi)

satisfies xi ∈ (0, 1) for infinitely i ≤ 0.
The main ingredient of the proof is the notion of expanding itineraries. In

our case, the existence of such itineraries is guaranteed by condition (F01).

Remark 7.2 (Expanding itineraries). There are κ > 1 and small b > 0
close to 0 such that for any interval J ⊂ [f−2

0 (b), b] there is a number n(J)
(uniformly bounded) such that for every x ∈ J(

f1 ◦ fn(J)
0

)
(x) ∈ (0, b] and |(f1 ◦ fn(J)

0 )′(x)| ≥ κ
Let us see how this property follows from our assumptions. For simplicity

let us assume linearity of f0 close to 0 and 1. Note that there are arbitrarily
small t > 0 and large n such that fn0 ([β−1

0 t, t]) = [1 − t, 1 − t λ0], recalling
the definitions of β0 and λ0 in (F0). Take b = t. Using monotonicity of f ′0
and the fact that J ⊂ [β−2

0 t, t] we have that, for all x ∈ J ,

(fn0 )′(x) ≥ λ2
0 (1− λ0)
1− β−1

0

.

We let n(J) = n if fn0 (J) ⊂ [1 − t, 1] and n(J) = n + 1 otherwise. This
choice implies that for all x ∈ J we have

(fn(J)
0 )′(x) ≥ λ3

0 (1− λ0)
1− β−1

0

.

Thus, by (F01),

|(f1 ◦ fn(J)
0 )′(x)| ≥ γ

(
λ3

0 (1− λ0)
1− β−1

0

)
> κ > 1.

Finally, by construction fn(J)
0 (J) ⊂ [1− t, 1− λ2

0 t] and thus f1 ◦ fn(J)
0 (J) ⊂

(0, γ t] ⊂ (0, t].

Let us now fix b ∈ (0, 1) close to 0 satisfying Remark 7.2. The following
claim corresponds to [10, Lemma 3.8].

Step 7.3. Given any (non-trivial) closed interval J ⊂ [f−2
0 (b), b] there is a

finite sequence ξ(J) = (ξ0 . . . ξm), ξi ∈ {0, 1}, such that
• the map f[ξ(J)] = fξm ◦ . . . ◦ fξ0 has a unique expanding fixed point
q∗J ∈ J ,
• the unstable manifold W u(q∗J , f[ξ(J)]) contains [f−2

0 (b), b].
The sequence ξ(J) is called the expanding sequence of J .

Indeed, one has that ξ(J) = (0n(J) 1 0m(J)), where n(J) is defined as in
Remark 7.2 and m(J) is the first positive number such that (fm(J)

0 ◦ f1 ◦
f
n(J)
0 )(J)∩ [f−1

0 (b), b)] is non-empty. Remark 7.2 implies that m(J) ≥ 0 and
the map f

m(J)
0 ◦ f1 ◦ fn(J)

0 restricted to J is uniformly expanding. Step 7.3
follows by concatenating several returns of J as above. At some step the
return of J will cover J in an expanding way.
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Consider the periodic point Q∗ of F associated to the periodic sequence
(ξ0 . . . ξm)Z and to the central coordinate q∗J . The second item in Step 7.3
implies the following (for details see [10, Lemma 4.8] and [10, Remark 4.6]).

Step 7.4. The unstable manifold W u(Q∗, F ) transversely intersects the s-
disk [0, 1] × {(xu, x)} for any x ∈ (0, 1). The stable manifold W s(Q∗, F )
transversely intersects any vertical disk of the form {xs} × [0, 1]× J , where
J ⊂ (0, 1) is a fundamental domain of f0.

Note that the proof of the above step involves the dynamics of F in the
cubes C0 and C1 only. Indeed, in what follows all the arguments only involve
iterates in C0 and C1 and the obtained points have orbits contained in C.

Since by construction W s(Q∗, F ) transversely intersect W u(Qi, F ), for
i = 0, 2, we have the following.

Step 7.5. The stable manifolds W s(Q0, F ) and W s(Q2, F ) are contained in
the closure of W s(Q∗, F ). More precisely, for any segment

[0, 1]× {(au, 0)} ⊂W s(Q0, F ),

there is a sequence of horizontal segments,

∆s
n = [0, 1]× {(aun, an)} ⊂W s(Q∗, F )

such that aun → au and an → 0+. A corresponding statement holds for Q2.

