
THE GEOMETRY OF FRACTAL PERCOLATION,

MICHAŁ RAMS AND KÁROLY SIMON

Abstract. A well studied family of random fractals called fractal
percolation is discussed. We focus on the projections of fractal
percolation on the plane. Our goal is to present stronger versions of
the classical Marstrand theorem, valid for almost every realization
of fractal percolation. The extensions go in three directions:
• the statements work for all directions, not almost all,
• the statements are true for more general projections, for ex-

ample radial projections onto a circle,
• in the case dimH > 1, each projection has not only positive

Lebesgue measure but also has nonempty interior.

1. introduction

To model turbulence, Mandelbrot [13, 14] introduced a statistically
self-similar family of random Cantor sets. Since that time this fam-
ily has got at least three names in the literature: fractal percolation,
Mandelbrot percolation and canonical curdling, among which we will
use the first one.
In 1996 Lincoln Chayes [3] published an excellent survey giving an
account about the most important results known in that time. His
survey focused on the percolation related properties while we place
emphasis on the geometric measure theoretical properties (projections
and slices) of fractal percolation sets.
About the projections of a general Borel set the celebrated Marstrand
Theorem gives the following information:

Theorem 1 ([15]). Let E ⊂ R2 be a Borel set.
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Figure 1. The first two steps of the construction.
P (Q52 retained ) = p5 · p2. For this realization E1 =
{1, 5, 6, 7, 9}, E2 = {17, 51, 58, 62, 64, 75, 77, 79, 96, 97, 99}

.

• If dimH(E) < 1 then for Lebesgue almost all θ dimH(projθ(E)) =
dimH(E).
• If dimH(E) > 1 then for Lebesgue almost all θ we have Leb(projθ(E)) >

0.
where projθ is the orthogonal projection in direction θ.

In this paper we review some recent results which give more precise
information in the special case of the projections of fractal percolation
Cantor sets.

2. The construction and its immediate consequences

The construction consists of the infinite iteration of two steps. We start
from the unit cube in Rd.

• All cubes we have after the n-th iteration of the process (they
will be called level n cubes) we subdivide into smaller cubes of
equal size,
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• Among them some are retained and some are discarded. Re-
taining or discarding of different cubes are independent random
events. The cubes that were retained are the level n+ 1 cubes.

Those points that have never been discarded form the fractal percola-
tion set.
Please note that in literature the term fractal percolation is often used
to denote object which we call homogeneous fractal percolation. That
is, the fractal percolation for which all squares have equal probabilities
of being retained.

2.1. An informal description of Fractal Percolation. We fix in-
teger M ≥ 2. We partition the unit cube Q ⊂ Rd into Md congruent
cubes of side length M−1 and we assign a probability to each of the
cubes in this partition (Figure 1 (a)). We retain each of the cubes
of this partition with the corresponding probability independently and
discard it with one minus the corresponding probability. The union of
the retained squares is the first approximation of the random set to
be constructed ( Figure 1 (b)). We obtain the second approximation
by repeating this process independently of everything in each of the
retained squares ( Figure 1 (c) and (d)). We continue this process at
infinitum.
The object of our investigation is the collection of those points which
have not been discarded. It will be called fractal percolation set
and denoted by E = (d,M,p), where p is the chosen vector of the
probabilities {pi}. In the special case when all pi are equal we obtain
the homogeneous fractal percolation set which is denoted by Eh =
Eh(d,M, p).

2.2. Fractal percolation set in more details. For simplicity we
give the construction on the plane but the definition works with obvious
modifications in Rd for all d ≥ 1. Besides the dimension of the ambient
space the two other parameters of the construction are: the natural
number M ≥ 2 and a vector of probabilities p ∈ [0, 1]M

2 (note: not a
probabilistic vector). To shorten the notation we write I for the set of
indices of p:

I :=
{

1, . . . ,M2
}

The statistically self-similar random set which is the object of our study
is defined as

(2.1) E :=
∞⋂
n=1

En,



4 MICHAŁ RAMS AND KÁROLY SIMON

where En is the n-th approximation of E. The inductive definition of
En will occupy the rest of this subsection. Actually En is the union
of a random collection of level n squares. First we define the level n
squares and then we introduce the random rule with which those level
n squares are selected whose union form En.

