MULTIFRACTAL ANALYSIS OF THE BIRKHOFF SUMS OF SAINT-PETERSBURG POTENTIAL

DONG HAN KIM, LINGMIN LIAO, MICHAL RAMS, AND BAO-WEI WANG

Abstract. Let \((0, 1], T\) be the doubling map in the unit interval and \(\varphi\) be the Saint-Petersburg potential, defined by \(\varphi(x) = 2^n\) if \(x \in (2^{-n-1}, 2^{-n}]\) for all \(n \geq 0\). We consider asymptotic properties of the Birkhoff sum \(S_n(x) = \varphi(x) + \cdots + \varphi(T^{n-1}(x))\). With respect to the Lebesgue measure, the Saint-Petersburg potential is not integrable and it is known that \(\frac{1}{n} \log n S_n(x)\) converges to \(\frac{1}{\log 2}\) in probability. We determine the Hausdorff dimension of the level set \(\{x : \lim_{n \to \infty} S_n(x)/n = \alpha\}\) (\(\alpha > 0\)), as well as that of the set \(\{x : \lim_{n \to \infty} S_n(x)/\Psi(n) = \alpha\}\) (\(\alpha > 0\)), when \(\Psi(n) = n \log n\), \(n^a\) or \(2^n\gamma\) for \(a > 1, \gamma > 0\). The fast increasing Birkhoff sum of the potential function \(x \mapsto 1/x\) is also studied.

1. Introduction

Let \(T\) be the doubling map on the unit interval \((0, 1]\) defined by

\[Tx = 2x - \lfloor 2x \rfloor + 1, \]

where \(\lfloor x \rfloor\) is the smallest integer larger than or equal to \(x\). Let \(\epsilon_1\) be the function defined by \(\epsilon_1(x) = \lfloor 2x \rfloor - 1\) and \(\epsilon_n(x) := \epsilon_1(T^{n-1}x)\) for \(n \geq 2\). Then each real number \(x \in (0, 1]\) can be expanded into an infinite series as

\[x = \epsilon_1(x) \frac{2}{2^n} + \cdots + \epsilon_n(x) \frac{2^n}{2^n} + \cdots. \tag{1.1} \]

We call (1.1) the binary expansion of \(x\) and also write it as

\[x = [\epsilon_1(x) \epsilon_2(x) \ldots]. \]

The Saint-Petersburg potential is a function \(\varphi : (0, 1] \to \mathbb{R}\) defined as

\[\varphi(x) = 2^n \text{ if } x \in (2^{-n-1}, 2^{-n}], \forall n \geq 0. \]

We remark that the definition of \(\varphi\) is equivalent to

\[\varphi(x) = 2^n \text{ where } n \geq 0 \text{ is the smallest integer such that } \epsilon_{n+1}(x) = 1. \]

and is also equivalent to

\[\varphi(x) = 2^n \text{ if the binary expansion of } x \text{ begins with } 0^n1, \]

where \(0^n(n \geq 0)\) means a block with \(n\) consecutive zeros.

The name of Saint-Petersburg potential is motivated by the famous Saint-Petersburg game in probability theory. The Saint-Petersburg potential is of infinite expectation with respect to the Lebesgue measure. Furthermore, it increases exponentially fast near to the point 0.

2010 Mathematics Subject Classification. Primary 37E05 Secondary 28A80, 37D20.

Key words and phrases. Saint-Petersburg potential, Hausdorff dimension, multifractal analysis.

D.K. was supported by the NRF of Korea (NRF-2015R1A2A2A01007090, NRF-2017K1A3A1A2103650). M.R. was supported by National Science Centre grant 2014/13/B/ST1/01033 (Poland). B.W. was partially supported by NSFC No. 11471030.
In this paper, we are concerned with the following Birkhoff sums of the Saint-Petersburg potential:
\[S_n(x) := \varphi(x) + \varphi(T(x)) + \cdots + \varphi(T^{n-1}(x)), \quad x \in (0, 1). \]

Let \(I = \{x \in (0, 1) : \epsilon_1(x) = 1\} \).

Define the hitting time of \(x \in (0, 1) \) to \(I \) as
\[n(x) := \inf\{n \geq 0 : T^n x \in I\}. \]

Then
\[n(x) = n \quad \text{if} \quad x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right), \quad \text{for all} \quad n \geq 0. \]

Using \(n(x) \), we define a new dynamical system \(\tilde{T} : (0, 1) \to (0, 1) \) by
\[\tilde{T}(x) = T^{n(x)+1}(x) = 2^{n+1} \left(x - \frac{1}{2^{n+1}} \right) \quad \text{if} \quad x \in \left(\frac{1}{2^{n+1}}, \frac{1}{2^n} \right), \quad \text{for all} \quad n \geq 0, \]
called the acceleration of \(T \), in order that \(\varphi \) and \(\varphi \circ \tilde{T} \) are independent. Let
\[\hat{S}_n(x) := \varphi(x) + \varphi(\tilde{T}(x)) + \cdots + \varphi(\tilde{T}^{n-1}(x)), \quad x \in (0, 1). \]

The convergence in probability of \(\hat{S}_n(x) \) is well known (e.g. \([6, p.253]\)) which states that for any \(\epsilon > 0 \), the Lebesgue measure \(\lambda \) of
\[\left\{ x \in (0, 1) : \left| \frac{\hat{S}_n(x) - n \log n - 1}{\log 2} \right| \geq \epsilon \right\} \]
tends to 0 as \(n \to \infty \).

Let \(\{\Psi_n\}_{n \geq 1} \) be an increasing sequence such that \(\Psi_n \to \infty \) as \(n \to \infty \). Then it was shown in \([5]\) that almost surely either
\[\lim_{n \to \infty} \frac{\hat{S}_n(x)}{\Psi_n} = 0 \quad \text{or} \quad \limsup_{n \to \infty} \frac{\hat{S}_n(x)}{\Psi_n} = \infty, \]
according as
\[\sum_{n \geq 1} \lambda(\{x \in (0, 1) : \varphi(x) \geq \Psi_n\}) < \infty \quad \text{or} \quad = \infty. \]

Let \(n_1 = n_1(x) = n(x) + 1 \) and \(n_k = n_k(x) = n_1(\tilde{T}^{k-1}x) = n(\tilde{T}^{k-1}x) \) for \(k \geq 2 \).

It is direct to see that
\[\forall \ell \geq 1, \quad S_{n_1 + \cdots + n_\ell}(x) = 2\hat{S}_\ell(x) - \ell. \]

Moreover, the ergodicity of \(T \) (of \(\tilde{T} \)) implies
\[\lim_{\ell \to \infty} \frac{n_1(x) + \cdots + n_\ell(x)}{\ell} = \int_0^1 (n(x) + 1) d\lambda(x) = 2. \]

Combining these two facts together, we obtain the same convergence results as above if we replace \(\hat{S}_n \) by \(S_n \).