Step 7.4 and the cycle configuration in Remark 7.1 immediately imply the
following fact for the unstable manifolds (somewhat similar to Step 7.5).

Step 7.6. The strong unstable manifolds W uu(Q0, F ) and W uu(Q2, F ) are
contained in the closure of W u(Q∗, F ). More precisely, for any segment

{as} × [0, 1]× {0} ⊂W uu(Q0, F ), as ∈ [0, 1],

there is c > 0 such that for each n ≥ 1 there are a sequence of numbers asn,k
with asn,k → as as n → ∞ and a sequence of intervals Jn,k with

⋃
k Jn,k ⊃

(0, c] such that the sequence of vertical rectangles ∆u
n satisfy

∆u
n =

⋃
k

{asn,k} × [0, 1]× Jn,k ⊂W u(Q∗, F ).

A corresponding statement holds for Q2.

As the lateral horseshoe in 1) is contained in the closure of W uu(Q0, F ) t
W s(Q0, F ), Steps 7.5 and 7.6 imply that Λ02 is contained in H(Q∗, F ). This
proves the first part of the proposition.

The fact that the cycle points in Λ (points satisfying 2) above) are con-
tained in H(Q∗, F ) follows arguing exactly as in the previous case consider-
ing Λ02 observing that

W u(P0, F ) ⊂W u(Q∗, F ) and W s(Λ02, F ) ⊂W s(Q∗, F )

using corresponding versions of Steps 7.5 and 7.6 where Q0 is replaced by
any point in Λ02.
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It remains to study the inner points of Λ in 3). Similar to [10, Proposition
4.11] we have the following.

Step 7.7. Let X = (xs, xu, x) ∈ Λ be an inner point. Given any small δ > 0
the stable segment centered at X,

∆s
δ(X) def= [xs − δ, xs + δ]× {(xu, x)}

transversely intersects W u(Q∗, F ). Given a point

X(δ) def= (xs(δ), xu, x) ∈ ∆s
δ(X) tW u(Q∗, F )

then for every small ε > 0 the disk

∆cu
ε (X(δ)) def= {xs(δ)} × [xu − ε, xu + ε]× [x− ε, x+ ε] ⊂W u(Q∗, F ).

intersects W s(Q∗, F ) transversely.

The above fact immediately implies that the rectangle ∆cu
ε (X(δ)) contains

a transverse homoclinic point of Q∗. As δ and ε can be chosen arbitrarily
small, this transverse homoclinic point can be taken arbitrarily close to X.
Thus X is in the class of Q∗. This proves the proposition.

Sketch of the proof of Step 7.7. The proof only involves the dynamics in the
cubes C0 and C1. By expansion of F−1 in the xs-coordinate, since X is
an inner point, after finitely many iterations by F−1 the set F−i(∆s

δ(X))
contains a disk of the form [0, 1]×{(yu, y)}, for some yu ∈ [0, 1] and y ∈ (0, 1).
By Step 7.4 such a disk intersects W ∗(Q,F ), proving our first assertion and
providing X(δ).

The second assertion follows using the expanding itineraries in Step 7.3.
After positive iterations of the disk ∆cu

ε (X(δ)) by F one gets a “big disk”
of the form [0, 1] × {ys} × (a, a′), where a, a′ ∈ (0, 1) are both close to 1.
Using the heterodimensional cycle involving P0 and Q0, after further forward
iterates one gets a disk [0, 1]× {zs} × (c, c′), where c, c′ ∈ (f−2

0 (b), b). Thus
we can consider the interval J = (c, c′) and apply Step 7.3. In this way,
a further forward iterate of ∆cu

ε (X(δ)) contains a vertical disk of the form
[0, 1]×{ws}×J ′, where J ′ contains a fundamental domain of f0 in [f−2

0 (b), b].
By the second part of Step 7.4 this vertical disk intersects W s(Q∗, F ). This
finishes the sketch of the proof. �

This completes the sketch of proof of the proposition �
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