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Abstract—We review some ergodic and topological aspects of robustly transitive partially
hyperbolic diffeomorphisms with one-dimensional center direction. We also discuss step skew-
product maps whose fiber maps are defined on the circle which model such dynamics. These
dynamics are genuinely nonhyperbolic and exhibit simultaneously ergodic measures with pos-
itive, negative, and zero exponents as well as intermingled horseshoes having different types
of hyperbolicity. We discuss some recent advances concerning the topology of the space of
invariant measures and properties of the spectrum of Lyapunov exponents.
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1. INTRODUCTION

The paper [30] opens with the following general question:
• To what extent is the behavior of a generic dynamical system hyperbolic?

The authors of [30] observe that a substantial number of problems in dynamical systems theory are
just reformulations of this question. In the beginning of the theory in the late 1960s, the paper by
Abraham and Smale [2] showed that hyperbolic systems are not dense in the space of dynamical
systems. Indeed, there are open sets in the space of diffeomorphisms consisting of nonhyperbolic
ones. These findings showed the necessity of weaker notions of hyperbolicity and lead to the ones
of nonuniform hyperbolicity due to Pesin [42] and partial hyperbolicity [32], among others.

Consider a differentiable dynamical system F : M → M defined on a closed and compact man-
ifold M . Recall that a closed and F -invariant transitive (existence of a point in Γ whose orbit is
dense in Γ) set Γ ⊂ M is hyperbolic if there exists a dF -invariant splitting Es ⊕ Eu = TΓM of the
tangent bundle and constants C > 0 and λ > 1 such that for every x ∈ Γ and every n ≥ 0 we have

‖dFn
x (v)‖ ≤ Cλn‖v‖ ∀ v ∈ Es

x and ‖dF−n
x (w)‖ ≤ Cλn‖w‖ ∀w ∈ Eu

x .

Any variation of hyperbolicity is based on the notion of Lyapunov exponents. Recall that a point
x∈M is called Lyapunov regular if there exist a positive integer s(x), numbers χ1(x)< . . . <χs(x)(x),
and a dF -invariant splitting TxM =

⊕s(x)
i=1 Ei

x of the tangent space at x such that for all i =
1, . . . , s(x) and v ∈ Ei

x \ {0} we have

lim
n→∞

1

n
log‖dFn

x (v)‖ = χi(x), (1.1)

and these numbers χ1(x) < . . . < χs(x)(x) are called the Lyapunov exponents of x.
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TOPOLOGICAL AND ERGODIC ASPECTS 99

By the Oseledets multiplicative ergodic theorem (see [40]), given an F -invariant ergodic probabil-
ity measure μ, the set of Lyapunov regular points has full measure and s(·) = s(μ) and χi(·) = χi(μ),
i = 1, . . . , s(μ), are constant μ-almost everywhere; the latter numbers are called the Lyapunov expo-
nents of μ. If there is � such that χ�(μ) = 0, then the measure μ is called nonhyperbolic; otherwise
it is called hyperbolic. We call the cardinality of negative Lyapunov exponents of μ its (stable) in-
dex. When talking about nonhyperbolic measures, we always assume ergodicity and hence exclude
nontrivial convex combinations of ergodic measures. The easiest examples of ergodic measures are
the ones supported on a periodic orbit (we will call such measures simply periodic). The index of
a hyperbolic periodic orbit is the index of the (unique) invariant measure supported on its orbit.
Below we will call a measure nontrivial if its support is uncountable; hence such a measure cannot
be periodic. The easiest example of a nonhyperbolic measure is a periodic one supported on the
orbit of a nonhyperbolic periodic point. A hyperbolic periodic orbit which has both positive and
negative exponents will also be called a saddle.

The discussion above leads to the following question:

• To what extent does ergodic theory detect nonhyperbolic dynamics?

This is just a reformulation of the opening question above (though note that the term “nonhyperbolic
dynamics” is vague and used differently in different contexts). The answer to this question is
negative, as there are examples of nonhyperbolic systems (in the sense that the nonwandering set is
not hyperbolic) for which all ergodic measures are hyperbolic with Lyapunov exponents uniformly
bounded away from zero [4, 16]. Note that these examples are fragile in the sense that they
can be destroyed by perturbations. On the other hand, by the Kupka–Smale genericity theorem
(see, for instance, [41, Ch. 3]), generically1 periodic points are all hyperbolic. Hence, considering
nonhyperbolic periodic measures, one can get systems with nonhyperbolic ergodic measures only
densely in the complement of the hyperbolic ones. Thus, to go beyond dense subsets, one needs
to investigate nonhyperbolic measures which are not periodic. This was first done in [30], where
the method of periodic approximations was introduced to construct nontrivial ergodic measures as
weak∗ limits of periodic ones.