In this article, we want to give a complete multifractal analysis of the Birkhoff sum \(S_n \).

First, for any \(\alpha \geq 1 \), we consider the level set
\[E(\alpha) = \left\{ x \in (0, 1) : \lim_{n \to \infty} \frac{1}{n} S_n(x) = \alpha \right\}. \]

For \(t \in \mathbb{R} \) and \(q > 0 \), define
\[P(t, q) := \log \sum_{j=1}^{\infty} 2^{-tj-q(2^j-1)}. \]
Then P is a real-analytic function. Furthermore, for each $q > 0$, there is a unique $t(q) > 0$ such that $P(t(q), q) = 0$. This function $q \mapsto t(q)$ is real-analytic, strictly decreasing and convex.

Denote by \dim_H the Hausdorff dimension. The function $\alpha \mapsto \dim_H E(\alpha)$, called the Birkhoff spectrum of the Saint-Petersburg potential φ, is proved to be the Legendre transformation of the function $q \mapsto t(q)$.

Theorem 1.1. For any $\alpha \geq 1$ we have

$$\dim_H E(\alpha) = \inf_{q > 0} \{t(q) + q\alpha\}.$$

Consequently, $\dim_H E(1) = 0$ and the function $\alpha \mapsto \dim_H E(\alpha)$ is real-analytic, strictly increasing, concave, and has limit 1 as $\alpha \to \infty$.

The Birkhoff spectrum of a continuous potential was obtained for full shifts [13], for topologically mixing subshifts of finite type [4], and for repellers of a topologically mixing $C^{1+\epsilon}$ expanding map [2]. A continuous potential in a compact space is bounded, hence these classical results are all for bounded potentials. Our Theorem 1.1 gives a Birkhoff spectrum for an unbounded function with a singular point. To prove Theorem 1.1, we will transfer our question to a Birkhoff spectrum problem of an interval map with infinitely many branches and we will apply the techniques developed in [9] for continued fraction dynamical system and in [8] for general expanding interval maps with infinitely many branches.

We also study the Birkhoff sums $S_n(x)$ of fast increasing rates. Let $\Psi : \mathbb{N} \to \mathbb{N}$ be an increasing function. For $\beta > 0$, consider the level set

$$E_\Psi(\beta) := \left\{x \in (0, 1] : \lim_{n \to \infty} \frac{1}{\Psi(n)} S_n(x) = \beta \right\}.$$

Theorem 1.2. If $\Psi(n)$ is one of the following

$$\Psi(n) = n \log n, \quad \Psi(n) = n^a \quad (a > 1), \quad \Psi(n) = 2^{n^\gamma} \quad (0 < \gamma < 1/2),$$

then for any $\beta > 0$, $\dim_H E_\Psi(\beta) = 1$.

If $\Psi(n) = 2^{n^\gamma}$ with $\gamma \geq 1/2$, then for any $\beta > 0$, the set $E_\Psi(\beta)$ is empty.

Our method for studying the fast increasing Birkhoff sum of Saint-Petersburg potential also works for the fast increasing Birkhoff sum of the potential $g : x \mapsto 1/x$ which is continuous with singular point 0.

Denote by $S_ng(x)$ the Birkhoff sum

$$S_n g(x) := g(x) + g(T(x)) + \cdots + g(T^{n-1}(x)), \quad x \in (0, 1].$$

For $\beta > 0$, let

$$F_\Psi(\beta) := \left\{x \in (0, 1] : \lim_{n \to \infty} \frac{1}{\Psi(n)} S_n g(x) = \beta \right\}.$$

Theorem 1.3. If $\Psi(n)$ is one of the following

$$\Psi(n) = n \log n, \quad \Psi(n) = n^a \quad (a > 1), \quad \Psi(n) = 2^{n^\gamma} \quad (0 < \gamma < 1/2),$$

then for any $\beta > 0$, $\dim_H F_\Psi(\beta) = 1$.

If $\Psi(n) = 2^{n^\gamma}$ with $\gamma \geq 1/2$, then for any $\beta > 0$, the set $F_\Psi(\beta)$ is empty.

We remark that these multifractal analysis on the Birkhoff sums of fast increasing rates have been done for some special potentials in continued fraction dynamical system ([9, 11, 12]).
2. Birkhoff spectrum of the Saint-Petersburg potential

In this section, we will obtain the Birkhoff spectrum of the Saint-Petersburg potential, i.e. the Hausdorff dimension of the following level set:

\[E(\alpha) := \left\{ x \in (0, 1] : \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(T^j x) = \alpha \right\} \quad (\alpha \geq 1). \]

We will transfer our question to a Birkhoff spectrum problem for an interval map with infinitely many branches.

2.1. Transference lemma. Recall that the Saint-Petersburg potential \(\varphi \) is given by

\[\varphi(x) = 2^n, \quad \text{if} \quad x = [0^n1, \cdots] \]

where \(x = [\epsilon_1 \epsilon_2, \cdots] \) denotes the digit sequence in the binary expansion of \(x \). Recall also the definition of hitting time \(n(x) \) and the acceleration \(\hat{T} \) of the doubling map \(T \) in Section 1. Define a new potential function

\[\phi(x) := 2^{n(x)} + 1 - 1 \sum_{j=0}^{n(x)} \varphi(T^j x), \quad x \in (0, 1]. \]

In fact, \(\phi \) is nothing but the function satisfying

\[\phi(x) = \sum_{j=0}^{n(x)} \varphi(T^j x). \]

With the notation \(n_1 = n(x) + 1 \geq 1 \), and \(n_k = n(\hat{T}^{k-1} x) + 1 \) for \(k \geq 2 \) given in Section 1, we have

\[\phi(\hat{T} x) = \sum_{j=0}^{n(\hat{T} x)} \varphi(T^j (\hat{T} x)) = \sum_{j=n_1}^{n_2-1} \varphi(T^j x). \]

Hence,

\[\sum_{j=0}^{n_1 + \cdots + n_{\ell-1}} \varphi(T^j x) = \sum_{k=0}^{\ell-1} \phi(\hat{T}^k x) = 2^{n_1} + \cdots + 2^{n_\ell} - \ell. \quad (2.1) \]

Note that the derivative of \(\hat{T} \) satisfies

\[\hat{T}'(x) = 2^{n(x)} + 1 = 2^{n_1} = \phi(x) + 1. \quad (2.2) \]

We have

\[n_1 + \cdots + n_\ell = \sum_{k=0}^{\ell-1} \log_2 |\hat{T}'(\hat{T}^k x)|. \]

Recall the set in question:

\[E(\alpha) = \left\{ x \in (0, 1] : \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(T^j x) = \alpha \right\} \quad (\alpha \geq 1). \]

Define

\[\tilde{E}(\alpha) := \left\{ x \in (0, 1] : \lim_{\ell \to \infty} \frac{1}{\sum_{k=0}^{\ell-1} \log_2 |\hat{T}'(\hat{T}^k x)|} \sum_{k=0}^{\ell-1} \phi(\hat{T}^k x) = \alpha \right\} \quad (\alpha \geq 1). \]

The following lemma shows the two level sets are the same.

