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Abstract. We study the fiber Lyapunov exponents of step skew-product

maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomor-
phisms of the circle as fiber maps. The systems we study are transitive and

genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with pos-

itive, negative, and zero exponents. We derive a multifractal analysis for the
topological entropy of the level sets of Lyapunov exponent. The results are

formulated in terms of Legendre-Fenchel transforms of restricted variational

pressures, considering hyperbolic ergodic measures only, as well as in terms
of restricted variational principles of entropies of ergodic measures with given

exponent. We show that the entropy of the level sets is a continuous function

of the Lyapunov exponent. The level set of zero exponent has positive, but
not maximal, topological entropy. Under the additional assumption of proxi-

mality, there exist two unique ergodic measures of maximal entropy, one with
negative and one with positive fiber Lyapunov exponent.
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1. Introduction

We will study the entropy spectrum of Lyapunov exponents, that is, the topolog-
ical entropy of level sets of points with a common given Lyapunov exponent. This
subject forms part of the multifractal analysis which, in general, studies thermody-
namical quantities and objects (such as, for example, equilibrium states, entropies,
Lyapunov exponents, Birkhoff averages, and recurrence rates) and their relations
with geometrical properties (for example, fractal dimensions). Those properties are
often encoded by the topological pressure.

In the uniformly hyperbolic context multifractal analysis is understood in great
depth and has found already far reaching applications. There is a huge litera-
ture on this subject. To highlight a collection of results in the field at different
stages of development, we refer, for example, to [R] (analyticity of pressure and its
consequences), [O, PW] (multifractal analysis for conformal expanding maps and
Smale’s horsehoes), and [BS] (mixed spectra and restricted variational principles).
In many of those references, particular attention is drawn to so-called geometric
potentials because of their close relation to Lyapunov exponents, entropy, and SRB
measures. Two key properties of uniformly hyperbolic systems, under which the
classical context of multifractal analysis was developed so far, are the specification
property (studied for example in [TV, PS, FLP]) and the existence and uniqueness
of equilibrium states.

The multifractal analysis theory extends also to “one-sided” nonuniformly hy-
perbolic systems, that is, for example to nonuniformly expanding maps where the
presence of a nonpositive Lyapunov exponent is the only obstruction to hyperbol-
icity, that is, the spectrum of Lyapunov exponents covers a range of hyperbolicity
and the zero exponent bounds this range from one side, see for example [GPR] (ex-
pansive Markov maps of the interval) and [PR, IT] (multimodal interval maps). So
far, there is not much understanding of a multifractal analysis for more complicated
types of nonhyperbolic systems. It is difficult to describe all the situations that can
happen in general; one natural class of systems to focus on could be the systems
with a designated line field (associated with the Oseledets decomposition) for which
the Lyapunov exponent takes both positive and negative values arbitrarily close to
zero. Naturally, we assume topological transitivity, hence the system in question
cannot split into “one-sided” nonuniformly hyperbolic parts.

Probably, the simplest setting of such a “two-sided” nonhyperbolic dynamical
system is a step skew-product with a hyperbolic horseshoe map in its base and circle
diffeomorphisms in its fibres. The nonuniform hyperbolicity arises from the coex-
istence of contracting and expanding regions which are blended by the dynamics.
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The system exhibits ergodic measures which positive and negative fiber Lyapunov
exponents. An important feature is the occurrence of ergodic nonhyperbolic mea-
sures (i.e., with zero Lyapunov exponent) with positive entropy. The considered
dynamics is topologically transitive and simultaneously has “horseshoes” which are
contracting and “horseshoes” which are expanding in the fiber direction. More-
over, these horseshoes are intermingled and there coexist dense sets of periodic
points with negative and positive fiber Lyapunov exponents. The precise setting is
discussed in Section 3.

The present paper is a continuation of [DGR2] where properties of the space
of invariant measures were investigated. Here we will concentrate on the multi-
fractal analysis of the entropy of the level sets of fiber Lyapunov exponents. We
follow a thermodynamic approach based on a restricted variational principle. The
philosophy is that to obtain relevant multifractal information about the respective
class of exponents one should not consider the whole variational-topological pres-
sure, but instead its restrictions to ergodic measures with corresponding exponents,
so-called restricted pressures. The use of restricted (sometimes also called hidden)
pressures was initiated in [MS] (for rational maps of the Riemann sphere) and
subsequently used, for example, in [GPR] (for non-exceptional rational maps) and
[PR] (for multimodal interval maps). As the difficulty in our setting comes from
the coexistence of negative, zero, and positive fiber Lyapunov exponents and as
zero exponent measure are notoriously difficult to analyze, a natural solution is to
consider the restricted pressures defined on the ergodic measures with negative and
positive exponents, respectively (it turns out that zero exponent ergodic measures
do not play a significant role). This approach is made possible by the fact that the
uniformly hyperbolic subsystems with negative/positive Lyapunov exponents (but
not the system as the whole) satisfy the specification property.

Summarizing our results: the spectrum of Lyapunov exponents is a closed inter-
val [αmin, αmax] that contains zero in its interior. For each α ∈ [αmin, αmax] the level
set L(α) of points with fiber exponent equal to α is nonempty and its topological
entropy changes continuously with α (see Figure 1). The entropy spectrum of fiber

entropy(L(α))

α
0αmin αmax

Figure 1. The entropy spectrum

Lyapunov exponents is described in terms of those restricted pressure functions and
their respective Legendre-Fenchel transforms.

To obtain our results, we combine a thermodynamical and an orbitwise approach.
On the one hand, we study the restricted variational pressure functions and extract
properties from its shape. Here, one of the big selling points of this approach
is that it gives us convexity for free, which turns out to be a surprisingly useful
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property. On the one hand, in our approach we put our hands on the orbits of the
level sets (the amount of their entropy provides explicit information about them),
using natural recurrence properties of the systems (which is guided by the concept
of so-called blending intervals in [DGR2]), and follow the “orbit-gluing approach”
(which lead us to the notion of skeletons of the dynamics in [DGR2]). We point
out that we always work in the lowest possible regularity and consider C1 circle
diffeomorphisms as fiber maps.

Let us return to the discussion of the zero Lyapunov exponent. The greatest
obstacle in our investigation, as usual in the study of nonhyperbolic systems, are
points and measures with zero exponent. While for nonzero exponents we can give
the full description of the Lyapunov exponent level sets, including the restricted
variational principle and the exact formula for their entropy, we have very restricted
tools for studying the zero exponent level set L(0). We are able to describe the
entropy of this set, but the restricted variational principle cannot be obtained by our
methods. Let us observe that the fact that L(0) has positive topological entropy
was obtained in a similar context in [BBD] by proving the existence of ergodic
measures with positive entropy and zero exponents. In this paper this property is
obtained as a surprising consequence of the shape of the pressure map. Though
positive, we also show that the topological entropy of L(0) is strictly smaller than
the maximal, that is, the topological entropy of the system.

The systems we study always have (at least) two hyperbolic ergodic measure of
maximal entropy, one with negative and one with positive fiber Lyapunov expo-
nent. Indeed, this is an immediate consequence of [C], obtained from a different
point of view of our system as a random dynamical system, that is, as a product of
independent and identically distributed circle diffeomorphisms, also observing the
fundamental fact that our hypotheses exclude the case that our system is a rotation
extension of a Bernoulli shift. It is a particular case of a result in a more general
setting [RH2TU], stated for accessible partially hyperbolic diffeomorphisms having
compact center leaves, see also [TY]. Under the additional assumption of proxi-
mality, with [Ml] we even can conclude uniqueness of ergodic measure of maximal
entropy with negative and positive exponents.

Finally, we point out that the systems that we study are models for robustly tran-
sitive and nonhyperbolic diffeomorphisms and sets with compact central leaves [BDU,
RH2TU]. From another point of view, which in fact provides some of our tools,
the systems can be also considered as actions of a group of diffeomorphisms on the
circle or as random dynamical systems.

2. Statement of the results

Let σ : ΣN → ΣN , N ≥ 2, be the usual shift map on the space ΣN = {0, . . . , N−
1}Z of two-sided sequences. We equip the shift space ΣN with the standard metric
d1(ξ, η) = 2−n(ξ,η), where n(ξ, η) = sup{|`| : ξi = ηi for i = −`, . . . , `}. We equip
ΣN × S1 with the metric d((ξ, x), (η, y)) = sup{d1(ξ, η), |x − y|}, where |·| is the
usual metric on S1.

Consider a finite family fi : S1 → S1, i = 0, . . . , N − 1, of C1 diffeomorphisms
and the associated step skew-product

(2.1) F : ΣN × S1 → ΣN × S1, F (ξ, x) = (σ(ξ), fξ0(x)).



ENTROPY SPECTRUM OF LYAPUNOV EXPONENTS 5

We will consider a class of maps which are topologically transitive and “nonhy-
perbolic in a nontrivial sense that there are some “expanding region” and some
“contracting region” (relative to the fiber direction) and that any of those can be
reached from anywhere in the ambient space under forward/backward iterations.
More precisely, we will require F to satisfy Axioms CEC± and Acc± (see Section 3).

Let M be the space of F -invariant probability measures supported in ΣN × S1,
equip M with the weak∗ topology, and denote by Merg ⊂ M the subset of ergodic
measures. To characterize nonhyperbolicity, given µ ∈M denote by χ(µ) its (fiber)
Lyapunov exponent which is given by

χ(µ)
def
=

∫
log |(fξ0)′(x)| dµ(ξ, x).

An ergodic measure µ is nonhyperbolic if χ(µ) = 0. Otherwise the measure is
hyperbolic. In our setting any hyperbolic ergodic measure has either a negative
or a positive exponent. Accordingly, we split the set of all ergodic measures and
consider the decomposition

(2.2) Merg = Merg,<0 ∪Merg,0 ∪Merg,>0

into measures with negative, zero, and positive fiber Lyapunov exponent, respec-
tively. In our setting, each component is nonempty. In general, it is very diffi-
cult to determine which type of hyperbolicity “prevails”. For that we will study
the spectrum of possible exponents and will perform a multifractal analysis of the
topological entropy of level sets of equal (fiber) Lyapunov exponent.

To be more precise, a sequence ξ = (. . . ξ−1.ξ0ξ1 . . .) ∈ ΣN can be written as

ξ = ξ−.ξ+, where ξ+ ∈ Σ+
N

def
= {0, . . . , N − 1}N0 and ξ− ∈ Σ−N

def
= {0, . . . , N − 1}−N.

Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0... ξn]
def
= fξn ◦ · · · ◦ fξ0 and f[ξ−m... ξ−1.]

def
= (f[ξ−m... ξ−1])

−1.

For n ≥ 0 denote also

fnξ
def
= f[ξ0... ξn−1] and f−nξ

def
= f[ξ−n... ξ−1.].