2.2.1. The process of subdivision. We divide the unit square Q = [0, 1]2

into M2 congruent squares Q1, . . . , QM2 of size M−1 numbered accord-
ing to lexicographical order (or any other order). These squares are
the level one M -adic squares. Let

N1 := {xi}i∈I
be the set of midpoints of the level one squares. For each midpoint xi
we define the homothetic map ϕi : Q→ Qi:

ϕi(y) := xi +M−1 ·
(
y −

(
1

2
,
1

2

))
.

For every i ∈ In, i = (i1, . . . , in) we write

xi := ϕi

(
1

2
,
1

2

)
.

and we define the map

ϕi(y) := xi +M−n ·
(
y −

(
1

2
,
1

2

))
.

To simplify the notation, we will not distinguish the set of the centers
of level n squares

Nn :=

{
ϕi

(
1

2
,
1

2

)
: i ∈ In

}
and the family of level n-squares:

(2.2) {Qi := ϕi(Q) : i ∈ In} .

2.2.2. The process of retention. The square Q = Q∅ is retained. For
any i ∈ In for which the square Qi is retained and for each j ∈ I, the
square Qij is retained with probability pj. The events ’Qij is retained’
and ’Qi′j′ is retained’ are independent whenever i 6= i′ or j 6= j′.
We define E1 as the union of retained squares Qi, i ∈ I. Similarly, En
is the union of retained squares Qi, i ∈ In. We write

En := {i ∈ In : Qi retained } .
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Figure 2. Definition of level n squares

2.3. The corresponding probability space and statistical self-
similarity. The probability space corresponding to this random con-
struction is best described by M. Dekking [5]. For the convenience of
the reader we repeat it here. Let T be the Md array tree that is

T :=
∞⋃
n=0

In,

where I0 := ∅ is the root of three . Let Ω := {0, 1}T that is Ω is the
set of labeled trees where we label every node of T by 0 or 1. The
probability measure Pp on Ω is define in such a way that the family of
labels Xi ∈ {0, 1} of nodes i ∈ T satisfy:

• Pp(X∅ = 1) = 1
• Pp(Xi1,...,in) = pin
• {Xi}i∈T are independent.

Following [5] we define the survival set of level n by

Sn := {i ∈ In : Xi1...,ik = 1, ∀1 ≤ k ≤ n} .
Then

En =
⋃
i∈Sn

Qi, E =
∞⋂
n=1

En.

It follows from the construction that generalized fractal percolation set
is statistically self-similar and the number of retained cubes form a
branching process:

Lemma 2.
(a): {#En} is a branching process with average number of off-

springs
∑
i∈I

pi. In particular if pi ≡ p then the offspring distri-

bution is Binomial(Md, p).
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(b): For every n ≥ 1 and i ∈ En the rescaled copy ϕ−1
i (E ∩ Qi)

has the same distribution as E itself.
(c): The sets {E ∩Qi}i∈En are independent.

Using this it is not hard to prove that

(2.3) E 6= ∅ implies that dimH(E) = dimB(E) =

log
∑
i∈I

pi

logM
a.s.

This was proved by Kahane and Peyriere [12], Hawkes [11], Falconer
[8], Mauldin and Williams [16] independently. A canonical example of
the inhomogeneous fractal percolation set is:

Example 3 (Random Sierpiński Carpet ). Let SCp := E(2, 3,p),
where using the notation of Figure 1 (c):

p5 = 0 and for i ∈ {1, . . . , 9} \ {5} : pi = p.

3. Percolation and projection to coordinate axes

In this section we work on the plane so Q = [0, 1]2. The connectivity
properties of Eh(2,M, p) for an arbitrary M ≥ 2 was first investigated
by Chayes, Chayes and Durrett [2]. Dekking and Meester [6] gave a
simpler proof and extended the scope of the theorem for some inhomo-
geneous fractal percolation sets like the random Sierpiński carpet SCp.
Here we summarize briefly some of the most interesting results of this
area. For a much more detailed account see by L. Chayce [3].
We say that E percolates if E contains a connected set which inter-
sects both the left and the right sides of Q. If E percolates then E has
a large connected component.