Lemma 2.1. For all \(\alpha \geq 1 \), we have \(E(\alpha) = \tilde{E}(\alpha) \).
Proof. It is evident that \(E(\alpha) \subset \tilde{E}(\alpha) \), because, as discussed above,
\[
\frac{\sum_{k=0}^{\ell-1} \phi(\tilde{T}^k x)}{\sum_{k=0}^{\ell-1} \log_2 |T^k|(T^k x)} = \frac{1}{n_1 + \cdots + n_\ell} \sum_{j=0}^{n_1 + \cdots + n_\ell - 1} \varphi(T^j x). \tag{2.3}
\]

Now, we show the other direction. Take an \(x \in \tilde{E}(\alpha) \), express \(x \) in its binary expansion
\[
x = [0^{n_1-1}10^{n_2-1} \ldots 0^{n_\ell-1} \ldots].
\]
In fact, \(n_\ell - 1 \) is the recurrence time for \(n(\tilde{T}^{\ell-1} x) \), for each \(\ell \geq 1 \).

By (2.1), we have, at present,
\[
\lim_{\ell \to \infty} \frac{1}{n_1 + \cdots + n_\ell} \sum_{j=0}^{n_1 + \cdots + n_\ell - 1} \varphi(T^j x) = \alpha.
\]
So, we are required to check it holds for all \(n \).

For any \(\epsilon > 0 \), there exists \(\ell_0 \in \mathbb{N} \) such that, for any \(\ell \geq \ell_0 \),
\[
\alpha - \epsilon \leq \frac{2^{n_1} + \cdots + 2^{n_\ell} - \ell}{n_1 + \cdots + n_\ell} \leq \alpha + \epsilon. \tag{2.4}
\]

For any \(n_1 + \cdots + n_\ell < n < n_1 + \cdots + n_\ell + n_{\ell+1} \) with \(\ell \geq \ell_0 \), it is trivial that
\[
\frac{2^{n_1} + \cdots + 2^{n_\ell} - \ell}{n_1 + \cdots + n_\ell + n_{\ell+1}} \leq \frac{1}{n} \sum_{j=0}^{n-1} \varphi(T^j x) \leq \frac{2^{n_1} + \cdots + 2^{n_\ell} + 2^{n_{\ell+1}} - \ell - 1}{n_1 + \cdots + n_\ell + n_{\ell+1}}.
\]

Thus, it suffices to show that
\[
2^{n_{\ell+1}} = o(n_1 + \cdots + n_\ell), \tag{2.5}
\]
which also implies
\[
n_{\ell+1} = o(n_1 + \cdots + n_\ell).
\]
Let \(M_0 \) be a large integer such that, for all \(M \geq M_0 \), \(2^M \geq 4\alpha M \). So, when \(n_{\ell+1} \leq M_0 \), there is nothing to prove. So, we always assume \(2^{n_{\ell+1}} \geq 4\alpha n_{\ell+1} \).

By (2.4), we have
\[
2^{n_1} + \cdots + 2^{n_\ell} - \ell \geq (\alpha - \epsilon)(n_1 + \cdots + n_\ell),
\]
\[
2^{n_1} + \cdots + 2^{n_\ell} + 2^{n_{\ell+1}} - \ell - 1 \leq (\alpha + \epsilon)(n_1 + \cdots + n_\ell + n_{\ell+1}).
\]
These give
\[
2^{n_{\ell+1}} \leq 2\epsilon(n_1 + \cdots + n_\ell) + (\alpha + \epsilon)n_{\ell+1} + 1.
\]
So, we have
\[
2^{n_{\ell+1}} \leq 4\epsilon(n_1 + \cdots + n_\ell). \quad \square
\]

2.2. Dimension of \(\tilde{E}(\alpha) \). Now we calculate the Hausdorff dimension of the set \(\tilde{E}(\alpha) \). At first, we give a notation.

- For each finite word \(w \in \bigcup_{n \geq 1} \{0, 1\}^n \) of length \(n \), a \(T \)-dyadic cylinder of order \(n \) is defined as
 \[
 I_n(w) = \{ x \in (0, 1) : (\epsilon_1(x), \ldots, \epsilon_n(x)) = w \}.
 \]
- For \((n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \), a \(\tilde{T} \)-dyadic cylinder of order \(\ell \) is defined as
 \[
 D_\ell(n_1, \ldots, n_\ell) = \{ x \in (0, 1) : n_k(x) = n_k, \ 1 \leq k \leq \ell \}.
 \]
Proof of Theorem 1.1. We consider the potential function with two parameters

\[\psi_{t,q} := -t \log |\hat{T}| - (\log 2) \cdot q \phi. \]

Then we can define a Ruelle operator

\[\mathcal{L}_{t,q} f(x) := \sum_{y \in \hat{T}^{-1} x} e^{\psi_{t,q}(y)} f(y). \]

By the Ruelle-Perron-Frobenius transfer operator theory [10, Section 2], for any \(q > 0 \) (to satisfy the condition 2.2 of [10]), we can find an eigenvalue \(\lambda_{t,q} \) and an eigenfunction \(h_{t,q} \) for \(\mathcal{L}_{t,q} \) and an eigenfunction \(\nu_{t,q} \) for the conjugate operator \(\mathcal{L}_{t,q}^* \). Then the pressure function \(P(t,q) = \log \lambda_{t,q} \) and the Gibbs measure \(\mu_{t,q} \) is given by \(h_{t,q} \cdot \nu_{t,q} \).