Given X = (ξ, x) ∈ ΣN × S1 consider the (fiber) Lyapunov exponent of X

χ(X)
def
= lim

n→±∞

1

n
log |(fnξ )′(x)|,

where we assume that both limits n → ±∞ exist and coincide. Note that in our
context the exponent is nothing but the Birkhoff average of the continuous function
(also called potential) ϕ : ΣN × S1 → R defined for X = (ξ, x) by

(2.3) ϕ(X)
def
= log |(fξ0)′(x)|.

We will analyze the topological entropy of the following level sets of Lyapunov
exponents: given α ∈ R let

L(α)
def
=
{
X ∈ ΣN × S1 : χ(X) = α

}
assuming that the Lyapunov exponent at X is well defined and equal to α. Note
that each level set is invariant but, in general, noncompact. Hence we will rely
on the general concept of topological entropy htop introduced by Bowen [B1] (see
Appendix). Denoting by Lirr the set of points where the fiber Lyapunov exponent
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is not well-defined (either one of the limits does not exist or both limits exist but
they do not coincide), we obtain the following multifractal decomposition of ΣN×S1

ΣN × S1 =
⋃
α∈R

L(α) ∪ Lirr.

Note that L(α) will be nonempty in some range of α, only. Under our axioms this
range decomposes into three natural nonempty parts

{α : L(α) 6= ∅} = [αmin, 0) ∪ {0} ∪ (0, αmax],

where

αmax
def
= max

{
α : L(α) 6= ∅

}
, αmin

def
= min

{
α : L(α) 6= ∅

}
.

It is easy to verify that max and min are indeed attained.
To state our main results, we need the following thermodynamical quantities.

Denote by h(µ) the entropy of a measure µ and consider the pressures and their
convex conjugates (see Section 4 for details)

(2.4) P∗(qϕ)
def
= sup

µ∈Merg,∗

(
h(µ)− qχ(µ)

)
, E∗(α)

def
= inf

q∈R

(
P∗(qϕ)− qα

)
,

where ∗ should be replaced by < 0 and > 0, respectively. In the terminology
of [PRS], this would be called (positive/negative) variational hyperbolic pressure,
we call it simply pressure. For simplicity we will use the notation

P∗(q)
def
= P∗(qϕ),

as this is the only family of potentials whose pressure we are going to consider.
Similarly, we define

P0(q)
def
= sup

µ∈Merg,0

h(µ).

Clearly,

max{P<0(q),P0(q),P>0(q)} = Ptop(qϕ)

is the classical topological pressure of qϕ with respect to F (see [Wa, Chapter 7]).
We will also write E for both E>0 and E<0, because the domains of those two
functions are disjoint.

Theorem 1. Consider a transitive step skew-product map F as in (2.1) whose fiber
maps are C1. Assume that F satisfies Axioms CEC± and Acc±.

Then for every α ∈ [αmin, αmax] we have L(α) 6= ∅. Moreover,

• for every α ∈ (αmin, 0) we have

htop(L(α)) = sup
{
h(µ) : µ ∈Merg, χ(µ) = α

}
= E<0(α),

• for every α ∈ (0, αmax) we have

htop(L(α)) = sup
{
h(µ) : µ ∈Merg, χ(µ) = α

}
= E>0(α),

• for every α ∈ {αmin, 0, αmax} we have

lim
β→α

htop(L(β)) = htop(L(α)),

• htop(L(0)) > 0.

Moreover, there exist (finitely many) ergodic measures µ+, µ− of maximal entropy
h(µ±) = logN and with χ(µ−) < 0 < χ(µ+).
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D+ D−

P>0(q)P<0(q)

P0(q)
q

D+ D−

P>0(q)P<0(q)

P0(q)
q
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q

Figure 2. Pressures. Left figure: Under the hypothesis of Theorem 2

E(α)

α

α− α+αmin αmax

E(α)

α

α− α+αmin αmax

E(α)

α

α− α+αmin αmax

Figure 3. Entropy. Left figure: Under the hypothesis of Theorem 2

To prove uniqueness of the measures µ± of maximal entropy, we require an
additional assumption (see Section 8.1 for discussion). We say that the IFS is
proximal if for every x, y ∈ S1 there exists at least one sequence ξ ∈ ΣN such that
|fnξ (x)− fnξ (y)| → 0 as |n| → ∞.

It is easy to see that the IFS is proximal if, for example, it contains a map with
one attracting and one contracting fixed point (contraction-expansion map; North
pole-South pole map) and the IFS satisfies our other axioms CEC± and Acc±.

Theorem 2. Assume the hypothesis of Theorem 1. Assume also that the IFS is
proximal. Then there exist unique ergodic F -invariant probability measures µ− and
µ+ of maximal entropy h(µ±) = logN , respectively, and satisfying

α−
def
= χ(µ−) < 0 < α+

def
= χ(µ+).

We have

htop(L(α−)) = htop(L(α+)) = logN

and

htop(L(α)) < logN

for all α 6= α−, α+.

Similar phenomenon as in Theorem 2 (the entropy achieving its maximum away
from zero exponent) in a slightly different setting (for ergodic measures on C2

systems) was observed in [TY]. The weak∗ and entropy convergence means that
the sequence of measures converges in the weak∗ topology and their entropies also
converge to the entropy of the limit measure.

Corollary 3. Under the hypothesis of Theorem 2 no measure which is a nontrivial
convex combination of the two ergodic measures of maximal entropy is a weak∗ and
in entropy limit of ergodic measures.
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The results in [TY] and our results suggests the following conjecture (which is
indeed true for maximal entropy measures, by Corollary 3).

Conjecture 4. For every pair of hyperbolic ergodic measures µ1 and µ2 with
χ(µ1) < 0 < χ(µ2) every nontrivial convex combination of µ1 and µ2 cannot be
approximated (weak∗ and in entropy) by ergodic measures.

Under the hypothesis of Theorem 2, the graph of the Lyapunov spectrum α →
htop(L(α)) = E(α) is as on Figure 3 (left figure). Under the hypothesis of Theo-
rem 1, possible shapes of the graph of the corresponding Lyapunov spectrum are
as on Figure 3 (middle and right figures).

We summarise the properties of (restricted) pressure functions, its Legendre-
Fenchel transform, and of the Lyapunov spectrum in the following theorem (com-
pare Figures 2 and 3).

Theorem 5. Under the assumptions of Theorem 1,

a) P<0 and P>0 are nonincreasing and nondecreasing convex functions, respec-
tively,

b) (Plateaus) There are numbers D± and h± such that

P<0(q) = h− for all q ≥ D− and P>0(q) = h+ for all q ≤ D+.

c) h− = h+ = htop(L(0)),
d) D+ ≤ 0 ≤ D−,
e) P>0(0) = P<0(0) = logN = htop(F ),
f) α 7→ htop(L(α)) achieves its maximum value logN at some points

α− < 0 and α+ > 0,

g) For α < 0 the function α 7→ E(α) is a Legendre-Fenchel transform of q 7→
P<0(q). Similarly, for α > 0 the function α 7→ E(α) is a Legendre-Fenchel
transform of q 7→ P>0(q). In particular, α 7→ E(α) is a concave function on
the domains α < 0 and α > 0, respectively,

h) htop(L(α)) is a continuous function on [αmin, αmax],
i) 0 ≤ DRE(0) <∞ and 0 ≤ −DLE(0) <∞,
j) htop(L(0)) > 0.

Moreover, under the assumptions of Theorem 2 we have additional properties

k) P>0(q) and P<0(q) are differentiable at q = 0,

in items d) and i) we have strict inequalities:

D+ < 0 < D− and DLE(0) < 0 < DRE(0),

and the points α−, α+ in item f) are the unique numbers α for which htop(L(α)) =
logN .

Remark 2.1. The following questions remain open. The restricted pressures can
be differentiable or nondifferentiable at the beginning of the plateaus in Theorem 5
item b). The nondifferentiability of, for example, P>0 at a− would mean that
E(α) is linear on some interval [0, q]. Further regularity properties (smoothness,
analyticity) of the restricted pressure functions (excluding the ends of plateaus)
and of the spectrum are unknown.

The asymptote of P>0 at q →∞ is some line {P = αmaxq+hmax}, similarly P<0

is asymptotic to {P = αminq + hmin}, and we do not know whether hmax and hmin



ENTROPY SPECTRUM OF LYAPUNOV EXPONENTS 9

are equal to zero (which would mean that htop(L(αmax)) = htop(L(αmin)) = 0; this
phenomenon is sometimes referred to as ergodic optimization, see for example [J]).

Finally, we do not know if there exist ergodic measures with Lyapunov expo-
nent zero and with entropy arbitrarily close to htop(L(0)) (Variational principle for
exponent zero).

Our approach is to treat positive, negative, and zero spectra separately. First, we
recall the restricted variational principle for entropy which provides a lower bound
for htop(L(α)), see Section 4.1. Then we show that these values can be expressed via
the Legendre-Fenchel transform of the restricted pressure function in (2.4) (treating
negative and positive values separately). For that we will strongly use that for any
pair of uniformly hyperbolic sets with negative (positive) fiber exponents we can
find a larger one containing them both and hence we can gradually approximate
from below the restricted pressure P<0 (P>0), see Section 5. Finally, using the
existence of so-called skeletons established in [DGR2], for any α with a level set
of given entropy h we can construct hyperbolic sets with entropy close to h with
almost homogeneous exponents close to α. This will show that htop(L(α)) is limited
from above by entropies of ergodic measures with exponents close to α. Concavity
of the Legendre-Fenchel transform implies its continuity, which concludes the main
argument.

The structure of this paper is as follows. In Section 3 we recall the most impor-
tant properties of the systems we investigate, obtained in [DGR2]. In Section 4 we
give some basic information about the thermodynamical formalism. In Section 5 we
introduce (in an abstract setting) the restricted pressures and exhausting families,
then in Section 6 we construct them in the setting of our paper. Finally, in the last
three sections we prove our three theorems.

3. Setting

We recall the precise setting of our axioms CEC± and Acc± and their main
consequences, established in [DGR2]. The step skew-product structure of F allows
us to reduce the study of its dynamics to the study of the iterated function system
(IFS) generated by the fiber maps {fi}N−1

i=0 . In what follows we always assume that
F is transitive.

3.1. Axioms. Given a point x ∈ S1, consider and define its forward and backward
orbits by

O+(x)
def
=
⋃
n≥0

⋃
(θ0...θn−1)

f[θ0... θn−1](x) and O−(x)
def
=
⋃
m≤1

⋃
(θ−m...θ−1)

f[θ−m... θ−1.](x),

respectively. Consider also the full orbit of x

O(x)
def
= O+(x) ∪ O−(x).

Similarly, we define the orbits O+(J),O−(J), and O(J) for any subset J ⊂ S1.
In requiring that the underlying IFS {fi} of the map F satisfies the axioms

CEC± and Acc± we mean that there are so-called (closed) forward and backward
blending intervals J+, J− ⊂ S1 such that the following properties hold.