3.1. The homogeneous case. The following very important result
was proved by Chayce,Chayce, Durrett.

Theorem 4 ([2]). Fix an arbitrary M ≥ 2. Then there is a critical
probability 1

M
< pc < 1 such that

(1) If p < pc then Eh(2,M, p) is a random dust that is totally dis-
connected almost surely.

(2) If p ≥ pc then Eh(2,M, p) percolates with positive probability.
This implies that Eh(2,M, p) is not totally disconnected almost
surely.

This shows a remarkable difference in between the fractal percolation
and the usual percolation: in the latter case, the probability of perco-
lation at critical parameter p = pc is 0.
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3.2. The inhomogeneous case. Using some earlier works of Dekking
and Grimmett [4], the results above were extended by Dekking and
Meester [6]. They proved that by changing the components of p the
inhomogeneous fractal percolation set E(2,M,p) can go through the
six stages below. Here the projection to the x-axis is denoted by projx.
That is projx(a, b) = a.

The DM stages of E(2,M,p):
I: E = ∅ almost surely.
II: P (E 6= ∅) > 0 but dimH (projxE) = dimH (E) almost surely.
III: dimH (projxE) < dimH (E) if E 6= ∅ but Leb (projxE) = 0

almost surely.
IV: 0 < Leb (projxE) < 1 almost surely.
V: Leb (projxE) = 1 holds with positive probability but E does

not percolate almost surely.
VI: E percolates with positive probability.

It was proved in [6] that the random Sierpiński Carpet SCp goes through
all of these stages as we increase the value of p. The following theo-
rem gives the precise answer when exactly a system appears in stages
I,II,III.

Theorem 5 ([4], [8]). Let mr be the sum of the probabilities in the r-th
column, that is the expected number of squares in column r. Then

(1) E = ∅ almost surely iff
M2∑
i=1

pi ≤ 1. Except when ∃i such that

pi = 1 and pj = 0 for all i 6= j. In this case E is a singleton.

(2) dimH(projx(E)) = dimH(E) holds almost surely, iff
M∑
r=1

mr logmr ≤
0.

(3) Leb(projxE) = 0 holds almost surely iff
M∑
r=1

logmr ≤ 0.

This result was strengthened by Falconer and Grimmett:

Theorem 6 ([9],[10]). Assume thatm := min {mr} > 1. Then projx(E)
contains an interval almost surely, conditioned on non-extinction.

We will present the proof in the fifth section.

3.3. The DM stages for the homogeneous case. For the homoge-
neous case mr = M · p Hence we obtain that almost surely:

• If 0 < p ≤ 1
M2 then E = ∅.

• If 1
M2 < p ≤ 1

M
then the system is in stage II.

• If 1
M
< p < pc then the system is in stage V.
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Stages III and IV do not appear in the homogeneous case.

4. The arithmetic sum/difference of two fractal
percolations

There is a very nice and more detailed survey of this field due to M.
Dekking [5]. In the previous section we studied the connectivity prop-
erties and the 90◦ projections of random Cantor sets. In this section
we consider sets which are products of inhomogeneous fractal percola-
tion sets and we take their 45◦, (−45◦) projections in order to study
the arithmetic difference (arithmetic sum) respectively of independent
copies of E(1,M,p).

y

xx

`a`a`a

y

a

Figure 3. Algebraic sum as −45◦ projection: a = x +
y = proj−45◦(x, y)

4.1. The arithmetic sum and its visualization. Let A,B ⊂ R be
arbitrary. Then the arithmetic sum A + B := {a+ b : a ∈ A, b ∈ B}
is the −45◦-projection of A × B to the x-axis (this is the direction
of the line `a on Figure 3). Similarly, we can visualize the arithmetic
difference by taking the projection of the product set with the line of
+45◦ angle.
The motivation for studying the arithmetic difference (or sum) of ran-
dom Cantor sets comes from a conjecture of Palis which states that
typically (in a natural sense which depends on the actual setup), the
arithmetic difference of two dynamically defined Cantors is either small
in the sense that it has Lebesgue measure zero or big in the sense that
it contains some intervals, but at least typically, it does not occur that
the arithmetic difference set is a set of positive Lebesgue measure with
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empty interior. This conjecture does not hold for the algebraic dif-
ference of inhomogeneous fractal percolation sets, but it holds in the
homogeneous case. The way to prove this is via the 45◦-projections of
E(1,M,p)× E(1,M,p).