The pressure function can be computed by

\[P(t,q) = \lim_{\ell \to \infty} \frac{1}{\ell} \log \sum_{\mathcal{T}_{x \times x}} \exp(S_{\ell \psi_{t,q}}(x)) = \log \sum_{j=1}^{\infty} 2^{-tj-q(2^j-1)}. \]

Now we calculate the local dimension of the Gibbs measure \(\mu_{t,q} \). Let \(D_{\ell}(x) \) be the \(\hat{T} \)-dyadic cylinder containing \(x \) of order \(\ell \). By the Gibbs property of \(\mu_{t,q} \),

\[\log \mu_{t,q}(D_{\ell}(x)) \approx S_{\ell \psi_{t,q}}(x) - \ell P(t,q) = -t S_{\ell} \log |\hat{T}^\ell|(x) - (\log 2) \cdot q S_{\ell} \phi(x) - \ell P(t,q), \]

\[\log |D_{\ell}(x)| = t + q \frac{S_{\ell} \phi(x)}{S_{\ell} \log |\hat{T}^\ell|(x)} + \frac{\ell P(t,q)}{S_{\ell} \log |\hat{T}^\ell|(x)}. \] \hspace{1cm} (2.6)

- **Upper bound.** For each \(q > 0 \), let \(t(q) \) be the the number such that \(P(t(q),q) = 0 \). Then we have for all \(x \in \hat{E}(\alpha) \), we have

\[\liminf_{r \to 0} \frac{\log \mu_{t(q)}(B(x,r))}{\log r} \leq \liminf_{\ell \to \infty} \frac{\log \mu_{t,q}(B(x,D_{\ell}(x))))}{\log |D_{\ell}(x)|} \leq \liminf_{\ell \to \infty} \frac{\log \mu_{t,q}(D_{\ell}(x))}{\log |D_{\ell}(x)|} = t(q) + q\alpha, \]

where for the second inequality the trivial inclusion \(D_{\ell}(x) \subset B(x,|D_{\ell}(x)|) \) is used. By Billingsley Lemma, this gives an upper bound of the Hausdorff dimension of \(\hat{E}(\alpha) \). Thus we have

\[\dim_B \hat{E}(\alpha) \leq \inf_{q>0} \{t(q) + q\alpha\}. \]

- **Lower bound.** Let \(q_0 \) be the point such that the following infimum is attained

\[\inf_{q>0} \{t(q) + q\alpha\}. \]

Then

\[t'(q_0) + \alpha = 0. \] \hspace{1cm} (2.7)

Claim (I): The measure \(\mu_{t(q_0),q_0} \) is supported on \(E_\alpha \). Since \(P(t(q),q) = 0, \)

\[\frac{\partial P}{\partial t} t'(q) + \frac{\partial P}{\partial q} = 0. \] \hspace{1cm} (2.8)

On the other hand, by the ergodicity of the measure \(\mu_{t,q} \), we have for \(\mu_{t,q} \) almost all \(x, \)

\[\lim_{\ell \to \infty} \frac{S_{\ell} \phi(x)}{S_{\ell} \log |\hat{T}^\ell|(x)} = \frac{\int \phi d\mu_{t,q}}{\int \log |\hat{T}^\ell| d\mu_{t,q}} \cdot \log 2. \]

By Ruelle-Perron-Frobenius transfer operator theory ([10], Proposition 6.5),

\[\int (\log 2) \cdot \phi d\mu_{t,q} = -\frac{\partial P}{\partial q} \quad \text{and} \quad \int \log |\hat{T}^\ell| d\mu_{t,q} = -\frac{\partial P}{\partial t}. \]
Thus by (2.8) and then (2.7), for $\mu_{t(q_0),q_0}$ almost all x,
\[
\lim_{\ell \to \infty} \frac{S_\ell \phi(x)}{S_\ell \log_2 |T^\ell|(x)} = \frac{\partial P}{\partial t} = -t'(q_0) = \alpha.
\]
This shows Claim (I).

Claim (II). For $\mu_{t(q_0),q_0}$ almost all x,
\[
\lim_{n \to \infty} \frac{\log \mu_{t(q_0),q_0}(I_n(x))}{\log 2^{-n}} = t(q_0) + q_0\alpha,
\]
where $I_n(x)$ is the T-dyadic cylinder of order n containing x.

On one hand, by (2.6) and then by (2.8) and (2.7), one has for $\mu_{t(q_0),q_0}$ almost all x
\[
\lim_{\ell \to \infty} \frac{\log \mu_{t(q_0),q_0}(D_\ell(x))}{\log |D_\ell(x)|} = t(q_0) + q_0\alpha.
\]
On the other hand, note that for any $x \in E(\alpha)$, if the binary expansion of x is $x = [0^n_1 - 10^{n_2 - 1} \ldots]$, then for any $\delta > 0$, for ℓ large enough,
\[
(\alpha - \delta)\ell \leq 2^{n_1} + \cdots + 2^{n_\ell} - \ell = S_\ell \phi(x) \leq (\alpha + \delta)\ell.
\]
Hence
\[
n_\ell = O(\log \ell),
\]
which implies
\[
\lim_{\ell \to \infty} \frac{\log |D_\ell(x)|}{\log |D_{\ell+1}(x)|} = \lim_{\ell \to \infty} \frac{n_1 + \cdots + n_\ell}{n_1 + \cdots + n_\ell + n_{\ell+1}} = 1. \tag{2.10}
\]
Thus
\[
\lim_{n \to \infty} \frac{\log \mu_{t(q_0),q_0}(I_n(x))}{\log 2^{-n}} = \lim_{\ell \to \infty} \frac{\log \mu_{t(q_0),q_0}(D_\ell(x))}{\log |D_\ell(x)|}.
\]
This shows Claim (II).

To conclude the desired lower bound, we apply the classical mass transference principle (see [3, Proposition 4.2]). Since the Hausdorff dimension will not be changed if we replace the δ-coverings by T-dyadic cylinder coverings (see [3, Section 2.4]), the lower bound of the Hausdorff dimension can be given by the mass transference principle on T-dyadic cylinders. By the above two claims and Egorov’s theorem, for any $\eta > 0$, there exists an integer N_0 such that the set
\[
\left\{ x \in E_\alpha : \mu(I_n(x)) \leq |I_n(x)|^{t(q_0)+q_0\alpha-\eta}, \quad n \geq N_0 \right\}
\]
is of $\mu_{t(q_0),q_0}$ positive measure. So, it implies that
\[
\dim_H E_\alpha \geq t(q_0) + q_0\alpha - \eta.
\]
Note that ([10, Lemma 7.5]) the function $q \mapsto t(q)$ is a decreasing convex function such that
\[
t(0) = 1, \quad \lim_{q \to \infty} (t(q) + q) = 0,
\]
and
\[
\lim_{q \to 0^+} t'(q) = -\infty, \quad \lim_{q \to +\infty} t'(q) = -1.
\]
Therefore, we have proved for any $\alpha \in (1, +\infty)$
\[
\dim_H (\tilde{E}(\alpha)) = \inf_{q>0} \{t(q) + qa\},
\]
which is Legendre transformation. All the properties stated in Theorem 1.1 are satisfied by the function $\alpha \mapsto \dim_H (\tilde{E}(\alpha))$ which is the same function as $\alpha \mapsto \dim_H (E(\alpha))$ by Lemma 2.1.
For the end point $\alpha = 1$, it suffices to note that the level set $E(1)$ is nothing but the set of numbers with frequency of the digit 1 in its binary expansion being 1. Thus the Hausdorff dimension of $E(1)$ is 0. Hence, the Legendre transformation formula for the Hausdorff dimension of $E(\alpha)$ ($\alpha > 1$) holds also for $\alpha = 1$. □

3. Fast increasing Birkhoff sum

At first, we give two simple observations.