CEC+(J+) (Controlled Expanding forward Covering relative to J+).
There exist positive constants K1, . . . ,K5 such that for every interval H ⊂ S1

intersecting J+ and satisfying |H| < K1 we have
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• (controlled covering) there exists a finite sequence (η0 . . . η`−1) for some pos-
itive integer ` ≤ K2 |log |H||+K3 such that

f[η0... η`−1](H) ⊃ B(J+,K4),

where B(J+, δ) is the δ-neighbourhood of the set J+.
• (controlled expansion) for every x ∈ H we have

log |(f[η0... η`−1])
′(x)| ≥ `K5.

CEC−(J−) (Controlled Expanding backward Covering relative to J−).
The IFS {f−1

i } satisfies the Axiom CEC+(J+).

Acc+(J+) (forward Accessibility relative to J+). O+(int J+) = S1.

Acc−(J−) (backward Accessibility relative to J−). O−(int J−) = S1.

When the step skew-product F is transitive then there is a common interval
J ⊂ S1 satisfying CEC±(J) and Acc±(J) (see Lemma 3.5 and detailed discussion
in [DGR2, Section 2.2]).

In what follows we recall some properties of the IFS {fi} and the skew-product
map F satisfying the axioms above that will be used in this paper.

3.2. Previous results from [DGR2]. A technical result that we extract from [DGR2]
claims that given an ergodic measure µ with exponent χ(µ) = α > 0 and entropy
h(µ) > 0, for every small β < 0 there are ergodic measures with exponents close
to β and positive entropy, but in this construction some entropy is lost. [DGR2,
Theorem 5] bounds the amount of lost entropy that is related to the size of α+ |β|.
A specially interesting case occurs when the exponent β is taken arbitrarily close
to 0−. The estimates in [DGR2, Theorem 5] are summarized in the next lemma.

Lemma 3.1 (Rephrasing partially [DGR2, Theorem 5]). There exists c > 0 such
that for every ergodic measure µ with nonzero Lyapunov exponent χ(µ) = α 6= 0
there is a sequence of ergodic measures νi with Lyapunov exponents χ(νi) = βi,
sgnα 6= sgnβi, such that βi → 0 and

lim
i→∞

h(νi) ≥
h(µ)

1 + c|α|
.

This result also implies the following.

Corollary 3.2. There exist ergodic measures with exponents arbitrarily close to 0+

and 0−.

The systems considered in this paper satisfy the so-called skeleton property which
implies the existence of orbit pieces that allow to approximate entropy and Lya-
punov exponent, see [DGR2, Section 4] for details. The skeleton property is referred
to some blending interval and to quantifiers corresponding to the entropy and a level
set for the Lyapunov exponent. An important property is that if L(α) 6= 0 then the
skeleton property holds relative to h = htop(L(α)) and α. Based on the skeleton
property, we have the following.

Given a compact F -invariant set Γ ⊂ ΣN × S1, we say that Γ has uniform fiber
expansion (contraction) if every ergodic measure µ ∈M(Γ) has positive (negative)
Lyapunov exponent. It is hyperbolic if it either has uniform fiber expansion or
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uniform fiber contraction. We say that a set is basic (with respect to F ) if it is
compact, F -invariant, locally maximal, topologically transitive, and hyperbolic1.

Proposition 3.3 ([DGR2, Theorems 4.3 and 4.4]). Given α 6= 0 such that L(α) 6=
∅ and h = htop(L(α)) > 0, for every γ ∈ (0, h) and every small λ > 0 there is a
basic set Γ ⊂ ΣN × S1 such that

1. htop(Γ) ∈ [h− γ, h+ γ] and
2. every ν ∈Merg(Γ) satisfies χ(ν) ∈ (α− λ, α+ λ) ∩ R−.

The analogous result holds for negative Lyapunov exponents exponents.

Proposition 3.4 ([DGR2, Proposition 4.8 and Theorem 4.4]). Suppose that L(0) 6=
∅ and that h = htop(L(0)) > 0. Then for every γ ∈ (0, h) and every λ > 0 there is
a basic set Γ ⊂ ΣN × S1 such that

1. htop(Γ) ≥ h− γ and
2. every ν ∈Merg(Γ) satisfies χ(ν) ∈ (−λ, 0).

A further consequence of the axioms CEC± and Acc± is that the IFS {fi}
is forward and backward minimal. Lemma 2.2 in [DGR2] states a quantitative
version of this minimality. We also will use the following results which are simple
consequences.

Lemma 3.5 ([DGR2, Lemmas 2.2 and 2.3]). Every nontrivial interval I ⊂ S1

contains a subinterval J ⊂ I such that the IFS {fi} satisfies axioms CEC±(J) and
Acc±(J). Moreover, there is a number M = M(I) ≥ 1 such that for every point
x ∈ S1 there are finite sequences (θ1 . . . θr) and (β1 . . . βs) with r, s ≤M such that

f[β1...βs](x) ∈ I and f[θ1...θr.](x) ∈ I

Lemma 3.6 ([DGR2, Lemma 2.4]). For every interval I ⊂ S1 there exist δ =
δ(I) > 0 and M = M(I) ≥ 1 such that for any interval J ⊂ S1, |J | < δ, there
exists a finite sequence (τ1 . . . τm), m ≤M , such that f[τ1... τm](J) ⊂ I.

We finish this section with one further conclusion which we will use in Sections 7.1
and 8.1.

Lemma 3.7. There does not exist a Borel probability measure m on S1 which is
fi-invariant for every i = 0, . . . , N − 1.

Proof. By contradiction, assume that there is a Borel probability measure m on S1

which is simultaneously fi-invariant for all i. Let J ⊂ S1 be a blending interval and
consider two closed disjoint small sub-intervals J1, J2 ⊂ J . By Axiom CEC+(J),
there is some sequence (η0 . . . η`−1) such that f[η0...η`−1](J1) ⊃ J . From this we can
conclude that m(J \ J1) = 0. Similarly, m(J \ J2) = 0. This implies m(J) = 0.
Hence, by Acc±(J) we have that m(S1) = 0. But this is a contradiction. �

4. Entropy, pressures, and variational principles

In this section we consider a general setting of a compact metric space (X, d),
a continuous map F : X → X, and a continuous function ϕ : X → R. We collect
some general facts about entropy and pressure.

1This definition mimics the usual definition of a basic set in a differentiable setting.



12 L. J. DÍAZ, K. GELFERT, AND M. RAMS

4.1. Entropy: restricted variational principles. Given α ∈ R consider the
level sets

L(α)
def
=
{
x ∈ X : ϕ(x) = α

}
, where ϕ(x)

def
= lim

n→∞

1

n

n−1∑
k=0

ϕ(F k(x)),

whenever this limit exists. We study the topological entropy of F on the set L(α)
and consider the function

α 7→ htop(L(α)).

We will now recall some results which are known for such general setting. An
upper bound for the entropy htop(L(α)) (which, in fact, is sharp in many cases)
is easily derived applying a general result by Bowen [B1]. Denote by M(X) the
set of F -invariant probability measures and by Merg(X) ⊂ M(X) the subset of
ergodic measures. We equip this space with the weak∗ topology. Given x ∈ X, let
VF (x) ⊂ M(X) be the set of (F -invariant) measures which are weak∗ limit points
as n→∞ of the empirical measures µx,n

µx,n
def
=

1

n

n−1∑
k=0

δFk(x),

where δx is the Dirac measure supported on the point x. Given µ ∈M(X), denote
by G(µ) the set of µ-generic points

G(µ)
def
=
{
x : lim

n→∞
µx,n = {µ}

}
.

Given c ≥ 0, define the set of its “quasi regular” points by

QR(c)
def
=
{
y ∈ X : there exists µ ∈ VF (y) with h(µ) ≤ c

}
.

Proposition 4.1.

i) htop(QR(c)) ≤ c ([B1, Theorem 2]).
ii) For µ ergodic we have h(µ) = htop(G(µ)) ([B1, Theorem 3]).

iii) If F satisfies the specification property, then for every µ ∈ M(X) we have
h(µ) = htop(G(µ)) ([PS, Theorem 1.2] or [FLP, Theorem 1.1]).2

We have the following simple consequence. Let

ϕ(µ)
def
=

∫
ϕdµ.

Lemma 4.2. For every α such that L(α) 6= ∅ we have

sup
{
h(µ) : µ ∈Merg(X), ϕ(µ) = α

}
≤ htop(L(α))

≤ sup
{
h(µ) : µ ∈M(X), ϕ(µ) = α

}
.

Proof. To prove the first inequality, observe that for µ ergodic with ϕ(µ) = α
we have G(µ) ⊂ L(α) and by Proposition 4.1 ii) and monotonicity of topological
entropy with respect to inclusion we obtain h(µ) = htop(G(µ)) ≤ htop(L(α)).

To prove the second inequality, denote

H(α)
def
= sup{h(µ) : µ ∈M(X), ϕ(µ) = α}.

2Note that, in fact, this result holds true for any map which has the so called g-almost product

property which is implied by the specification property (see [PS, Proposition 2.1]). The spec-
ification property is satisfied for example for every basic set (see [S]). We emphasize that the

skew-product systems we study in this paper do not satisfy the specification property.
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Note that for every x ∈ L(α) we have ϕ(x) = α and hence for every µ ∈ VF (x) we
have ϕ(µ) = α and thus h(µ) ≤ H(α). Hence, L(α) ⊂ QR(H(α)) and again by
monotonicity and Proposition 4.1 i) we obtain

htop(L(α)) ≤ htop(QR(H(α))) ≤ H(α),

proving the lemma. �

We recall the following classical restricted variational principle strengthening the
above lemma which will play a central role in our arguments. We point out that it
requires ϕ to be continuous, only.

Proposition 4.3 ([PS, Theorem 6.1 and Proposition 7.1] or [FLP, Theorem 1.3]
and [S]). If F : X → X satisfies the specification property then for every α such
that L(α) 6= ∅ we have

htop(L(α)) = sup
{
h(µ) : µ ∈M(X), ϕ(µ) = α

}
.

Moreover,
{
ϕ(µ) : µ ∈Merg(X)

}
is an interval.

4.2. Pressure functions. For a measure µ ∈M(X) we define the affine functional
P (·, µ) on the space of continuous functions by

P (ϕ, µ)
def
= h(µ) +

∫
ϕdµ.

Given an F -invariant compact subset Y ⊂ X, we define the topological pressure of
ϕ with respect to F |Y by

(4.1) PF |Y (ϕ)
def
= sup

µ∈M(Y )

P (ϕ, µ) = sup
µ∈Merg(Y )

P (ϕ, µ)

and we simply write P (ϕ) = PF |X(ϕ) if Y = X and F |X is clear from the context.
Note that definition (4.1) is nothing but the variational principle of the topological
pressure (see [Wa, Chapter 9] for a proof and a purely topological and equivalent
definition of pressure). A measure µ ∈ M(Y ) is an equilibrium state for ϕ (with
respect to F |Y ) if it realizes the supremum in (4.1).3 Recall that htop(Y ) = PF |Y (0)
is the topological entropy of F on Y .

We now continue by considering a decomposition of the set of ergodic measures
and studying corresponding pressure functions. Given a subset N ⊂M(X), define

P (ϕ,N)
def
= sup

µ∈N
P (ϕ, µ).