4.2. The product of two one dimensional fractal percolation
versus a two dimensional fractal percolation. We explain this
relation in the case when M = 3. Assume that we are given the
inhomogeneous fractal percolations E(1, 3, a), and E(1, 3,b), where
a = (a1, a2, a3), b = (b1, b2, b3) are the vectors of probabilities. We
define the vector p ∈ [0, 1]9 as their product p = a

⊗
b in the natural

way which is suggested by looking at Figure 1 (a). That is:

pi := au · bv if i− 1 = 3 ∗ (v − 1) + (u− 1), 1 ≤ u, v ≤ 3.

The reason that E(2, 3,p) and E(1, 3, a) × E(1, 3,b) are similar is
explained in (a) and the essential difference between them is pointed
out in (b) below:

(a): Let i ∈ {1, . . . , 9}n. Then the probability that Qi is retained
is the same during the construction of E(2, 3,p) and the con-
struction of E(1, 3, a)× E(1, 3,b).

(b): Let K and L be level n squares for some n. Assume that
both K and L are retained during the construction of E(2, 3,p)
and E(1, 3, a)× E(1, 3,b). Then
• In the construction of E = E(2, 3,p) the sets E ∩K and
E ∩ L are independent.
• In the construction of E(1, 3, a) × E(1, 3,b) the sets E ∩
K and E ∩ L are independent iff projxK 6= projxL and
projyK 6= projyL hold.

In dimension d ≥ 2 the analogy is the same: the probability of the
retention of a level n cube is the same for the d-dimensional percola-
tion and for the d-fold product of the corresponding one dimensional
percolations. On the other hand, the future of what ever happens in
two distinct retained level n cubes is:

• always independent in the d-dimensional percolation case,
• independent for the d-fold product of the corresponding one
dimensional fractal percolations iff the two cubes do not share
any common projections to coordinate axes.b

4.3. The existence of an interval in the arithmetic difference
set. Let E1 := E(1,M,p) and E2 := E(1,M,q). We define the cyclic
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cross correlation coefficients:

(4.1) γk :=
M∑
i=1

piqi−k(mod M) for k = 1, . . . ,M.

Theorem 7 ([7]). Assuming that E1, E2 6= ∅, we have
(a): If ∀i = 1, . . . ,M : γi > 1 then almost surely

E2 − E1 contains an interval .

(b): If ∃i ∈ {1, . . . ,M} : γi, γi+1 mod M < 1 then almost surely

E2 − E1 does not contain any interval .

In the homogeneous case and in the case when M = 3 this gives com-
plete characterization. Otherwise we can change to higher order Cantor
sets (collapsing n ≥ 2 steps of the construction into one) and we can
apply the same theorem in that case. The fact that this can be done
is not trivial because higher order fractal percolations are correlated.
That is the way as the random set develops in one level n square is
dependent how it develops in some other squares. Nevertheless, M.
Dekking and H. Don proved that this can be done by pointing out that
the proof of the theorem above can be carried out for more general,
correlated random sets than the inhomogeneous fractal percolations.
This more general family includes the higher order fractal percolation
sets.

4.4. The Lebesgue measure of the arithmetic difference set.
Let E2, E2 be two independent realizations of E(1,M,p). Then

γk :=
M∑
i=1

pipi−k(mod M) for k = 1, . . . ,M.

Let Γ := γ1 · · · γM .

Theorem 8 ([17]). If Γ > 1 then
Leb(E2 − E1) > 0.