Lemma 3.1. Let W be an integer such that $2^t \leq W < 2^{t+1}$ for some positive integer t. For any $0 \leq n \leq t$, among the integers between W and $W(1 + 2^{-n})$, there is one $V = V(W; n)$ whose binary expansion of V has at most $n + 2$ digits 1 and ends with at least $t - n$ zeros.

Proof. By the assumption, we have $2^{-n}W \geq 2^t - n$. Thus among the $2^{-n}W$ consecutive integers from W to $W(1 + 2^{-n})$ there is at least one integer which is divisible by $2^t - n$ which means there is an integer $\ell \geq 1$ such that $W \leq \ell 2^t - n \leq W(1 + 2^{-n})$. Let $V = \ell 2^t - n$ and note that V is an integer whose binary expansion ends with at least $t - n$ zeros. □

In the follows, the base of the logarithm is taken to be 2.

Lemma 3.2. For each integer W, and any integer $n \leq \log W$, we can find a word w with length $|w| \leq (n + 2)(2 + \log W)$ and for any $x \in I_{|w|}(w)$

$$W \leq \sum_{j=0}^{[|w|]-1} \varphi(T^j x) \leq W(1 + 2^{-n}).$$

Proof. Let V be an integer given in Lemma 3.1. Then $W \leq V \leq W(1 + 2^{-n})$. Moreover if we write this number V in binary expansion:

$$V = 2^t_1 + \cdots + 2^t_p,$$

one has that $|\log W| + 1 \geq t_1 > \cdots > t_p \geq |\log W| - n$ and $p \leq n + 2$. Consider the word

$$w = (10^{t_1-1}, 10^{t_2-1}, \ldots, 10^{t_p-1})$$

here the word 10^{t_p-1} is 1 when $t_p = 0$. Then we can check that the length of w satisfies

$$|w| = (t_1 + 1) + \cdots + (t_p + 1) \leq p(t_1 + 1) \leq (n + 2)(2 + \log W),$$

and for any $x \in I_{|w|}(w)$,

$$\sum_{j=0}^{[|w|]-1} \varphi(T^j x) = V.$$

Hence, the proof is completed. □

We also need the following lemma whose proof is left for the reader.

Lemma 3.3. For any $m \geq 1$, define

$$F_m = \{ x \in (0, 1) : \epsilon_{km}(x) = 1, \text{ for all } k \geq 1 \}.$$

Then $\dim_H F_m = \frac{m-1}{m}$.

Before the proof Theorem 1.2, we show the following lemma.
Lemma 3.4. Let $\Psi : \mathbb{N} \to \mathbb{N}$ be an increasing function such that $\Psi(n)/n \to \infty$ as $n \to \infty$. Assume that there exists a subsequence N_k satisfying the following conditions

$$N_k - N_{k-1} \to \infty, \quad \Psi(N_k) - \Psi(N_{k-1}) \to \infty, \quad (3.1)$$

and

$$\frac{\Psi(N_{k-1})}{\Psi(N_k)} \to 1, \quad \frac{\log(\Psi(N_k) - \Psi(N_{k-1}))}{N_k - N_{k-1}} \to 0, \quad (3.2)$$

as $k \to \infty$. Then the set

$$E_\Psi(1) = \left\{ x \in (0, 1] : \lim_{n \to \infty} \frac{1}{\Psi(n)} S_n(x) = 1 \right\}$$

has Hausdorff dimension 1.

Proof. Fix a large integer m and write

$$U = \left\{ u = (\epsilon_1, \cdots, \epsilon_m) : \epsilon_m = 1, \epsilon_i \in \{0, 1\}, i \neq m \right\}.$$

To avoid the abuse of notation, by the first assumption of (3.1), we assume $N_k - N_{k-1} \gg m$ for all $k \geq 1$ by setting $N_0 = 0$ and $\Psi(N_0) = 0$.

For each $k \geq 1$, we write

$$W_k := \Psi(N_k) - \Psi(N_{k-1})$$

and let $\{n_k\}$ be a sequence of integers tending to ∞ such that

$$n_k \leq \log W_k, \quad n_k \cdot \frac{\log(\Psi(N_k) - \Psi(N_{k-1}))}{N_k - N_{k-1}} \to 0.$$

By the second assumptions of (3.1) and (3.2), this sequence of $n_k \geq 0$ do exist.

Now for W_k and n_k, let w_k be the word given in Lemma 3.2. Then the length a_k of w_k satisfies

$$a_k \leq (n_k + 2)(2 + \log W_k) = (n_k + 2)(2 + \log(\Psi(N_k) - \Psi(N_{k-1}))) = o(N_k - N_{k-1}) \quad (3.3)$$

and for any $x \in I_{n_k}(w_k)$,

$$W_k \leq \sum_{j=0}^{a_k-1} \varphi(T^j x) \leq W_k(1 + 2^{-n_k}). \quad (3.4)$$

Define t_k, ℓ_k to be the integers satisfying

$$N_k - N_{k-1} - a_k = t_k m + \ell_k,$$

for some $0 \leq \ell_k < m$.

Let w_k ($k \geq 1$) be given as the above. We define a Cantor subset of $E_\Psi(1)$ as follows.

Level 1 of the Cantor subset. Define

$$E_1 = \left\{ I_{N_i}(u_1, \cdots, u_{t_1}, 1^{t_1}, w_1) : u_i \in U, 1 \leq i \leq t_1 \right\}.$$

For simplicity, we use $I_{N_i}(U_1)$ to denote a general cylinder in E_1.