Given N ⊂ M(X), consider its closed convex hull convN, defined as the smallest
closed convex set containing N. It is an immediate consequence of the affinity of
µ 7→ P (ϕ, µ) that

P (ϕ,N) = P
(
ϕ, conv(N)

)
.

A particular consequence of this equality and ergodic decomposition of non-ergodic
measures is the fact that for N = Merg(X) and hence conv(N) = M(X) in (4.1) it
is irrelevant if we take the supremum over all measures in M(X) or over the ergodic
measures only (used to show the equality in (4.1)). The case of a general subset N

of M(X), however, will be quite different and is precisely our focus of interest.

3Note that in context of the rest of the paper, skew-product maps with one-dimensional fibers,
such equilibrium states indeed exist by [DF, Corollary 1.5] (see also [CY]). However, they are not

unique in general, see for instance examples in [LOR, DGR1].
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We now analyze the pressure function for a subset of ergodic measures N ⊂
Merg(X).4 Let q ∈ R and consider the parametrized family qϕ : X → R and the
function

PN(q)
def
= P (qϕ,N).

For each µ ∈ N we simply write Pµ(q) = P(q, {µ}). We call µ ∈ M(X) an equilib-
rium state for qϕ, q ∈ R, (with respect to N) if PN(q) = Pµ(q). Let also

(4.2) ϕ(N)
def
=
{∫

ϕdµ : µ ∈ N
}
, ϕ

N

def
= inf ϕ(N), ϕN

def
= supϕ(N).

We list the following general properties which are easy to verify (most of these
properties and the ideas behind their proofs can be found in [Wa, Chapter 9]).

(P1) The function Pµ is affine and satisfies Pµ ≤ PN and Pµ(0) = h(µ).
(P2) Given a subset N′ ⊂ N, then PN′ ≤ PN.
(P3) PN(0) = sup{h(µ) : µ ∈ N}.
(P4) The function ϕ 7→ P (ϕ,N) is continuous and q 7→ P (qϕ,N) is uniformly

Lipschitz continuous.
(P5) The function PN is convex. Consequently, PN is differentiable at all but

at most countably many q and the left and right derivatives DLPN(q) and
DRPN(q) are defined for all q ∈ R.

(P6) We have

ϕ
N

= lim
q→∞

PN(q)

q
= lim
q→∞

DLPN(q) = lim
q→∞

DRPN(q),

ϕN = lim
q→−∞

PN(q)

q
= lim
q→−∞

DLPN(q) = lim
q→−∞

DRPN(q).

(P7) The graph of PN has a supporting straight line of slope ϕ(µ) for every µ ∈ N.
Thus, for any α ∈ (ϕ

N
, ϕN) it has a supporting straight line of slope α.

(P8) If the entropy map µ 7→ h(µ) is upper semi-continuous on M(X) then for
any number α ∈ (ϕ

N
, ϕN) there is a measure µα ∈ M(X) (not necessarily

ergodic and not necessarily in N) such that ϕ(µα) = α and q 7→ Pµα(q) is a
supporting straight line for PN.

(P9) If µ ∈ M(X) is an equilibrium state for qϕ for some q ∈ R (with respect
to N), then DLPN(q) ≤ ϕ(µ) ≤ DRPN(q). Moreover, the graph of Pµ is a
supporting straight line for the graph of PN at (q,PN(q)).

(P10) If the entropy map µ 7→ h(µ) is upper semi-continuous, then for any q there
are equilibrium states µL,q and µR,q for qϕ (with respect to N) such that
ϕ(µL,q) = DLPN(q) and ϕ(µR,q) = DRPN(q). Moreover, µL,q and µR,q can
be chosen to be ergodic (but not necessarily in N).

(P11) PN is differentiable at q if and only if all equilibrium states for qϕ (with
respect to N) have the same exponent and this exponent is P′N(q). In par-
ticular, if there is a unique equilibrium state for qϕ (with respect to N) then
PN is differentiable at q.

4In the rest of this paper we will study the decomposition (2.2) and have in mind the particular
subset of measures

N− = Merg,<0, N0 = Merg,0, N+ = Merg,>0.
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(P12) If µ ∈ conv(N) is not ergodic and Pµ(q) = PN(q) for some q, then almost all
of the measures in the ergodic decomposition of µ are equilibrium states for
qϕ (with respect to N).

4.3. The convex conjugate of the pressure function. One of our goals is
to express the topological entropy htop(L(α)) of each level sets L(α) in terms of
restricted variational principles and Legendre-Fenchel transforms of appropriate
pressure functions. Let us hence recall some simple facts about such transforms.

Given a subset of ergodic measures N ⊂Merg(X), we define

EN(α)
def
= inf

q∈R

(
PN(q)− qα

)
on its domain

D(EN)
def
=
{
α ∈ R : inf

q∈R
(PN(q)− qα) > −∞

}
.

Observe that (PN,EN) forms a Legendre-Fenchel pair.5 We list the following general
properties.

(E1) The function EN is concave (and hence continuous). Consequently, it is
differentiable at all but at most countable many α, and the left and right
derivatives are defined for all α ∈ D(EN).

(E2) We have

D(EN) ⊃ (ϕ
N
, ϕN).

(E3) If µ is an equilibrium state for qϕ for some q ∈ R (with respect to N) and
α = ϕ(µ), then h(µ) = EN(α).

(E4) We have

max
α∈D(EN)

EN(α) = PN(0).

Moreover, this maximum is attained at exactly one value of α if, and only
if, PN is differentiable at 0.

(E5) For every α ∈ D(EN) we have

EN(α) ≥ sup
{
h(µ) : µ ∈ N, χ(µ) = α

}
.

Lemma 4.4. Assume that F : M →M is a diffeomorphism and X ⊂M is a basic
set. Let ϕ : X → R be a continuous potential. Then for N = Merg(X) and every
α ∈ intD(EN) we have

sup
{
h(µ) : µ ∈ N, ϕ(µ) = α

}
= EN(α).

Note that to show the inequality ≤ in the lemma we, in fact, do not need
hyperbolic-like properties.

5The Legendre-Fenchel transform of a convex function β : R→ R ∪ {∞} is defined by

β?(α)
def
= sup

q∈R

(
αq − β(q)

)
,

and is convex on its domain D(β?) = {α ∈ R : β?(α) <∞}. In particular, the convex function β
is differentiable at all but at most countably many points and

β?(α) = β′(q)q − β(q) for α = β′(q).

On the set of strictly convex functions the transform is involutive β?? = β. Formally, it is the
function α 7→ −EN(−α) which is the Legendre-Fenchel transform of PN(q), but it is common
practice in the context of this paper (that we will also follow) to address EN by this name.
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Proof. Let α ∈ intD(EN). Fix any q ∈ R. Observe that

sup
{
h(µ) : µ ∈ N, ϕ(µ) = α

}
= sup

{
h(µ) + qϕ(µ) : µ ∈ N, ϕ(µ) = α

}
− qα

≤ sup
{
h(µ) + qϕ(µ) : µ ∈ N

}
− qα

= PN(q)− qα.
Since q was arbitrary, we can conclude

sup
{
h(µ) : µ ∈ N, ϕ(µ) = α

}
≤ inf
q∈R

(
PN(q)− qα

)
= EN(α).

To prove the other inequality, first recall [B2] that for any Hölder continuous
potential ϕ̃ : X → R and q̃ ∈ R there is a unique equilibrium state for q̃ϕ̃. By
property (P8) applied to X and N, there is a measure µα ∈M(X) (not necessarily
ergodic) such that ϕ(µα) = α and q 7→ Pµα(q) is a supporting straight line for
PN. Hence, there is q = q(α) such that PN(q) = h(µα) + qh(µα). If µα was
already ergodic then we are done. Otherwise, note that we can find ϕ̃ : X → R
Hölder continuous and arbitrarily close to the continuous potential ϕ : X→ R and
q̃ arbitrarily close to q and an ergodic equilibrium state ν̃ ∈ N for q̃ϕ̃ such that
ϕ(ν̃) = α. By (P4) we have that P (q̃ϕ̃,N) is arbitrarily close to P (qϕ,N). Hence,
for such ν̃ we have

h(ν̃) = P (q̃ϕ̃,N)− q̃α =
(
P (qϕ,N)− qα

)
+
(
P (q̃ϕ̃,N)− P (qϕ,N)

)
+
(
qα− q̃α

)
.

Thus, we can conclude

sup
{
h(ν) : ν ∈ N, ϕ(ν) = α

}
≥
(
P (qϕ,N)− qα

)
.

Taking the infimum over all q ∈ R we obtain

sup
{
h(ν) : ν ∈ N, ϕ(ν) = α

}
≥ inf
q∈R

(
PN(q)− qα

)
= EN(α).

This finishes the proof of the lemma. �

5. Exhausting families

In this section we present a general principle to perform a multifractal analy-
sis which was used in several contexts having some hyperbolicity (see, for exam-
ple, [GR] for Markov maps on the interval, [GPR] for non-exceptional rational maps
of the Riemann sphere, or [BG] for geodesic flows of rank one surfaces). Note that
for general dynamical systems – and, in particular, in the setting of the present
paper – we cannot expect the specification property to be satisfied on the whole
space. For this reason, we will consider in the following sections certain families
of subsets (basic sets, see Section 6.1) on which we do have specification. In this
section we are going to present the general theory of restricted pressures which
allows us to obtain dynamical properties of the full system knowing the properties
of those subsets.

Let (X, d) be a compact metric space, F : X→ X a continuous map, and ϕ : X→
R a continuous potential. Fix a set of ergodic measures N ⊂Merg(X). Recall that
we defined for α ∈ D(EN)

EN(α) = inf
q∈R

(
PN(q)− qα

)
.

A sequence of compact F -invariant sets X1,X2, . . . ⊂ X is said to be (X, ϕ,N)-
exhausting if the following holds: for every i ≥ 1 we have

(exh1) Merg(Xi) ⊂ N,
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(exh2) F |Xi
has the specification property,

(exh3) Given Mi = Merg(Xi) let Pi = PMi and

Ei(α)
def
= inf

q∈R

(
Pi(q)− qα

)
.

Then for every α ∈ intD(Ei) the restricted variational principle holds

Ei(α) = sup
{
h(µ) : µ ∈Mi, ϕ(µ) = α

}
.

(exh4) for every q ∈ R we have

lim
i→∞

PF |Xi
(qϕ) = PN(q).

(exh5) Let ϕ
N

and ϕN be as in (4.2), then

ϕ
N

= lim
i→∞

ϕ
Mi
, ϕN = lim

i→∞
ϕMi

.

Note that (Pi,Ei) forms a Legendre-Fenchel pair for every i ≥ 1.

Lemma 5.1. It holds limi→∞ Ei(α) = EN(α). In particular, intD(EN) = (ϕ
N
, ϕN).