Combined application of Theorems 7 and 8 yields that the Palis conjec-
ture does not hold in the case when forM = 3 and p = (0.52, 0.5, 0.72).
Namely, in this case γ1 = 1.0388 and γ2 = γ3 = 0.941. Let E1, E2 be
two independent copies of E(1, 3,p). Then by Theorem 7 there is
no interval in E1 − E2 (since there are two consecutive γ’s that are
smaller than one) and by Theorem 8 we have Leb (E1 − E2) > 0 since
γ1 · γ2 · γ3 = 1.0272 > 1.
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5. General projections: the opaque case

In this and in the following sections we study the projections of fractal
percolation sets in general directions. In this section we consider the
case dimH(E) > 1. Under some mild assumption, almost surely projec-
tions of E have not only positive Lebesgue measure, as per Marstrand
theorem, but also non-empty interior. Furthermore it holds for all and
not only almost all directions. Moreover, this remains valid if we re-
place the orthogonal projection with a much more general family of
projections.

The Sun at 2:12 p.m.

The Sun at noon

The Sun at 11:00 a.m.

EEE

The intervals in the shadow of the random dust EEE at different times

Figure 4.

One practical application of our result is shown above (Figure 4). One
does not need to rotate such a set to use it as an umbrella.
We have already studied the horizontal and vertical projections. So
we can restrict our attention to the directions α ∈ D := (0, 90◦) A
condition A(α), α ∈ D on the vector of probabilities p will be defined
below.

Theorem 9 ([19]). Let α ∈ D. If A(α) holds and E is nonempty then
almost surely projα(E) contains an interval.

Theorem 10 ([19]). If A(α) holds for all α ∈ D and E 6= ∅ then
almost surely all projections projα(E) contain an interval.

Remark 11. The assertions of Theorems 9 and 10 remain valid if we
replace projα with more general families of projections, see [19, Section
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Figure 5. The orthogonal projα, radial Projt, co-radial
CProjt projections and the auxiliary projections Πα, Rt,
and R̃t.

6]. In particular, radial or co-radial projections (see Figure 5) are
included.

Example 12. If either
(1) Homogeneous case: pi = p > M−1 for all i, or
(2) Generalized random Sierpiński Carpet: M = 3, p5 = q, pi = p

for i 6= 5, and

p > max

(
1

3
,
1− q

2

)
then Condition A(α) is satisfied for all α ∈ D. Note that (1) is equiv-
alent to dimH(E) > 1 almost surely.
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M−n

5.1. Horizontal and vertical projections.
Let us start by presenting the large deviation
argument (by Falconer and Grimmett) work-
ing for horizontal and vertical projections. If
dimH Λ > 1 then from the dimension formula
for some n one can find a level n column with
(exponentially) many squares. We prove induc-
tively that in its every N -th level sub-column,
N > n, we typically have exponentially many
squares on each level (probability of existence of
N > n and an N -th level subcolumn which does
not have exponentially many squares is super-
exponentially small). When we move from level
n column to its level n + 1 subcolumns, each
square in the column gives birth to an expected
number of pM > 1 number of level n+1 squares
in each of the subcolumns. By large devia-
tion theorem there is only a superexponentially
small probability that the number of level n+1 squares in a subcolumn
is smaller than a fixed α ∈ (1, pM) multiple of the level n squares in
the column. By induction, if this exceptional situation does not hap-
pen (or happens only finitely many times), for each N > n the number
of squares of level N in each subcolumn will be at least of order αN−n.

5.2. Condition A. Our goal in this subsection is to modify this argu-
ment to work in a more complicated situation of projections in general
directions. Indeed, contrary to the horizontal/vertical projections case,
here it is in general not true that if a line intersects a square of level
n then the expected number of squares of level n + 1 it intersects is
greater than 1. It is still true if the line intersects ’central’ part of the
square, but not if it hits it close to the corners.
Nevertheless, we are able to find a modified version of the argument.
We fix α ∈ D. We are going to consider Πα instead of projα, i.e. we
are projecting onto a diagonal ∆α of Q, see Figure 5. For any i ∈ In
the map Πα ◦ ϕi : ∆α → ∆α is a linear contraction of ratio M−n. We
will use its inverse: a map ψα,i : Πα(Qi)→ ∆α. It is a linear expanding
map (of ratio Mn) and it is onto.
Consider the class of nonnegative real functions on ∆α, vanishing on
the endpoints. There is a natural random inverse Markov operator Gα

defined as
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Gαf(x) =
∑

i∈E1;x∈Πα(Qi)

f ◦ ψα,i(x).