Level 2 of the Cantor subset. This level is composed by sublevels for each cylinder $I_{N_i}(U_1) \in E_1$. Fix an element $I_{N_i} = I_{N_i}(U_1) \in E_1$. Define

$$E_2(I_{N_i}(U_1)) = \left\{ I_{N_i}(U_1, u_1, \cdots, u_{t_2}, 1^{t_2}, w_2) : u_i \in U, 1 \leq i \leq t_2 \right\}.$$

Then

$$E_2 = \bigcup_{I_{N_i} \in E_1} E_2(I_{N_i}).$$
We claim that for all x.

From Level k to $k+1$. Fix $I_{N_k}(U_k) \in E_k$. Define

$$E_{k+1}(I_{N_k}(U_k)) = \left\{ I_{N_k+1}(U_k, u_1, \ldots, u_{t_k+1}, 1^{t_{k+1}}, w_{k+1}) : u_i \in U, 1 \leq i \leq t_{k+1} \right\}.$$

Then

$$E_{k+1} = \bigcup_{I_{N_k} \in E_k} E_{k+1}(I_{N_k}).$$

Up to now we have constructed a sequence of nested sets $\{E_k\}_{k \geq 1}$. Set

$$F = \bigcap_{k \geq 1} E_k.$$

We claim that $F \subset E(\Psi).$

In fact, for all $x \in F$, by construction, for each $k \geq 1$,

$$\sum_{n=N_k-1}^{N_k-1} \varphi(T^nx) \leq \sum_{n=N_k-1}^{N_k-1} \varphi(T^nx) + \sum_{n=N_k-1}^{N_k-1} \varphi(T^nx) + \sum_{n=N_k-1}^{N_k-1} \varphi(T^nx)$$

$$= t_k O(2^m) + t_k^1 + W_k (1 + O(2^{-n_k}))$$

$$= O \left(\frac{(N_k - N_{k-1})2^m}{m} \right) + (\Psi(N_k) - \Psi(N_{k-1}))(1 + O(2^{-n_k})).$$

Since $n_k \to \infty$ which implies $2^{-n_k} \to 0$ as $k \to \infty$, we have

$$\sum_{n=0}^{N_k-1} \varphi(T^nx) = \Psi(N_k) (1 + o(1)) + O \left(\frac{N_k2^m}{m} \right).$$

By the assumption $\Psi(n)/n \to \infty$ as $n \to \infty$, we then deduce

$$\sum_{n=0}^{N_k-1} \varphi(T^nx) = \Psi(N_k) + o(\Psi(N_k)),$$

Thus

$$\lim_{k \to \infty} \sum_{n=0}^{N_k-1} \varphi(T^nx) = 1. \quad (3.5)$$

While, for each $N_{k-1} < N \leq N_k$

$$\sum_{n=0}^{N_k-1} \varphi(T^nx) \leq \sum_{n=0}^{N_k-1} \varphi(T^nx) \leq \sum_{n=0}^{N_k-1} \varphi(T^nx).$$

So by the first assumption of (3.2), we deduce from (3.5) that

$$\lim_{n \to \infty} \frac{1}{\Psi(n)} S_n(x) = 1.$$

This proves $x \in E(\Psi(1))$ and hence $F \subset E(\Psi(1)).$

In the following, we will construct a Hölder continuous function from F to F_m. Recall that

$$F_m = \left\{ x \in (0, 1] : \epsilon_{km}(x) = 1, \text{ for all } k \geq 1 \right\}.$$
Define
\[
 f : F \rightarrow F_m \\
 x \mapsto y
\]
where \(y \) is obtained by eliminating the digits \(\{ (\epsilon_{N_k-\ell_k-a_k+1}, \ldots, \epsilon_{N_k}) \}_{k \geq 1} \) in the binary expansion of \(x \). Now we calculate the Hölder exponent of \(f \).

Take two points \(x_1, x_2 \in F \) closed enough. Let \(n \) be the smallest integer such that \(\epsilon_n(x_1) \neq \epsilon_n(x_2) \) and \(k \) be the integer such that \(N_k < n \leq N_{k+1} \). Note that by the construction of \(F \), the digits sequence
\[
 \{ (\epsilon_{N_k-\ell_k-a_k+1}, \ldots, \epsilon_{N_k}) \}_{k \geq 1} \text{ and } \{ \epsilon_{N_k+m} \}_{1 \leq t \leq t_{k+1}}
\]
are the same for all \(x \in F \). So we must have
\[
 N_k < n < N_{k+1} - \ell_k + 1. \tag{3.6}
\]
Since \(n \) is strictly less than \(N_{k+1} - \ell_{k+1} - a_{k+1} \) and \(\epsilon_{N_{k}+m}(x_1) = \epsilon_{N_{k}+m}(x_2) = 1 \) for all \(1 \leq t \leq t_{k+1} \), thus, at most \(m \) steps after the position \(n \), saying \(n', \epsilon_{n'}(x_1) = \epsilon_{n'}(x_2) = 1 \). So it follows that
\[
 |x_1 - x_2| \geq \frac{1}{2^{n+m}}.
\]

Again by the construction and the definition of the map \(f \), we have \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \) have common digits up to the position \(n-1-\ell_1-a_1-\cdots-\ell_k+a_k \). Thus, it follows
\[
 |f(x_1) - f(x_2)| \leq \frac{1}{2^{n-1-\ell_1-a_1-\cdots-\ell_k+a_k}}.
\]
Recall that \(\ell_k < m \) and \(a_1 + \cdots + a_k = o(N_k) \) (see (3.3)) and also that \(N_k/k \to \infty \) as \(k \to \infty \) (by (3.1)). We have
\[
 1 \geq \frac{n - 1 - (\ell_1 + a_1) - \cdots - (\ell_k + a_k)}{n + m} \geq \frac{n - 1 - km - o(N_k)}{n + m} = 1 + o(1),
\]
which implies that \(f \) is \((1-\eta)\)-Hölder for any \(\eta > 0 \). Thus
\[
 \dim_H F \geq (1-\eta) \dim_H F_m.
\]
By Lemma 3.3, we then have
\[
 \dim_H F \geq (1-\eta) \frac{m - 1}{m}.
\]
By the arbitrariness of \(\eta > 0 \) and letting \(m \to \infty \), we conclude that \(\dim_H E(\Psi) = 1 \). This finishes the proof. \(\square \)

Proof of Theorem 1.2. Observe that the Hausdorff dimensions of \(E_{\Psi}(\beta) \) are equal to that of \(E_{\Psi}(1) \) for all \(\beta > 0 \). We need only replace \(\Psi(n) \) by \(\beta \Psi(n) \). But it will not change the order of \(\Psi \) and all calculations are the same to that for \(E_{\Psi}(1) \).