Proof. Note that property (exh4) of pointwise convergence of convex functions of
pressures Pi to the convex function of pressure PN and the fact that Ei and EN are
their Legendre-Fenchel transforms imply the claim, see for instance [Wi]. �

The following result will be the main step in establishing the lower bounds for
entropy in Theorem 1. We derive it in the general setting of this subsection.

Proposition 5.2. Assume that there exists an increasing family of sets (Xi)i ⊂ X
which is (X, ϕ,N)-exhausting. Then

• we have

(ϕ
N
, ϕN) ⊂ ϕ(N) ⊂ [ϕ

N
, ϕN].

In particular, ϕ(N) is an interval.
• For every α ∈ (ϕ

N
, ϕN) we have L(α) 6= ∅ and

htop(L(α)) ≥ EN(α) = lim
i→∞

sup
{
h(µ) : µ ∈M(Xi), ϕ(µ) = α

}
.

Proof. By condition (exh4) and the property of pointwise convergence of convex
functions to a convex function (see (P5)), we can conclude that for every i

PF |Xn(i)
(qϕ) ≥ PN(q)− 1

i

for all q ∈ [−i, i] and some sequence (n(i))i. For simplicity, allowing a change of
indices, we will assume that n(i) = i.

A particular consequence of specification of F |Xi
is that by Proposition 4.3 the

set ϕ(Mi) is an interval. Together with (exh5) this implies that ϕ(N) is an interval
and we have

(5.1) (ϕ
N
, ϕN) ⊂ ϕ(N) =

⋃
i≥1

ϕ(Mi) ⊂ [ϕ
N
, ϕN],

proving the first item.
Let α ∈ (ϕ

N
, ϕN). For every index i, by Proposition 4.3, we have

htop(L(α) ∩Xi) = sup
{
h(µ) : Mi, ϕ(µ) = α

}
≤ htop(L(α)),
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where for the inequality we use monotonicity of entropy. By (5.1), there is i =
i(α) ≥ 1 such that α ∈ ϕ(Mi) and, in particular, we have L(α) 6= ∅. By (exh3),
for every α ∈ (ϕ

N
, ϕN) and i sufficiently big, we have

Ei(α) = sup
{
h(µ) : Mi, ϕ(µ) = α

}
.

By Lemma 5.1 we have limi→∞ Ei(α) = EN(α), concluding the proof of the
proposition. �

Remark 5.3. The exhausting property for appropriate N is the essential step to
relate the lower bound in the restricted variational principle (4.2) to the Legendre-
Fenchel transform of the restricted pressure function PN. This is the requirement
(exh3).

6. Homoclinic relations and construction of exhausting families

In this section we return to consider a transitive step skew-product map F as
in (2.1) whose fiber maps are C1 and satisfies Axioms CEC± and Acc±. Recall
that the map F has ergodic measures with exponents arbitrarily close to 0+ and
0−, see Corollary 3.2. The goal of this section is to prove the following proposition.

Proposition 6.1. Consider the set of ergodic measures N = Merg,<0 and the po-
tential ϕ : ΣN × S1 → R in (2.3).

Then there is a (ΣN×S1, ϕ,N)-exhausting family {Xi} consisting of nested basic
sets and ϕ(N) = [αmin, 0). The analogous statement is true for N = Merg,>0 with
ϕ(N) = (0, αmax].

6.1. Homoclinic relations. We say that a periodic point is hyperbolic or a sad-
dle of F if its (fiber) Lyapunov exponent is nonzero. In our partially hyperbolic
setting with one-dimensional central bundle there are only two possibilities: a sad-
dle has either a positive or negative (fiber) Lyapunov exponent. We say that two
saddles are of the same type if either both have negative exponents or both have
positive exponents. Note that all saddles in a basic set are of the same (expand-
ing/contracting) type. We say that two basic sets are of the same type if their
saddles are of the same type.

Given a saddle P we define the stable and unstable sets of its orbit O(P ) by

W s(O(P ))
def
= {X : lim

n→∞
d(Fn(X),O(P )) = 0},

and

W u(O(P ))
def
= {X : lim

n→∞
d(F−n(X),O(P )) = 0},

respectively.
We say that a point X is a homoclinic point of P if X ∈W s(O(P ))∩W u(O(P )).

Two saddles P and Q of the same index are homoclinically related if the stable and
unstable sets of their orbits intersect cyclically, that is, if

W s(O(P )) ∩W u(O(Q)) 6= ∅ 6= W s(O(Q)) ∩W u(O(P )).

In our setting, homoclinic intersections behave the same as transverse homoclinic
intersections. As in the differentiable case, to be homoclinically related defines an
equivalence relation on the set of saddles of F . The homoclinic class of a saddle P ,
denoted by H(P, F ), is the closure of the set of saddles which are homoclinically
related to P . A homoclinic class can be also defined as the closure of the homoclinic
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points of P . As in the differentiable case, a homoclinic class is a F -invariant and
transitive set.6

Lemma 6.2. Any pair of saddles P,Q ∈ ΣN × S1 of the same type are homoclini-
cally related.

Proof. Let us assume that P and Q both have negative exponents. The proof of
the other case is analogous and omitted. Let P = (ξ, p) and Q = (η, q), where
ξ = (ξ0 . . . ξn−1)Z and η = (η0 . . . ηm−1)Z. By hyperbolicity, there is δ > 0 such
that

fnξ
(
[p− δ, p+ δ]

)
⊂ (p− δ, p+ δ) and fmη

(
[q − δ, q + δ]

)
⊂ (q − δ, q + δ)

and such that those maps are uniformly contracting on those intervals. This im-
mediately implies that

[.(ξ0 . . . ξn−1)N]× [p− δ, p+ δ] ⊂W s(O(P )),

[.(η0 . . . ηm−1)N]× [q − δ, q + δ] ⊂W s(O(Q)).

Similarly we get

[(ξ0 . . . ξn−1)−N.]× {p} ⊂W u(O(P )), [(η0 . . . ηm−1)−N.]× {q} ⊂W u(O(Q)).

By Lemma 3.5 there are (β0 . . . βs) and (γ0 . . . γr) such that

f[β0... βs](q) ∈ (p− δ, p+ δ) and f[γ0... γr](p) ∈ (q − δ, q + δ).

By construction, this implies that(
(η0 . . . ηm−1)−N.β0 . . . βs(ξ0 . . . ξn−1)N, q

)
∈W u(O(Q)) ∩W s(O(P )),(

(ξ0 . . . ξn−1)−N.γ0 . . . γr(η0 . . . ηm−1)N, p
)
∈W s(O(P )) ∩W u(O(P )).

This proves that P and Q are homoclinically related. �

6.2. Existence of exhausting families. Let us start by recalling the following
well-known fact about homoclinically related basic sets. For a proof we refer to [R,
Section 7.4.2].

Lemma 6.3 (Bridging). Consider two basic sets Λ1,Λ2 of a diffeomorphism Φ
which are homoclinically related. Then there is a basic set Λ of Φ containing Λ1∪Λ2.
In particular, for every continuous potential ϕ, we have

max
{
PΦ|Λ1

(ϕ), PΦ|Λ2
(ϕ)
}
≤ PΦ|Λ(ϕ).

We will base our arguments also on the following result that translates results
of from Pesin-Katok theory to our setting.

6These assertions are folklore ones, details can be found, for instance, in [DER, Section 3].

Note that in our skew-product context the standard transverse intersection condition between the
invariant sets of the saddles in the definition of a homoclinic relation is not required and does not

make sense. However, since the dynamics in the central direction is non-critical (the fiber maps

are diffeomorphisms and hence have no critical points) the intersections between invariant sets of
saddles of the same type behave as “transverse” ones and the arguments can be translated to the

skew-product setting (here the fact that the fiber direction is one-dimensional is essential).
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Lemma 6.4. Let µ ∈Merg,<0 with h = h(µ) > 0 and α = χ(µ) < 0.
Then for every γ ∈ (0, h) and every λ ∈ (0, α) there exists a basic set Γ =

Γ(γ, λ) ⊂ ΣN × S1 such that for all q ∈ R we have

PF |Γ(qϕ) ≥ h(µ) + q

∫
ϕdµ− γ − qλ.

The analogous statement is true for Merg,>0.

Proof. By Proposition 3.3, there exists a basic set Γ such that htop(Γ) ≥ h − γ
and that for every ν ∈ Merg(Γ) we have χ(ν) ∈ (α − λ, α + λ). The variational
principle (4.1) immediately implies the lemma. �

We are now prepared to prove Proposition 6.1.

Proof of Proposition 6.1. We first construct an exhausting family. Given i ≥ 1, let
us first construct a basic set Xi of contracting type such that

(6.1) PF |Xi(qϕ) ≥ PN(q)− 1

i

for all q ∈ [−i, i]. By Lipschitz continuity property (P4) of pressure, there is a
Lipschitz constant Lip and a finite subset q1, . . . , q` of [−i, i] such that for every
q ∈ [−i, i] there is qk with

Lip |qk − q|‖ϕ‖ <
1

4i
.

To prove (6.1), given qk, by Lemma 6.4 there is a basic set Xi,k such that

PF |Xi,k(qkϕ) ≥ PN(qk)− 1

4i
.

Applying Lemma 6.3 consecutively to the finitely many basic sets Xi,1, . . . , Xi,`,
we obtain a basic set Xi containing all these sets and satisfying (6.1). This shows
(exh4) and (exh5).

By construction, all basic sets are of contracting type and hence all ergodic mea-
sures have negative Lyapunov exponent and we have (exh1). Each of them clearly
satisfies (exh2) (basic sets have the specification property [S]). By Lemma 4.4 we
have the restricted variational principle (exh3).

What remains to prove is that ϕ(N) = [αmin, 0). By Corollary 3.2), the Lyapunov
exponents of ergodic measures extend all the way to 0, that is, ϕN = 0. On the
other hand, note that by (P5) we can choose an increasing sequence (qj)j tending
to −∞ such that PN is differentiable at all such qj . By (P11) and (P12) for every
j there is an ergodic equilibrium state µj for qjϕ and ϕ(µj) → ϕ

N
. Taking µ′

which is a weak∗ limit of (µj)j as j → ∞, then there is an ergodic measure µ′′ in
its ergodic decomposition such that ϕ(µ′′) = ϕ

N
. In particular, we can conclude

L(ϕ
N

) 6= ∅ and αmin = ϕ
N

. This concludes the proof that ϕ(N) = [αmin, 0).
The statement for N = Merg,>0 is proved analogously.
The proof of the proposition is now complete. �

7. Proof of Theorem 1. Entropy spectrum

In the first section we deal with maximal entropy measures. In the remaining
sections, we first study the non-zero part of the spectrum and thereafter analyze
the zero level set.
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7.1. Measure(s) of maximal entropy. To prove the last statement of Theorem
1 about the existence of measure(s) of maximal entropy note that all those measures
project to the (1/N, . . . , 1/N)-Bernoulli measure in the base. Hence, we can use
the known results about the behaviour of Bernoulli measures for random dynamical
systems. By [C, Theorem 8.6] (stated for products of independently and identically
distributed (i.i.d.) diffeomorphisms on a compact manifold) for every Bernoulli
measure b in M(ΣN ) there exists a (at least one) F -ergodic measure µb

+ with positive

exponent and a (at least one) F -ergodic measure µb
− with negative exponent, both

projecting to b = π∗µ
b
±. Indeed, note that our axioms exclude the possibility of a

measure being simultaneously preserved by all the fiber maps, see Lemma 3.7. For
b being the (1/N, . . . , 1/N)-Bernoulli measure we simply write µ±.