In dimension strictly greater than 2 one needs to take into account that a priori different types of
hyperbolicity may coexist together with nonhyperbolicity. Indeed, one may have hyperbolic periodic
orbits of different stable indices (dimensions of the stable bundle) which are robustly contained in
the same transitive set (existence of a dense orbit); this leads to intermingled types of hyperbolicity
in the same transitive set. For instance, this is exactly what happens in the dynamics analyzed
in [30].

Having this in mind, we rephrase the above question:

• To what extent does ergodic theory distinguish the different types of hyperbolicity in nonhyper-
bolic dynamics?

In what follows we will restrict ourselves to systems which are transitive in the whole ambience
(this prevents the existence of attractors and repellers). In this setting, the set of ergodic mea-
sures Merg will split into several disjoint components, which will be analyzed separately (see (2.1)).

2. PARTIALLY HYPERBOLIC DYNAMICS

At the present state of the art, to advance in answering the above questions, we need to assume
more structure on the dynamics. We have to require the existence of a globally defined splitting
of the tangent space into continuously varying invariant subbundles (a dominated splitting) which

1A generic property is a property satisfied on a residual subset, that is, a set which contains a countable intersection
of open and dense subsets.
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100 L.J. DÍAZ et al.

as a consequence incorporates the subspaces of the Oseledets splitting. In more specific terms, we
will require that the dynamical system is partially hyperbolic having three such bundles TM =
Ess ⊕ Ec ⊕ Euu, where Ess is uniformly contracting and Euu is uniformly expanding. Hence,
zero Lyapunov exponents are automatically associated with the central bundle Ec. The exponent
associated with Ec will be simply called the central exponent. We denote by PH1(M) the set of
C1 diffeomorphisms defined on a compact closed manifold M having a partially hyperbolic splitting
as above with three nontrivial directions, the central one having dimension 1.2

In what follows we will consider F : M → M a C1 diffeomorphism of a Riemannian manifold
which is partially hyperbolic and transitive. We will assume that the dynamics is robustly transi-
tive, robustly nonhyperbolic, and there is some F -invariant compact closed curve γ = F (γ). The
latter property also turns out to be robust, by normal hyperbolicity. We denote this open set by
RTPH1(M) (here we consider the uniform topology in the space of C1 diffeomorphisms). Note that
this implies that the curve γ is tangent to Ec, and we refer to it as a compact central leaf. Note that
the robust nonhyperbolicity hypothesis excludes pathological cases such as that of diffeomorphisms
on T

3 being direct products of an Anosov diffeomorphism on T
2 and an irrational rotation. Note

that for F ∈ RTPH1(M) the set of ergodic measures Merg splits into three disjoint components

Merg = Merg,<0 ∪Merg,0 ∪Merg,>0, (2.1)

where the measures in Merg,0 are nonhyperbolic and those in Merg,<0 and Merg,>0 are hyperbolic.
Further, the measures in Merg,<0 have dimEss + 1 negative and dimEuu positive exponents, and
the measures in Merg,>0 have dimEuu + 1 positive and dimEss negative exponents.

2.1. Hyperbolic and nonhyperbolic measures. First observe that for a C1 open and dense
subset in RTPH1(M), there exist hyperbolic periodic points which are contracting in the central
direction and hyperbolic periodic points which are expanding in the central direction. Besides
that there are horseshoes which are contracting and horseshoes which are expanding in the central
direction, respectively. Hence there are also hyperbolic ergodic measures with positive entropy in
the sets Merg,<0 and Merg,>0. Indeed, in this setting the existence of a hyperbolic ergodic measure
with positive entropy implies the existence of horseshoes and hence of hyperbolic periodic orbits
with the corresponding type by Katok’s horseshoe construction (see [34, 26]).