To show \(\dim_H E_{\Psi}(1) = 1 \), we can apply Lemma 3.4 directly. If \(\Psi(n) = n \log n \), we can choose \(N_k = k^2 \). For \(\Psi(n) = n^a \) (\(a > 1 \)), we can also choose \(N_k = k^2 \). Suppose now \(\Psi(n) = 2^{n^\gamma} \) with \(0 < \gamma < 1/2 \). Let \(\delta > 0 \) be small such that
\[
 \frac{\gamma}{1-\gamma} + \delta \gamma < 1 \tag{3.7}
\]
which is possible since \(\gamma < 1/2 \). Take
\[
 N_k = \lfloor k^{\frac{\gamma}{1-\gamma} + \delta} \rfloor. \tag{3.8}
\]
Then we have
\[
 N_{k+1} - N_k \approx k^{\gamma + \delta}, \tag{3.9}
\]
and
\[\log(\Psi(N_{k+1}) - \Psi(N_k)) \approx \log(\Psi'(N_k)(N_{k+1} - N_k)) \]
\[\Rightarrow N_k^\gamma + \log(N_{k+1} - N_k) \approx N_k^\gamma. \]

Here we write \(A \approx B \) when \(A/B \to 1 \). This shows the validity of (3.1). Moreover,
\[\frac{\log(\Psi(N_{k+1}) - \Psi(N_k))}{N_{k+1} - N_k} \approx k^{\frac{\gamma+\gamma_0}{\gamma+\delta}} - k^{-\delta(1-\gamma)} \to 0 \ (k \to \infty). \]

Thus the second assumption of (3.2) is satisfied. At last, for the first assumption in (3.2), by (3.7)
\[\frac{\Psi(N_{k-1})}{\Psi(N_k)} = 2^{(k-1)\frac{n}{n+k} + \gamma - k\frac{n}{n+k} \gamma^\prime} \to 1. \]

Hence Lemma 3.4 applies.

Now suppose that \(\Psi(n) = 2^{n^\gamma} \) with \(1/2 \leq \gamma < 1 \). Let \(\beta > 0 \) be given. Then, by (2.1) we have for \(x \in E_{\Psi}(\beta) \), if \(x \) has binary expansion
\[x = [0^{n_1-1}10^{n_2-1} \cdots 0^{n_{\ell}-1}1 \ldots] \]
then
\[
\begin{aligned}
S_{n_1+n_2+\cdots+n_{\ell}}(x) &= \frac{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell}{2^{(n_1+n_2+\cdots+n_{\ell})^\gamma}} \to \beta, \\
S_{n_1+n_2+\cdots+n_{\ell+1}}(x) &= \frac{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell + 2^{n_{\ell+1}}}{2^{(n_1+n_2+\cdots+n_{\ell+1})^\gamma}} \to \beta.
\end{aligned}
\]

Since
\[2^{(n_1+n_2+\cdots+n_{\ell})^\gamma} \to 1, \]
by dividing the two limits of (3.10), we deduce that
\[\frac{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell + 2^{n_{\ell+1}} - 1}{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell} = 1 + \frac{2^{n_{\ell+1}} - 1}{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell} \to 1, \]
which implies that
\[\frac{S_{n_1+n_2+\cdots+n_{\ell+1}}(x)}{S_{n_1+n_2+\cdots+n_{\ell}}(x)} = 1 + \frac{2^{n_{\ell+1}} - 1}{2^{n_1} + 2^{n_2} + \cdots + 2^{n_{\ell}} - \ell} \to 1. \]

Combining with (3.10), we get
\[1 \leftarrow \frac{\Psi(n_1 + \cdots + n_{\ell+1})}{\Psi(n_1 + \cdots + n_{\ell})} = \frac{2^{(n_1+n_2+\cdots+n_{\ell+1})^\gamma}}{2^{(n_1+n_2+\cdots+n_{\ell})^\gamma}}. \]

Thus
\[\begin{aligned}
(n_1 + n_2 + \cdots + n_{\ell+1})^\gamma - (n_1 + n_2 + \cdots + n_{\ell})^\gamma &= (n_1 + n_2 + \cdots + n_{\ell})^\gamma \left(1 + \frac{n_{\ell+1}}{n_1 + n_2 + \cdots + n_{\ell}} \gamma^\prime - 1 \right) \\
&= \gamma n_{\ell+1} (n_1 + n_2 + \cdots + n_{\ell})^\gamma \to 0.
\end{aligned} \]

Therefore, for any \(\epsilon > 0 \), there exists \(k_0 \geq 1 \) such that for all \(k > k_0, \)
\[n_j < \epsilon (n_1 + n_2 + \cdots + n_{j-1})^{1-\gamma}. \]

Then for any \(k_0 < j \leq \ell \)
\[n_j < \epsilon (n_1 + n_2 + \cdots + n_{\ell})^{1-\gamma}. \]
This implies
\[
S_{n_1 + n_2 + \ldots + n_\ell}(x) = 2^{n_1} + 2^{n_2} + \ldots + 2^{n_\ell} - \ell \\
\leq M + \ell 2^{(n_1 + n_2 + \ldots + n_\ell)^{1-\gamma}} - \ell,
\]
with \(M := 2^{n_1} + \cdots + 2^{n_{\ell_0}} \). Thus we have
\[
\frac{S_{n_1 + n_2 + \ldots + n_\ell}(x)}{\Psi(n_1 + n_2 + \ldots + n_\ell)} < \frac{M + \ell 2^{(n_1 + n_2 + \ldots + n_\ell)^{1-\gamma}} - \ell}{2(n_1 + n_2 + \ldots + n_\ell)\gamma}. \tag{3.12}
\]
By observing \(n_j \geq 1 \), we deduce that the upper bound of (3.12) converges to 0 for \(1/2 \leq \gamma < 1 \), a contradiction to (3.10). Hence \(E_\Psi(\beta) \) is an empty set.

Suppose that \(\gamma \geq 1 \). Then by (2.1) we have for \(x \in E_\Psi(\beta) \)
\[
\frac{S_{n_1 + n_2 + \ldots + n_\ell}(x)}{\Psi(n_1 + n_2 + \ldots + n_\ell)} = \frac{2^{n_1} + 2^{n_2} + \ldots + 2^{n_\ell} - \ell}{2(n_1 + n_2 + \ldots + n_\ell)^\gamma} \rightarrow \beta,
\]
\[
\frac{S_{n_1 + n_2 + \ldots + n_\ell - 1}(x)}{\Psi(n_1 + n_2 + \ldots + n_\ell - 1)} = \frac{2^{n_1} + 2^{n_2} + \ldots + 2^{n_\ell} - \ell - 1}{2(n_1 + n_2 + \ldots + n_\ell - 1)^\gamma} \rightarrow \beta. \tag{3.13}
\]
However,
\[
\frac{2^{n_1} + 2^{n_2} + \ldots + 2^{n_\ell} - \ell}{2^{n_1} + 2^{n_2} + \ldots + 2^{n_\ell} - \ell - 1} \rightarrow 1 \quad \text{but} \quad \frac{2^{(n_1 + n_2 + \ldots + n_\ell)^\gamma}}{2(n_1 + n_2 + \ldots + n_\ell - 1)^\gamma} \geq 2,
\]
which is a contradiction. \(\square \)

4. The potential \(1/x \)

In fact, the techniques in Section 3 can be applied to the continuous potential \(g : x \mapsto 1/x \) on \([0, 1]\) which has a singularity at 0.