There are various ways to prove that there are only finitely many hyperbolic er-
godic F -invariant measures projecting to the same Bernoulli measure. For example,
in our setting it is a consequence of [RH2TU, Theorem 1].

7.2. The level sets with negative/positive exponents. By Proposition 6.1
there is a (ΣN×S1, ϕ,Merg,<0)-exhausting family (analogously for Merg,>0). Hence,
in particular, for every α ∈ (αmin, 0) ∪ (0, αmax) we have L(α) 6= ∅ and together
with Proposition 5.2 we have

htop(L(α)) ≥ EN(α) = lim
i→∞

sup
{
h(µ) : µ ∈M(Xi), ϕ(µ) = α

}
.

By Lemma 4.2, for every α ∈ (αmin, αmax) we have

sup
{
h(µ) : µ ∈Merg(X), χ(µ) = α

}
≤ htop(L(α)).

Together with Lemma 7.1, which is a consequence of general facts on the Legendre-
Fenchel transform and facts from [DGR2] (see Section 4), the statements of Theo-
rem 1 about the negative/positive part of the spectrum will follow.

We will analyze the negative part of the spectrum, the analysis of the positive
part is analogous and it will be omitted.

Lemma 7.1. For every α ∈ (αmin, 0) we have htop(L(α)) ≤ E<0(α).

Proof. First, recall that by (E5) for every α < 0 we have

(7.1) E<0(α) ≥ sup
{
h(µ) : µ ∈Merg,<0, ϕ(µ) = α

}
.

Arguing by contradiction, let us assume that there are α ∈ (αmin, 0) and δ > 0
so that

htop(L(α)) ≥ E<0(α) + 2δ.

Then, by continuity of E<0(·), property (E1), there exists ε > 0 such that for every
α′ ∈ (α− 2ε, α+ 2ε) we have

htop(L(α)) ≥ E<0(α′) + δ.

By Proposition 3.3, there exists a basic set Γ ⊂ ΣN × S1 such that

htop(F,Γ) > htop(L(α))− δ,
and that for every ν ∈Merg(Γ) we have χ(ν) ∈ (α− ε, α+ ε). Taking the measure
of maximal entropy ν ∈Merg(Γ), with the above for every α′ ∈ (α− 2ε, α+ 2ε) we
have

h(ν) = htop(F,Γ) > E>0(α′).

However, α′ = χ(ν) ∈ (α − ε, α + ε) would then contradict (7.1). This proves the
lemma. �
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7.3. The level sets with zero and extremal exponents.

Lemma 7.2. h0
def
= limα↘0 htop(L(0)) = limα↗0 htop(L(0)).

Proof. By the first part of Theorem 1 proved in Section 7.2 for α ∈ (0, αmax) we
have htop(L(α)) = E>0(α), hence by (E1) this is a concave function in α. Similarly
for α ∈ (αmin, 0). So we can define the numbers h±0 = limα→0± htop(L(α)).

By the restricted variational principle in the first part of Theorem 1, for every
sequence αk ↗ 0 there is a sequence of ergodic measures (µk)k≥0 such that χ(µk) =
αk and h(µk) → h+

0 . As a consequence of Lemma 3.1 there is a corresponding
sequence (µ−k)k≥1 with χ(µ−k)↘ 0 and h(µ−k)→ h+

0 . This implies that h−0 ≥ h
+
0 .

Reversing the roles of the negative and positive exponents we get h+
0 ≥ h−0 and

hence h+
0 = h−0 , proving the lemma. �

Lemma 7.3. htop(L(0)) ≤ h0.

Proof. As a consequence of Proposition 3.4 together with Lemma 7.2, for every
γ > 0 and λ > 0 there exists α ∈ (−λ, 0) such that htop(L(α)) ≥ htop(L(0)) − γ.
The assertion then follows. �

Lemma 7.4. For α ∈ {αmin, αmax} we have htop(L(α)) ≤ limβ→α htop(L(β)).

Proof. We consider α = αmax, the other case is analogous. By the part of Theorem 1
proved already in Section 7.2, for every β ∈ (0, αmax) we have already htop(L(β)) =
E(β). By Lemma 4.2 and the fact that the ergodic decomposition of a measure
with extremal exponent has almost surely only ergodic measures with extremal
exponents, we have

htop(L(αmax)) ≤ sup
{
h(µ) : µ ∈Merg, ϕ(µ) = αmax

} def
= hαmax .

Hence, for every q ∈ R we have

P>0(q) ≥ hαmax
+ qαmax,

which implies

inf
q∈R

(
P>0(q)− qαmax

)
≥ hαmax

.

By [Wi], the left hand side is not larger than limβ→αmax
E(β). �

What remains to prove is the following result. Together with the results in
Section 7.2, it will complete the proof of Theorem 1.

Proposition 7.5. For every α ∈ [αmin, αmax] we have lim sup
β→α

E(β) ≤ htop(L(α)).

For α ∈ (αmin, αmax)\{0} the result of the above proposition follows already from
Section 7.2. Moreover, for α ∈ {αmin, αmax} this result can be easily obtained by
the following arguments: Take the weak∗ limit µ of a sequence of measures (µk)k
converging in exponent to α and in entropy to h = lim sup

β→α
E(β). Indeed, such

sequences exist by the already obtained description in the interior of the spectrum.
The ergodic decomposition of µ contains an ergodic measure µ′ with exponent α
and entropy at least h. The set of µ′-generic points is contained in L(α) which will
imply the assertion.

So, we only need to prove the proposition for α = 0. However, the proof is
completely general. We start by showing some preliminary results.
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Lemma 7.6. Given µ ∈ Merg,<0, for every small ε > 0 there exist an interval
I = I(µ, ε) ⊂ S1 and a constant K = K(µ, ε) > 1 such that for every n ≥ 1 there
exists a set Ξ(n) consisting of finite sequences of length n with cardinality

card(Ξ(n)) ≥ K−1en(h(µ)−ε)

such that for each (ρ1 . . . ρn) ∈ Ξ(n) and each point x ∈ I for every k ∈ {1, . . . , n}
the derivative satisfies

K−1ek(χ(µ)−ε) ≤ |(f[ρ1... ρk])
′(x)| ≤ Kek(χ(µ)+ε).

Proof. The first fact is a consequence of ergodicity, the definition of a Lyapunov
exponent, the Brin-Katok, the Birkhoff ergodic, and the Egorov theorems (details
are given in [DGR2, Proposition 3.1]). Recall the definition of separated points,
see [Wa, Chapter 7]. Given ε ∈ (0, χ(µ)/2), there are a constant K > 1 and for
n ≥ 1 a set of (n, 1)-separated points Xi = (ρi, xi) ∈ ΣN ×S1 of cardinality at least
K−1en(h(µ)−ε) such that for every i for every ` = 0, . . . , n− 1 we have

(7.2) K−1e`(χ(µ)−ε/2) ≤ |(f[ρi0... ρ
i
`−1])

′(xi)| ≤ Ke`(χ(µ)+ε/2).

As Xi are points with uniform contraction, we obtain control of distortion on
some small neighborhood whose size depends on the constant K.

Claim 7.7 ([DGR2, Proposition 3.4]). Given εD > 0, let δ0 > 0 be such that

max
i=0,...,N−1

max
x,y∈S1,|y−x|≤2δ0

∣∣∣ log
|f ′i(y)|
|f ′i(x)|

∣∣∣ ≤ εD.
If (ξ, x) ∈ S1 and r > 0 and n ≥ 1 are such that for every ` = 0, . . . , n− 1 we have

|(f `ξ )′(x)| < 1

r
δ0e
−`εD ,

then for every ` = 0, . . . , n− 1 we have

sup
x,y : |y−x|≤r

|(f `ξ )′(y)|
|(f `ξ )′(x)|

≤ e`εD .

Fixing some ε < 1
2 min{ε, |χ(µ)− ε|}, let δ0 > 0 as in the claim and choose also

r > 0 such that K < δ0/r. Thus, for every i and every y ∈ (xi− r, xi + r) for every
` = 0, . . . , n− 1 with (7.2) we obtain

Ke`(χ(µ)−ε/2)e−`εD ≤ |(f[ρi0... ρ
i
`−1])

′(y)| ≤ Ke`(χ(µ)+ε/2)e`εD .

Dividing now S1 into intervals of length r, at least one interval I of them must
contain at least K−1r−1en(h(µ)−ε) starting points xi of (n, 1)-separated trajectories.
Exchanging now Kr for K we are done. �

Proof of Proposition 7.5. Given h = lim supβ→α E(α), there is a sequence of ergodic
measures (µk)k≥0 with Lyapunov exponents converging to α and with the upper
limit of entropies equal to h. We aim to prove that htop(L(α)) ≥ h. Without
weakening of assumptions, by passing to subsequence we can assume that all the
measures µk have exponents of the same sign (for example, negative) and that their
entropies converge to h.

The proof has two steps. First, we construct a large subset of L(α). Second, we
estimate its entropy.
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Step 1: A large subset Ξ ⊂ ΣN in the projection of L(α). We consider forward
orbits first, that is, we construct forward orbits on which the Lyapunov exponent is
α. Fix a sequence εk ↘ 0 and apply Lemma 7.6 to all measures µk: we get intervals
Ik = I(µk, εk), constants Kk, and for every n ≥ 1 a set Ξk(n) of finite sequences
of length n. As, by our choice of sequences, h(µk) → h, we can assume that our
constants Kk and εk are such that for every k ≥ 0 and for every n ≥ 1 there are at
least

K−1
k en(h−εk) ≤ card(Ξk(n)) ≤ Kke

n(h+εk)

finite sequences (ρ1 . . . ρn) of length n such that for every x ∈ Ik we have

K−1
k en(χ(µk)−εk) ≤ |(f[ρ1... ρn])

′(x)| ≤ Kke
n(χ(µk)+εk).

To each interval Ik we associate numbers δk > 0 and Mk > 0 provided by
Lemma 3.6. As the chosen orbit pieces are uniformly contracting, we can fix a
sequence of sufficiently fast increasing natural numbers (nk)k such that for each k
for every (ρ1 . . . ρnk) ∈ Ξk(nk) we have that

|f[ρ1... ρnk ](Ik)| < δk+1.

Note that nk can be chosen arbitrarily large. We will specify the choice of this
sequence below. Hence, by Lemma 3.6, we can associate to it a finite sequence
(τ1 . . . τm), m ≤Mk+1, which depends on the initial sequence, such that

(f[τ1... τm] ◦ f[ρ1... ρnk ])(Ik) ⊂ Ik+1.