The existence of nonhyperbolic measures is a bit more subtle. Indeed, densely in RTPH1(M)
there are diffeomorphisms with nonhyperbolic periodic orbits and hence with trivial nonhyperbolic
measure (see [3]).3 Since generic diffeomorphisms have hyperbolic periodic orbits, one can obtain
at most a dense subset in RTPH1(M) with trivial nonhyperbolic measures. Hence, to get larger
sets of diffeomorphisms with nonhyperbolic measures, it is necessary to investigate the occurrence
of nontrivial nonhyperbolic measures. In [30] the authors introduce the method of periodic ap-
proximations that produces a nontrivial nonhyperbolic (ergodic) measure which is a weak∗ limit of
hyperbolic periodic measures, and they apply it to some specific step skew-product examples. This
method builds on the existence of controlled transitions between saddles of different indices. Using
it, the authors of [24, 7, 17] obtained a C1-generic set of C1 diffeomorphisms with nonhyperbolic
nontrivial (ergodic) measures (see also the variant in [12]). With this method, some specific open
sets of robustly nonhyperbolic diffeomorphisms defined on T

3 with such measures are provided
in [35]. A different approach, using the so-called flip-flop configuration which relies on the concept

2In what follows, for simplicity, we will assume that the splitting is defined on the whole ambient space; a similar
approach can be adopted when the splitting is only locally defined.

3First note that in a C1 open and dense subset in RTPH1(M), the diffeomorphisms have periodic points. On
the other hand, recall that the set F1(M) is defined as the C1 interior of the set of diffeomorphisms which have
only hyperbolic periodic orbits. By [3], the set F1(M) is contained in the set of Axiom A diffeomorphisms. The
claim now follows by observing that the diffeomorphisms in RTPH1(M) are not Axiom A.
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TOPOLOGICAL AND ERGODIC ASPECTS 101

of a blender (also explained below), was followed in [5] to prove that there is an open and dense
set of diffeomorphisms in RTPH1(M) that have nonhyperbolic measures with positive entropy.
Indeed, it is shown that there is a compact invariant set with positive topological entropy consisting
of points whose central Lyapunov exponent is zero, and hence we can apply the variational principle
in [52] to get such measures. We remark that the method of periodic approximations can only lead
to measures with zero entropy (see [36]).

Summarizing, we say that in an open and dense subset of RTPH1(M) each of the components
in (2.1) is nonempty and contains measures with positive entropy. Therefore, a natural question
is what type of behavior (negative, zero, or positive exponent) predominates. In our context, it
is natural to quantify this in terms of entropy. Here we have two ways of doing so. First, given
a central Lyapunov exponent α in the possible spectrum of all exponents, determine the maximal
entropy of ergodic measures with that exponent:

sup{hμ(F ) : μ ∈ Merg, χc(μ) = α}. (2.2)

Or, given an exponent, determine the topological entropy of the set of Lyapunov regular points with
that exponent:

htop(F,L(α)), where L(α)
def
= {x : χc(x) = α}. (2.3)

The former is related to restricted variational principles and implicitly determines the latter when
one performs a multifractal analysis (see Theorem 3.5 below). As there is an intimate relation
between ergodic measures and the corresponding generic points, in a reasonable context we expect
that the two quantities introduced above coincide (see Subsection 3.3 for a full discussion).

2.2. Invariant foliations. Let us finally briefly describe geometrical features of the diffeo-
morphisms in RTPH1(M) which are also essential to study the ergodic properties discussed above
and the level sets (2.2) and (2.3). In particular, they motivate the model we will study in Section 3.
The existence of the partially hyperbolic splitting TM = Ess ⊕ Ec ⊕ Euu implies that there are
invariant foliations F ss and Fuu tangent to Ess and Euu and called the strong stable and strong un-
stable foliations, respectively (see [32]). By [9, 46], because by assumption Ec is one-dimensional and
there is a compact central leaf, there is a C1 open and dense subset ORTPH1(M) of RTPH1(M)
consisting of diffeomorphisms for which both foliations are minimal (i.e., every leaf of the foliation
is dense in the whole space). A special case occurs when there is a center foliation (tangent to Ec)
whose leaves are all compact. Such systems are topologically of skew-product type. An important
example which still inspires many open questions is the example in [47].4 We will further discuss
this topic in Subsection 4.1.

The above geometric features are in the realm of the large family of step skew products we
introduce and discuss in Section 3. On the other hand, the properties of this family seem to capture
the essential dynamical properties of diffeomorphisms in RTPH1(M) that allow us to study the
level sets above and several ergodic properties as well as to analyze the topology of the space of
invariant measures. The latter will be further discussed in the next subsection.

2.3. Topology of the space of measures: Framework. Let us now have a look at the
topology of the space of Borel probability measures M invariant under a continuous map of a compact
metric space. Equipped with the weak∗ topology, it is a compact metrizable topological space [52,
§ 6.1]. We denote by Merg ⊂ M the subset of ergodic measures. Recall that M is a nonempty

4For example, in [28] the authors ask if a general ergodic volume-preserving diffeomorphism sufficiently C1 close
to a partially hyperbolic linear automorphism L : T3 → T

3 given by L(x, y, z) = (A(x, y), z), with A a linear
Anosov diffeomorphism, has dense ergodic measures. This would include the systems in [47].
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102 L.J. DÍAZ et al.