Proof of Theorem 1.3. We first note that if \(x \in (0, 1] \) has binary expansion \(x = [0^n1^* \ldots] \), then \(\varphi(x) = 2^n \) and
\[
2^n \leq g(x) \leq 2^n + 2^{n-s+1} = 2^n(1 + 2^{-s+1}). \tag{4.1}
\]

In Lemma 3.2, for an integer \(W \), and for any integer \(n \leq \log W \), we can construct instead of the words \(w = (10^{t_1-1}, 10^{t_2-1}, \ldots, 10^{t_r-1}) \), the following word
\[
w = (10^{t_1-1}s+1, 10^{t_2-1}s+1, \ldots, 10^{t_r-1}s+1).
\]

Then the length of the word satisfies
\[
|w| = \sum_{i=1}^p (t_i + s + 1) \leq p(t_1 + s + 1) \leq (n + 2)(\log W + s + 2). \tag{4.2}
\]

By (4.1), for any \(x \in I_{|w|}(w) \),
\[
W + s(n + 2) \leq \sum_{j=0}^{|w|-1} g(T^j x) \leq W(1 + 2^{-n}) \cdot (1 + 2^{-s}) + 2s(n + 2).
\]

For each \(k \geq 1 \), we still write
\[
W_k := \Psi(N_k) - \Psi(N_{k-1})
\]
and let \(n_k, s_k \) be a sequence of integers tending to \(\infty \) such that
\[
n_k \cdot \log \left(\frac{\Psi(N_k) - \Psi(N_{k-1})}{N_k - N_{k-1}} \right) \rightarrow 0, \tag{4.3}
\]
\[
\frac{n_k \cdot s_k}{N_k - N_{k-1}} \rightarrow 0. \tag{4.4}
\]
and

\[\frac{n_k \cdot s_k}{\Psi(N_k) - \Psi(N_k-1)} \rightarrow 0. \] \hspace{1cm} (4.5)

By (3.1) and (3.2), these two sequences of \(n_k \geq 0, s_k \geq 0 \) do exist.

Now for \(W_k \) and \(n_k, s_k \), let \(w_k \) be the word given as above. Then by (4.3) and (4.4), the length \(a_k \) of \(w_k \) satisfies

\[a_k \leq (n_k + 2)(\log W_k + s_k + 2) \]
\[= (n_k + 2)(\log(\Psi(N_k) - \Psi(N_k-1))) + s_k + 2) \] \hspace{1cm} (4.6)

and for any \(x \in I_{n_k}(w_k) \),

\[W_k + s_k(n_k + 2) \leq \sum_{j=0}^{N_k-1} g(T^j x) \]
\[\leq W_k(1 + 2^{-n_k}) \cdot (1 + 2^{-s_k}) + 2s_k(n_k + 2). \] \hspace{1cm} (4.7)

Hence by (4.5) we still have the same estimation:

\[\sum_{n=0}^{N_k-1} g(T^n x) = \Psi(N_k) + o(\Psi(N_k)) \]

and the rest of the proof is the same.

We can repeat the same arguments in Section 3 and show that for potential \(g \), the set \(E_\psi(\beta) \) is empty if \(\Psi(n) = 2^n \) (\(\gamma \geq 1/2 \)).

In fact, by definition, for \(x \in E_\psi(\beta) \), if \(x \) has binary expansion

\[x = [0^{n_1-1}10^{n_2-1} \cdots 0^{n_{\ell}-1}10^{n_{\ell+1}-1} \cdots], \]

then

\[\frac{S_{n_1+n_2+\cdots+n_\ell} g(x)}{\Psi(n_1+n_2+\cdots+n_\ell)} \rightarrow \beta, \quad \frac{S_{n_1+n_2+\cdots+n_{\ell+1}} g(x)}{\Psi(n_1+n_2+\cdots+n_{\ell+1})} \rightarrow \beta. \]

Thus

\[\frac{S_{n_1+n_2+\cdots+n_\ell} g(x)}{S_{n_1+n_2+\cdots+n_{\ell+1}} g(x)} \rightarrow 1. \]

Observing \(\varphi \leq g \leq 2\varphi \), we have

\[2^{n_{\ell+1}} \]
\[\frac{S_{n_1+n_2+\cdots+n_\ell} g(x)}{S_{n_1+n_2+\cdots+n_{\ell+1}} g(x)} \rightarrow 0, \]

which then implies

\[\frac{S_{n_1+n_2+\cdots+n_\ell} g(x)}{S_{n_1+n_2+\cdots+n_{\ell+1}} g(x)} \rightarrow 1. \]

By the definition of \(x \in E_\psi(\beta) \), we have

\[\frac{\Psi(n_1+n_2+\cdots+n_{\ell+1})}{\Psi(n_1+n_2+\cdots+n_\ell)} \rightarrow 1. \]

This further implies the same inequality with (3.11) and the rest of proof is the same by noting \(\varphi \leq g \leq 2\varphi. \) \(\square \)
REFERENCES

DONG HAN KIM, DEPARTMENT OF MATHEMATICS EDUCATION, DONGGUK UNIVERSITY-SEOUL, 30 PILDONG-RO 1-GIL, JUNG-GU, SEOUL, 04620 KOREA
E-mail address: kim2010@dongguk.edu

LINGMIN LIAO, LAMA, UNIVERSITÉ PARIS-EST CRÉTEIL VAL DE MARNE, 61, AVENUE DU GÉNÉRAL DE GAULLE 94010 CRÉTEIL CEDEX, FRANCE
E-mail address: lingmin.liao@u-pec.fr

MICHAŁ RAMS, INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, UL. ŚNIADECKICH 8, 00-656 WARSZAWA, POLAND
E-mail address: rams@impan.pl

BAO-WEI WANG, SCHOOL OF MATHEMATICS AND STATISTICS, HUZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, 430074 WUHAN, CHINA
E-mail address: bwei_wang@hust.edu.cn