We consider now the set of all such concatenated finite sequences defined by

Ξ′k
def
= {(ρ1 . . . ρnkτ1 . . . τm) : (ρ1 . . . ρnk) ∈ Ξk(nk)},

note that here (τ1 . . . τm) depends on (ρ1 . . . ρnk). We write (ρ1 . . . ρnk) = % and
(τ1 . . . τm) = ϑ. We say that % is a main sequence and that ϑ is a connecting
sequence. Finally, we consider the set Ξ+ of all one-sided infinite sequences

Ξ+ def
= {%1ϑ1%2ϑ2 . . . %kϑk . . . : %kϑk ∈ Ξ′k}.

Now given any point x ∈ I1, for every k ≥ 1 we have already obtained orbit pieces
of the form

(f[%`ϑ`] ◦ . . . ◦ f[%1ϑ1])(x) ∈ I`+1, ` = 1, . . . , k,

where %` ∈ Ξ′`. The cardinality of those pieces is at least card Ξ′1 · · · card Ξ′k. By
our choice of quantifiers for every x ∈ I1 and every ξ ∈ Ξ+ we have

(7.3) lim
n→∞

1

n
log |(fnξ )′(x)| = α.

Until now we proved, that for some interval I1 there exists a large set of forward-
infinite symbolic sequences ξ+ such that for every point x ∈ I1 the forward orbit
of (x, ξ+) satisfies (7.3). Now we can do the construction in the other (time)
direction. It is completely analogous: we take the sequence of measures µ−1 =
µ1, µ−2 = µ2, . . ., take for each of them a set of sequences provided by Lemma 7.6
and connect them using Lemma 3.6. Note that constructed backward itineraries are
expanding, thus for a backward itinerary we just get a point following it instead
an interval of points as in the forward itinerary. Note also that for each finite
concatenation we get a closed interval of starting points and that these intervals
form a nested sequence, the point is given by the intersection of these intervals. We
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obtain a set Ξ− of backward-infinite symbolic sequences such that for each of them
there exist a corresponding backward orbit (y, ξ−) satisfying

lim
n→−∞

1

n
log |(fnξ )′(y)| = α.

and ending at some point in y ∈ S1. By Lemma 3.6 we can make each of those
backward orbits end at some point in I1. Hence, each of those trajectories can be
prolonged into the future by any ξ ∈ Ξ+. We obtain a large set of two-sided infinite
sequences

Ξ
def
= Ξ−.Ξ+ = {ξ−.ξ+ : ξ± ∈ Ξ±}

such that π(L(α)) ⊃ Ξ, where π : ΣN × S1 → ΣN denotes the natural projection.
We formalize the meaning of the “large set”.

Lemma 7.8. There are an appropriate choice of the sequence (nk)k, a constant
K > 1, and a function ε = ε(n) ↘ 0 such that for every n ≥ 0, for every j ∈
{0, . . . , n} such that n − j ≤ j there exist at least K−1 · en(h−ε(n)) different finite
sequences (ρ1 . . . ρj) such that each of them has at least K−1 · e(n−j)(h−ε(j))e−jε(j)

and at most K · e(n−j)(h+ε(j))ejε(j) different continuations to sequences in Ξ+. The
same statement holds for Ξ−, modulo time reversal.

Proof. We will present the proof for Ξ+, the other case is analogous. We take the
sequence (nk)k such that

(7.4)

k−1∑
i=1

ni +Mi < nk, nk,

(7.5) log(KkKk+1) ≤ nk−1εk

and

(7.6)
Mk(h+ 1)

nk−1
≤ εk.

By the construction above, any sequence in ξ ∈ Ξ+ can be written as a concate-
nation of main and connecting sequences %1ϑ1%2ϑ2 . . . %kϑk . . . such that |%k| = nk
and |ϑk| ≤Mk.

First, if j and n are both within a block %k then by our choice of the constants
it follows indeed that at j we have a number of continuations which is in between

K−1
k e(n−j)(h−εk) and Kke

(n−j)(h+εk).

Suppose now that j ∈ %k and n 6∈ %k. Hence,

(7.7) nk−1 ≤ j ≤
k∑
i=1

ni +Mi.

We claim that either n ∈ ϑk or n ∈ %k+1. Otherwise, we would have n− j > nk+1

and by (7.4) we hence would obtain

nk+1 >

k∑
i=1

ni +Mi > j,

a contradiction with our hypothesis.
Suppose that j ∈ %k and n ∈ %k+1 (the other cases are simpler and thus omitted).

Consider a finite sequence ξ̂%̂k of length j such that there is some continuation of
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%̂k to %k = %̂k%̃k ∈ Ξk(nk). By Lemma 7.6, for each such finite sequence ξ̂%̂k the
number of such continuations of length nk − j is between

K−1
k e(nk−j)(h−εk) and Kke

(nk−j)(h+εk).

Each of those sequences then can then continued by a connecting sequence whose
length m is between 0 and Mk. Finally, this finite sequence of length nk + m can
be prolonged to length n and the number of such continuations is between

K−1
k+1e

(n−nk−Mk)(h−εk+1) and Kk+1e
(n−nk)(h+εk+1).

Summarizing, the number of continuations is between

K−1
k K−1

k+1e
(n−j−Mk)(h−εk) and KkKk+1e

(n−j)(h+εk).

Note that

Kk+1Kke
(n−j)he(n−j)εk ≤ e(n−j)(h+εk)enk−1εk ≤ e(n−j)(h+εk)ejεk ,

where we use (7.5) and that j ≥ nk−1 by (7.7). This provides the inequality ≤ in
the lemma, with K = 1. On the other hand, using equation (7.5) and (7.6) we get

K−1
k+1K

−1
k e(n−j)(h−εk)e−Mk(h−εk) ≥ e(n−j)(h−εk)e−2jεk .

To complete the proof note that the index k depended on j and hence we can find
the sequence ε(j) as claimed in the lemma. The constant K in the lemma takes
care of the remaining cases. �

We demand that the sequence (nk)k in Lemma 7.8 was chosen such that the
there defined function ε(·) is such that ε(nk) ≤ εk for every k ≥ 1. Observe that
all the conditions on (nk)k are that this sequence grows sufficiently fast. Hence, we
can satisfy all those conditions simultaneously.

Note that Ξ depends on the choice of chosen quantifiers Ξ = Ξ((εk)k, (nk)k).

Step 2: Entropy of Ξ = Ξ((εk)k, (nk)k). To estimate the entropy of the set Ξ we
use the following classical Frostman’s lemma (see [Mt]):

Lemma 7.9 (Mass distribution principle). Consider a compact metric space (X, d)
and subset Ξ ⊂ X. Let ν be a finite Borel measure such that ν(Ξ) > 0.

Suppose that there exists D > 0 such that for every x ∈ Ξ it holds

lim inf
ε→0

log ν(B(x, ε))

log ε
≥ D.

Then HD(Ξ) ≥ D, where HD denotes the Hausdorff dimension.

Remark 7.10. Note that for the standard metric for every subset Ξ ⊂ ΣN its
Hausdorff dimension is equal to the topological entropy of σ on Ξ, recall the defi-
nition in Appendix.

We apply the above to Ξ as defined above. In view of Lemma 7.9 and Re-
mark 7.10, the following lemma will imply the proposition.

Lemma 7.11. For appropriate choices of the sequences (εk)k and (nk)k we have
htop(σ,Ξ) ≥ h, where Ξ = Ξ

(
(εk)k, (nk)k

)
.

Proof. Consider the sequence (mk)k≥0 given by mk = 2k. We define a probability
measure ν as being the product of a measure ν+ depending only on the (forward)
one-sided sequences Σ+

N and a measure ν− depending only on the (backward) one-

sided sequences Σ−N , ν(∆) = ν+(∆+) · ν−(∆−), where ∆− and ∆+ denote its
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projection to Σ−N and Σ+
N , respectively. The measure ν+ is constructed as follows

(the measure ν− is analogous): for every k ≥ 1

– ν+ is uniformly distributed on all cylinders of level m1 intersecting Ξ,
– for every cylinder of level mk intersecting Ξ, ν+ is uniformly subdistributed

on its subcylinders of level mk+1 intersecting Ξ.

Given n ≥ 1, consider some cylinder ∆ = ∆−.∆− = ∆ξ−m...ξ−1.ξ0... ξn−1
which

has nonempty intersection with Ξ. We are going to estimate ν(∆) = ν+(∆+) ·
ν−(∆−). Let us consider ∆+ (the other term is analogous). There exists a unique
index k ≥ 0 such that mk < n ≤ mk+1.

Note that the sequence (nk)k grows much faster than the sequence (mk)k. We
have

ν+(∆+) = ν+(∆+
m0

) ·
(
ν+(∆+

m1
)

ν+(∆+
m0)
· · ·

ν+(∆+
mk

)

ν+(∆+
mk−1)

)
· ν

+(∆+)

ν+(∆+
mk)

= T1 · T2 · T3,

where ∆+
i is the corresponding parent mi-cylinder of ∆+, i = 1, . . . , k.

Let us now estimate the above three terms T1, T2, and T3. By Lemma 7.8 applied
to n = m0 and j = 0 we have

T1 ≤ Kem0(h−ε(m0)).

For every i = 1, . . . , k by Lemma 7.8 applied to n = mi and j = mi−1 + 1, we
obtain that each cylinder ∆+

mi contains at most

Ke−(mi−mi−1)(h+ε(mi−1))emi−1ε(mi−1)

cylinders of length mi+1. Hence we can estimate

T2 ≤
k∏
i=1

Ke−(mi−mi−1)(h+ε(mi−1))emi−1ε(mi−1) = e−(mk−m0)hS(k),

where

lim
k→∞

1

mk
logS(k) = 0.

Finally, by Lemma 7.8 applied to n = mk+1 and j = mk +1 as well as to n = mk+1

and j = n+ 1 we get

T3 ≤
Ke−(mk+1−mk)(h−ε(mk+1))emkε(mk)

K−1e−(mk+1−n)(h+ε(n))e−nε(n)
= e−(n−mk)hR(k),

where

lim
k→∞

1

mk
logRk = 0.

Putting together the previous estimates, we get

ν+(∆+) ≤ e−nhQ(k), where lim
k→∞

1

mk
logQ(k) = 0.

Given n ≥ 1 and ξ ∈ Ξ, denote by ∆+
n (ξ) the cylinder of length n containing ξ.

Hence, as n ≥ 1 was arbitrary for every ξ ∈ Ξ we obtain

− 1

n+ 1
log ν+(∆+

n (ξ)) ≥ h+ P (n),

where limn→∞ P (n) = 0. Analogous arguments apply to ν−.
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Denote by ∆m,n(ξ) the cylinder ∆ξ−m...ξ−1.ξ0... ξn−1
= ∆−m(ξ).∆+

n (ξ). Hence,
considering the product measure ν, for every ξ ∈ Ξ and every m,n ≥ 1 we obtain

− 1

m+ n+ 1
log ν(∆m,n(ξ)) = − log (ν(∆+

n (ξ))ν(∆−m(ξ)))

m+ n+ 1
≥ h+ P (m) + P (n).