The corresponding operator on the n-th level is

G(n)
α f(x) =

∑
i∈En;x∈Πα(Qi

f ◦ ψα,i(x).

In particular for any H ⊂ ∆α we have

G(n)
α 1H(x) = # {i ∈ En : x ∈ Πα (ϕi(H))} .

Although G(n)
α should not be thought of as the n-th iterate of Gα, the

expected value of G(n)
α is the n-th iterate of the expected value of Gα.

Namely, let
Fα = E [Gα] and F n

α = E [Gn
α]

We then have the formulas

Fαf(x) =
∑

i∈I;x∈Πα(Qi)

pi · f ◦ ψα,i(x)

and

F n
α f(x) =

∑
i;x∈Πα(Qi)

pi · f ◦ ψα,i(x),

where

pi =
n∏
k=1

pik .

Definition 13. We say the percolation model satisfies Condition A(α)
if there exist closed intervals Iα1 , Iα2 ⊂ ∆α and a positive integer rα such
that

i) Iα1 ⊂ intIα2 , I
α
2 ⊂ int∆α,

ii) F rα
α 1Iα1 ≥ 2 · 1Iα2 .

It will be convenient to use additional notation. For x ∈ ∆α, α ∈ D,
and I ⊂ ∆α we denote

Dn(x, I, α) = {i ∈ In;x ∈ Πα ◦ ϕi(I)}.
That is, if we write `α(x) for the line segment through x ∈ ∆α in
direction α, Dn(x, I, α) is the set of i for which `α(x) intersects ϕi(I).
The point ii) of Definition 13 can then be written as
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∀x∈Iα2
∑

i∈Drα (x,Iα1 ,α)

pi ≥ 2.

Λ1

p1 p2 p3

p4 p5 p6

p7 p8 p9 x

α`
α (x)

K = [0, 1]2p7 · p1 + p7 · p6 + p8 · p8 > 2

p7 · p1
p7 · p6

p8 · p8

Figure 6. Condition A(α): Iα1 is the small red, Iα2 is
the big blue interval on the left. rα = 2 and the small
red intervals are the scaled copies of Iα1 .

In other words, Condition A(α) is satisfied if for given α one can define
’small central’ and ’large central’ part of each square in such a way that
for some r ∈ N if a line in direction α intersects the ’large central’ part
of some n-th level square then the expected number of ’small central’
parts of its n + r-th level subsquares it intersects is uniformly greater
than 1.

5.3. Consequences of Condition A(α). It is clear that if A(α) holds
then one can apply the large deviation argument for projection in direc-
tion α - modulo a minor technical problem that the random variables
in the large deviations theorem are not identically distributed.
A bit more complicated is the proof that almost surely all the projec-
tions contain intervals. It is based on the following robustness proper-
ties:
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Proposition 14. If condition A(α) holds for some α ∈ D for some
Iα1 , I

α
2 and rα then it will also hold in some neighbourhood J 3 α.

Moreover, for all θ ∈ J we can choose Iθ1 = I ′1, I
θ
2 = I2, rθ = rα not

depending on θ.

A natural corollary is that the whole range D can be presented as a
countable union of closed intervals Ji = [α−i , α

+
i ] such that for each i

Condition A(α) holds for all α ∈ Ji with the same I i1, I i2, ri.

Proposition 15. Let I ⊂ B(I, `) ⊂ J ⊂ ∆α. If i ∈ Dn(x, I, α) then
i ∈ Dn(x, J, β) for all β ∈ (α− `M−n, α + `M−n).

Hence, inside each Ji one does not need to repeat the large deviation
argument separately for each α. At level n it is enough to check it for
approximately Mn directions. As the number of directions one needs
to check grows only exponentially fast with n, the proof goes through.

5.4. Checking Condition A(α). One last thing needed is an efficient
way to check whether A(α) holds.

Definition 16. We say that the fractal percolation model satisfies Con-
dition B(α) if there exists a nonnegative continuous function f :
∆α → R such that f is strictly positive except at the endpoints of ∆α

and that

(5.1) Fαf ≥ (1 + ε)f

for some ε > 0.