Choquet simplex (see [52, § 6.2]). In particular, it is convex and compact. The extreme points of M
are the ergodic measures.

In general, when one studies the topology of M, there are many properties that can be of interest
such as density and entropy density of ergodic measures (in M) as well as connectedness of the set
of ergodic measures. The density of ergodic measures has very strong immediate consequences.
Indeed, then M is either a singleton (the map is uniquely ergodic) or a nontrivial Choquet simplex
in which extreme points are dense, and one then calls M a Poulsen simplex. Poulsen [44] was the first
who constructed an example of a space with such properties; by [38] any two metrizable nontrivial
simplices with dense extreme points are equivalent up to affine homeomorphisms, and hence one can
regard M as the Poulsen simplex. Note that, for example, Merg is then arcwise connected (see [38,
Sect. 3, property 4]). To conclude, recall that one says that ergodic measures are entropy dense if
for any μ ∈ M and any ε > 0, any neighborhood of μ contains an ergodic measure ν such that
hν(F ) > hμ(F )− ε.5

Density of ergodic (even periodic) measures was first shown in [48, 49] under the assumption that
the map satisfies the periodic specification property (in [50] connectedness was concluded for shift
spaces, which is however an immediate consequence of density by [38], as explained above). Recall
that for smooth dynamical systems, periodic specification holds for any basic set of an Axiom A
diffeomorphism (see [13]). In a more general context, in [1] it was shown that for Λ ⊂ M being an
isolated nontrivial transitive set of a C1-generic diffeomorphism, periodic measures are dense (and
also have many further properties, see [27]). Below we will give more details on two more recent
results [11, 31].

All known results on properties such as (entropy) density and connectedness involve approxi-
mations of hyperbolic ergodic measures by either periodic measures or Markov ergodic measures
supported on horseshoes. We will see that this can also be achieved in some nonhyperbolic context,
in particular when the set of ergodic measures contains measures of different indices as well as
nonhyperbolic measures.

Let us observe that connectedness and (entropy) density of ergodic measures are not always guar-
anteed. Note that [27] provides a number of counterexamples in shift spaces, though in the following
we would like to focus on partially hyperbolic systems. Therefore, we point out the porcupine-like
examples of compact invariant sets of partially hyperbolic transitive C1 diffeomorphisms studied
in [25, 37, 20, 21] which have a spectrum of central Lyapunov exponents with at least two disjoint
components, and at least two connected components of ergodic measures. In particular, ergodic
measures are not dense.

2.4. Topology of the space of measures: Intersection and homoclinic classes. To
understand the topology of the space M, it proves useful to consider the so-called intersection and
homoclinic classes of hyperbolic periodic points. To state the results more precisely, let us briefly
define them. We say that two hyperbolic periodic points of the same index are homoclinically related
if the invariant sets of their orbits meet cyclically (note that in our partially hyperbolic setting with
one-dimensional center transversality is not involved; see Section 5 for details). Note that this is an
equivalence relation on the set of hyperbolic periodic points, and by intersection classes we mean
the equivalence classes for the homoclinic relation. Given a hyperbolic periodic point P , we denote
by Int(P ) its intersection class.

The intersection class of a hyperbolic periodic point was first considered in [39], where
it was called an h-class and used to obtain the so-called spectral decomposition of Axiom A

5Here our definition follows, for example, [43] and is in principle slightly more general than the one in [31]. Note
however that by [19] any C1 diffeomorphism F which is partially hyperbolic with one-dimension central bundle
is h-expansive and hence by [14] the entropy map μ �→ hμ(F ) is upper semi-continuous. Hence, in our setting
the two definitions coincide.
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TOPOLOGICAL AND ERGODIC ASPECTS 103

diffeomorphisms. With this terminology, a homoclinic class (called h-closure in [39]) is the closure
of the intersection class it contains. Note that a homoclinic class is always a transitive invariant
set. Moreover, a homoclinic class of a hyperbolic periodic point may contain periodic points which
are not homoclinically related to it and, consequently, may contain several distinct intersection
classes. Indeed, a homoclinic class which is not hyperbolic may support ergodic measures of dif-
ferent indices and/or nonhyperbolic ergodic measures [30, 24, 5]. Moreover, there are examples of
homoclinic classes which are not hyperbolic, whose ergodic measures are all hyperbolic, but which
simultaneously support ergodic measures with negative and positive central Lyapunov exponent
(see [25, 37]).