Note that, by construction, we have ν(Ξ) = 1. By Lemma 7.9 applied to the
probability measure ν on the space ΣN we obtain htop(σ,Ξ) ≥ h. �

As the projection π does not increase entropy, we conclude htop(F,L(α)) ≥ h.
The proof of Proposition 7.5 is now complete. �

8. Proof of Theorem 2. Measures of maximal entropy

8.1. Synchronization. As explained in Section 7.1, any measure(s) of maximal
entropy (with respect to F ) project(s) to the (1/N, . . . , 1/N)-Bernoulli measure b.

We call a Bernoulli measure b = (b1, . . . , bN ) nondegenerate if all weights bi,
i = 1, . . . , N , are positive. By [C, Theorem 8.6] together with Lemma 3.7, given
any nondegenerate Bernoulli measure b, there exists a (at least one) F -ergodic
measure µb

+ with positive exponent and a (at least one) F -ergodic measure µb
−

with negative exponent, both projecting to b = π∗µ
b
±.

Following for example [Ml], given a Bernoulli measure b, we say that an IFS

{fi}N−1
i=0 with probabilities b is forward synchronizing if for every x, y ∈ S1 for

b-almost every one-sided sequence ξ ∈ Σ+
N we have

(8.1) |fnξ (x)− fnξ (y)| → 0.

Backward synchronization is defined the same way, but for the IFS {f−1
i }

N−1
i=0 .

The IFS {fi}N−1
i=0 is (forward) proximal if for every x, y ∈ S1 there exists at

least one sequence ξ ∈ Σ+
N such that (8.1) holds, backward proximality we define

analogously. By [Ml, Theorem E], proximality of the IFS implies that every nonde-
generate Bernoulli measure satisfies forward synchronization. Similarly, backward
proximality implies backward synchronization.7

Lemma 8.1. For every Bernoulli measure b satisfying synchronization, the mea-
sures µb

± provided by [C, Theorem 8.6] are unique.

Proof. Consider the set

B =
{

(x, y, ξ) ∈ S1 × S1 × Σ+
N : lim sup

n→∞
|fnξ (x)− fnξ (y)| > 0

}
and write

B(x,y) =
(
{(x, y)} × Σ+

N

)
∩B.

Note that forward synchronization means that for every (x, y) ∈ S1 × S1 it holds
that b(B(x,y)) = 0.

Given ξ ∈ Σ+
N , divide S1 into equivalence classes by the relation

x ∼ξ y ⇐⇒ lim
n→∞

|fnξ (x)− fnξ (y)| = 0.

One can easily check that it is indeed an equivalence relation. As the fiber maps
are homeomorphisms, those equivalence classes are simply connected, i.e. intervals.
Note that in principle in a given fiber ξ there may exist uncountably many classes.

7In fact, [Ml, Theorem E] (stated for groups of circle homeomorphisms) shows even that we
have exponential synchronization, that is, for a given Bernoulli measure convergence in (8.1) is

exponential. However, we will not make use of this fact.
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However there can exist only countably many classes which are nontrivial intervals.
Let us denote these classes by Ci(ξ) with i ∈ I(ξ). We will see that in almost every
fiber there is exactly one nontrivial class, and that it is of Lebesgue measure 1 and
hence the whole circle minus one point.

Note that if (x, y, ξ) 6∈ B, x 6= y, then there is an index i = i(x, y, ξ) such that
x, y ∈ Ci(ξ). As the diagonal {(x, y) ∈ S1×S1;x = y} has Leb×Leb measure zero,
we have

(8.2) (Leb×Leb×b)(Bc) =

∫
Σ+
N

 ∑
i∈I(ξ)

Leb(Ci(ξ)))
2

 db(ξ).

By the comments above, synchronization, and Fubini’s Theorem we have that
(Leb×Leb×b)(Bc) = 1, hence the integrand in (8.2) is 1 almost everywhere. As∑

LebCi(ξ) ≤ 1,
∑

(LebCi(ξ))
2 = 1 can happen if, and only if, I(ξ) = {1} and

LebC1(ξ) = 1. Therefore, for b-almost every ξ the index set I(ξ) consists of exactly
one element and there is exactly one class C(ξ) with full Lebesgue measure. This
class is the whole circle except one point. Let us denote by z(ξ) this missing point.

Clearly, the disintegration of the positive exponent invariant measure µb
+ is sup-

ported on z(ξ) for almost all ξ. In particular, µb
+ is unique.

The same arguments applied to the IFS {f−1
i } prove uniqueness of µb

−. �

8.2. End of the proof of Theorem 2. We can now conclude the proof of Theorem
2. Assume that the second conclusion in the theorem is not true, that is, that there
exists α 6= α± = χ(µ±) such that htop(L(α)) = logN . Let us assume that α ≥ 0,
the proof of the other case is analogous. By (E4) we have logN = EN(α′) with
N = Merg,>0 for all α′ between α and α+. Hence, by (E4) the function PN is
not differentiable at 0. By (P10), there exist two ergodic measures of maximal
entropy (ergodic equilibrium states for 0) (with respect to N) with exponents given
by the (different) left and right derivatives DL/RPN(0), these derivatives being
nonnegative by the choice of N. Hence, there would exist two ergodic measures of
maximal entropy with two distinct nonnegative Lyapunov exponents, contradicting
Lemma 8.1. �

8.3. Proof of Corollary 3. By Lemma 8.1 applied to the (Bernoulli) measure of
maximal entropy we have that there are exactly two measures of maximal entropy.
Arguing by contradiction, suppose that there is another measure µ of maximal
entropy which is the weak∗ and in entropy limit of a sequence of ergodic measures.
If this measure is ergodic we are done. Otherwise almost every measure in its
(nontrivial) ergodic decomposition has maximal entropy. Hence this measure is
a (nontrivial) linear combination of µ+ and µ− and, in particular, α = χ(µ) ∈
(α−, α+). Without weakening of assumptions let α ≥ 0. Recall that the function
E>0 is continuous and has a unique global maximum at α+. Hence for δ small
E>0(α′) < logN − δ for all α′ in a small neighbourhood of α. If there would exist
such a sequence of ergodic measures weak∗ (and hence in Lyapunov exponent) and
in entropy converging to µ then eventually the Lyapunov exponents of the measures
would be arbitrarily close to α and their entropies arbitrarily close to logN . This
provides a contradiction with the above inequality. �
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9. Proof of Theorem 5. Shapes of pressure and Lyapunov spectrum

In this section we will prove Theorem 5. Recall the properties of pressure,
Legendre-Fenchel transform and convex functions given in Section 4.

The most important property, property g), (which we are going to constantly
apply below) is formulated in Theorem 1.

Property a): convexity follows from basic properties of pressure, the derivative
of the pressure function is equal to the Lyapunov exponent of the corresponding
equilibrium state by the definition of Legendre-Fenchel transform. For the pres-
sure P>0 all the equilibrium states have nonnegative Lyapunov exponent, for the
pressure P<0 all the equilibrium states have nonpositive Lyapunov exponent.

Property b) follows from the fact that the sets Merg,>0 and Merg,<0 contain
measures with arbitrarily small Lyapunov exponent (Corollary 3.2) we know that
the limit derivative of both P>0 (as q → −∞) and P<0 (as q → ∞) is zero.
The fact that those are indeed plateaus, not asymptotic behaviour, follows from
property i) proved below. Indeed, by the definition of Legendre-Fenchel transform,
D− = DRE(0) and D+ = DLE(0).

Property c) follows from Theorem 1. Indeed, by the definition of Legendre-
Fenchel transform, h+ = limα↘0 E(α) and h− = limα↗0 E(α).

Property d) follows from Theorem 1 and property a). Indeed, a concave function
with maximum in the interior of the domain is nonincreasing to the right of the
maximum and nondecreasing to the left of the maximum.

Property e) follows immediately from Theorem 1, because by the basic properties
of entropy P>0(0) is the supremum of entropies of ergodic measures with positive
Lyapunov exponents (and similarly P<0(0) - negative Lyapunov exponents) and
those classes of measures both contain a measure of maximal entropy.

Properties f) and h) are formulated in Theorem 1.
Property i) is the only one that needs some more extended proof. An immediate

consequence of Lemma 3.1 and property h) is that there exists c > 0 such that

E(0) ≥ E(α)

1 + c|α|
for all α 6= 0. Hence,

E(α)− E(0)

|α|
≤ cE(0).

Passing with α to zero, we get

(9.1) max(DRE(0),−DLE(0)) ≤ cE(0),

which proves the finiteness of derivatives DLE(0), DRE(0). The other inequality
follows from convexity of E<0 and E>0 and property f).

Property j) is proved in the course of proof of property i). Indeed, equa-
tion (9.1) implies that if htop(L(0)) = 0 then DLE(0), DRE(0) = 0. However,
DLE(0), DRE(0) = 0 implies that E has maximum at zero, that is, htop(L(0)) =
logN - a contradiction.

Assume now that we are under assumptions of Theorem 2, that is that we have
exactly two maxima of the spectrum E(α), achieved at points α− < 0 and α+ > 0.
As the concave function with a unique maximum in the interior of the domain
has negative derivative (or one-sided derivatives if the derivative is not defined) to
the right of the maximum and positive derivative to the left of the maximum, the
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required changes in items d) and i) follow immediately. The property k) follows
from (local) uniqueness of the maximum by (P11). �

Appendix. Entropy

Let X be a compact metric space. Consider a continuous map f : X → X, a
set Y ⊂ X, and a finite open cover A = {A1, A2, . . . , An} of X. Given U ⊂ X we
write U ≺ A if there is an index j so that U ⊂ Aj , and U ⊀ A otherwise. Taking
U ⊂ X we define

nf,A (U) :=


0 if U ⊀ A ,

∞ if fk(U) ≺ A ∀k ∈ N,
` if fk(U) ≺ A ∀k ∈ {0, . . . , `− 1}, f `(U) ⊀ A.

If U is a countable collection of open sets, given d > 0 let

m(A , d,U) :=
∑
U∈U

e−dnf,A (U).

Given a set Y ⊂ X, let

mA ,d(Y ) := lim
ρ→0

inf
{
m(A , d,U) : Y ⊂

⋃
U∈U

U, e−nf,A(U) < ρ for every U ∈ U
}
.

Analogously to the Hausdorff measure, d 7→ mA,d(Y ) jumps from ∞ to 0 at a
unique critical point and we define

hA (f, Y ) := inf{d : mA ,d(Y ) = 0} = sup{d : mA ,d(Y ) =∞}.

The topological entropy of f on the set Y is defined by

htop(f, Y ) := sup
A

hA (f, Y ),

When Y = X, we simply write htop(X) = htop(f,X).
By [B1, Proposition 1], in the case of Y compact this definition is equivalent to

the canonical definition of topological entropy (see, for example, [Wa, Chapter 7]).
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