Proposition 17. B(α) implies A(α).

In particular, for homogeneous case pi = p > M−1 for any α one can
choose f(x) as the length of the intersection of Q with the line in
direction α passing through x. It is easy to check that this function
satisfies (5.1) for ε = pM − 1.

5.5. Application: visibility. For a given set E, we define the visible
subset (from direction α) as the set of points x ∈ E such that the
half-line starting at x and going in direction α does not meet any other
point y ∈ E. Similarly, given z ∈ R2, the visible subset (from z) is the
set of points x ∈ E such that the interval xz does not meet any other
point y ∈ E.
Let E be a homogeneous fractal percolation with p > M−1. By The-
orem 9, E is quite opaque: the orthogonal projection in any direction
almost surely contain intervals. In particular, with large probability it
contains large intervals. By stochastical self-similarity of E, the same
is true for each E ∩Qi. Hence, not many points can be visible:
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Theorem 18 ( [1]). If E is nonempty, almost surely the visible set
from direction α has finite one-dimensional Hausdorff measure for each
α and the visible set from point z has Hausdorff dimension 1 for each
z ∈ R2.

6. General projections: the transparent case

In this section we present results analogous to the second part of the
Marstrand theorem. For homogeneous fractal percolation with Haus-
dorff dimension smaller than 1 almost surely dimH(projα(E)) = dimHE
for all α. Together with the results of the previous section, it implies

Theorem 19 ([18]). In the homogeneous case, that is E = Eh(2,M, p)
for almost all realizations of E

(6.1) ∀α, dimH(projαE) = min {1, dimH(E)} .
Principal Assumption for this Section: In this section we always
work in the homogeneous case:

E = Eh(2,M, p),

where

(6.2) M−2 < p ≤M−1.

That is p is chosen to ensure that E 6= ∅ with positive probability and
dimH(E) ≤ 1 almost surely conditioned on non-extinction. To prove
Theorem 19 one needs to analyze the structure of the slices of En:

Informal description of the structure of slices of En (which
was defined as the n-th approximation of E): Namely, for almost all
realizations of E and for all straight lines `: the number of level n
squares having nonempty intersection with E is at most const · n. On
the other hand, almost surely for n big enough, we can find some line
of 45◦ angle which intersects const · n level n squares.

Let Lε be the set of lines on the plane whose angle is separated both
from 0◦ and 90◦ at least by ε. Further for a line ` let En(`) be the set
of retained level n squares that intersect `. That is,

En(`) := {i ∈ En : Qi ∩ ` 6= ∅} .
Theorem 20 ([18]). For almost all realizations of E we have

(6.3) ∀ε ∈
(

0,
π

2

)
, ∃N, ∀n ≥ N, ∀` ∈ Lε; #En(`) ≤ const · n.
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For simplicity, the proof in horizontal/vertical direction only (for gen-
eral directions one needs to apply techniques presented in previous
subsection). The proof is once again based on the large deviation
argument, but working in the opposite direction. This time the ex-
pected number of squares in a subcolumn is smaller (by a constant
bounded away from 1) than the number of squares in the column (and
not greater, like in the opaque case). Hence, we can guarantee that if
the column has sufficiently many squares for the large deviation theory
to work, the number of squares in all subcolumns will shrink. This
leads to an estimation on the possible rate of growth.
This estimation is sharp:

Proposition 21 ([18]). There exists a constant 0 < λ < 1 such that
for almost all realizations, conditioned on E 6= ∅, there exists an N
such that for all n > N there exists a line ` with

(6.4) #En (`) > λn.

Theorem 19 is an immediate consequence of Theorem 20.

7. The arithmetic sum of at least three fractal
percolations

To study arithmetic sums of more than two fractal percolations we
need to combine results of the previous three sections. Like in section
4, we look at the projection (x1, . . . , xd) →

∑
xi from the cartesian

product of fractal percolations to the real line. The proof is based
on the large deviation argument presented in section 5. However, the
main technical difficulty is the presence of dependencies. We will use
the results from section 6 to bound their impact.
Let

Ei := Eh (1,M, pi) , i = 1, 2, 3, p := p1 ·p2 ·p3 and E := Eh (3,M, p) .

Then

dimH

(
E1 × E2 × E3

)
= dimH(E) =

logM3 · p
logM

.

Moreover, the probability that a level n cube C is contained in any of
the two random Cantor sets above is equal to pn.
Let Sa be the plane {∑xi = a}. We can write

Esum := E1 + E2 + E3 =
{
a : Sa ∩

(
E1 × E2 × E3

)
6= ∅
}
.
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a

a

a

(x, y, z)

(x, y, 0)

x

y

Sa Sa := {(x, y, z) : x+ y + z = a}

That is we can consider Esum as the pro-
jection of E1×E2×E3 to the x-axis with
planes orthogonal the vector (1, 1, 1). So,
Esum can contain an interval only if its
dimension is greater than one, that is
p > M−2. It is a sufficient condition as
well:

Theorem 22 ([18]). Let d ≥ 2 and for
i = 1, . . . , d let Ei := Eh(1,M, pi) satis-
fying

(7.1) p :=
d∏
i=1

pi > M−d+1.

Then for every b = (b1, . . . , bd) ∈ Rd, bi 6= 0 for all i = 1, . . . , d the

sum Esum
b =

d∑
i=1

biE
i contains an interval almost surely, conditioned on

all Ei being nonempty.

We explain the proof of this theorem in the special case when d =
3 and b = (1, 1, 1). To verify that a certain a ∈ Esum we need to
prove that the n approximation of the product intersects Sa, that is
(E1 × E2 × E3)n ∩ Sa 6= ∅ for every n. It follows from the dimension
formula and (7.1) that we haveMn(1+τ) retained level n cubes for some
τ > 0. By the pigeon hole principle for at least one k = 0, . . . , 3Mn the
plane SkM−n intersects at least Mnτ retained level n cubes. For such a
k we write a = kM−n. So, # {En ∩ Sa} ≥Mnτ .
Fix an 0 ≤ m ≤ M . How many level n + 1 retained cubes intersect
Sa+mM−(n+1)? If the way E1 × E2 × E3 develops in every level n cube
was independent then we could get that the answer by the large devi-
ation argument: exponentially many except for an event with a super
exponentially small probability.
We remind that the cubes are dependent if they have the same x1, x2 or
x3 coordinate. Figure 7 shows the geometric position of (some of: we
consider only the cubes with the same x3 coordinate) cubes dependent
on one chosen cube: x1 + x2 + x3 = const and x3 = const imply
x1 + x2 = const. Potentially there could be exponentially many such
cubes. The key step of the proof is that using a theorem analogous
to Theorem 20 for E1 × E2 instead of Eh(2,M, p1 · p2) one can check
that on the red dashed line on Figure 7 there are only constant times
n retained squares, consequently the Mnτ level n cubes having non-
empty intersection with Sa (the blue plane on Figure 7) can be divided
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a

a

a

b

b
M−n

M−n

Figure 7. The cubes intersecting the red line are not independent

into const · n classes such that the coordinate axes projection of any
two cubes in a class are different. The events inside each class are
independent, hence we can use the large deviation theory separately
for each class. A technical comment: in order to be able to go with
this procedure we may have to decrease p1, p2, p3 in such a way that
for the modified values we have

p1 · p2 · p3 > M−2 but pi · pj < M−1 for distinct i, j ∈ {1, 2, 3} .
That is, E1 × E2 × E3 is a big set in the sense that it has dimension
greater than one but its all coordinate plane projections should be
small sets having dimension smaller than one – only then the n-th
approximates of the coordinate plane projections intersect every line
in at most const · n retained squares. However, the property of almost
surely having intervals in the algebraic sum is monotonous with respect
to {pi}.
Hence among those level n retained cubes that intersect the blue plane
Sa there cannot be more than const · n on the red line (any coordinate
plane parallel line) which imply that the number of cubes dependent on
any one cube is polynomial (const ·n). This bound on the dependency
matrix lets us control the dependencies.
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