We call a (not necessarily ergodic) measure μ ∈ M hyperbolic with negative central Lyapunov
exponent if μ-almost every point has a negative central Lyapunov exponent and denote by M<0

the set of all such measures. Similarly, we define a measure to be hyperbolic with positive central
Lyapunov exponent and introduce M>0. By convergence in the weak∗ topology and in entropy
we mean that the sequence of measures converges in the weak∗ topology and their entropies also
converge to the entropy of the limit measure.

By [8, Theorem E], the C1 open and dense subset ORTPH1(M) of RTPH1(M) above can be
chosen to consist of diffeomorphisms such that any two saddles with the same index are homoclin-
ically related, that is, share the same intersection class. Thus, for F ∈ ORTPH1(M) there are
precisely two intersection classes, which we will denote by Int<0 and Int>0, where

Int<0
def
=

{
P ∈ M : P hyperbolic periodic point, χc(P ) < 0

}

and Int>0 is defined analogously. Moreover, each of those two sets is dense in M . Given a hyperbolic
(not necessarily ergodic or periodic) measure μ ∈ M, we define its intersection class, denoted by
Int(μ), as the intersection class of hyperbolic periodic orbits such that μ is accumulated by periodic
measures from that class. Hence, for F ∈ ORTPH1(M) either Int(μ) = Int<0 or Int(μ) = Int>0.
By [11], the intersection class of μ is indeed well-defined.

We can finally formulate two results which address the topics mentioned above. We briefly
restate them in our more specific setting of RTPH1(M). Note that a key argument to show
that an ergodic hyperbolic measure μ is accumulated by hyperbolic periodic measures is Katok’s
horseshoe construction. Note that this method holds for either C1+α diffeomorphisms (see [34])
or C1 diffeomorphisms which have a dominated splitting (hence, in particular, for RTPH1(M);
see [26]) and note that this construction enables approximation in the weak∗ topology and en-
tropy.

First, the question of density of ergodic measures in M is partially answered in [11] by showing
that for F ∈ RTPH1(M) every μ ∈ M<0 (not necessarily ergodic) is approached in the weak∗
topology by ergodic measures if, and only if, almost all ergodic measures in the ergodic decomposi-
tion of μ (with respect to the corresponding distribution supported on the set of ergodic measures)
share one intersection class (necessarily, μ must have the same index as the hyperbolic periodic
orbits of that class). As a consequence, for F ∈ ORTPH1(M), we have that ergodic measures are
dense in M<0 and M>0. The structure of M0, however, seems to be much more complicated.

Second, by [31], given F ∈ ORTPH1(M) and a saddle P of F , the set of ergodic measures
supported on Int(P ) with the same index as P is arcwise connected. Observe that in [31] the
authors originally assume C1+α to apply Katok’s result, which can be replaced by C1 plus partial
hyperbolicity as explained above. Another crucial assumption is that Int(P ) is isolated (observe that
this guarantees that approximating measures stay in the same space of measures as μ). Note that in
our setting this is automatically guaranteed since the entire ambient space M is a homoclinic class.
One further assumption is that any two saddles with the same index are homoclinically related,
which also holds in our case.
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3. STEP SKEW-PRODUCT MODEL

We now turn to the step skew-product setting. For simplicity, we restrict ourselves to a setting
with two symbols only. Let σ : Σ → Σ be the usual shift map on the space Σ = {0, 1}Z of two-sided
sequences, equipped with the standard metric. Consider C1 diffeomorphisms f0, f1 : S

1 → S
1 and

the associated step skew product

F : Σ× S
1 → Σ× S

1, F (ξ, x) = (σ(ξ), fξ0(x)), where ξ = (ξi)i∈Z. (3.1)

We denote by SP1(Σ × S
1) the family of maps F as in (3.1) and call f0 and f1 also their fiber maps.

As motivated in Section 2 (see also the discussions in [29, 33]), a step skew product can be seen
as a model of a particular example of a partially hyperbolic diffeomorphism with compact center
leaves (homeomorphic to circles).

Before describing precisely our setting, let us introduce some notation. Given a sequence ξ =

(ξi)i∈Z ∈ Σ, we write ξ = ξ− . ξ+, where ξ− = (. . . ξ−1) ∈ Σ− def
= {0, 1}−N and ξ+ = (ξ0ξ1 . . .) ∈

Σ+ def
= {0, 1}N0 are the corresponding one-sided infinite sequences. We also consider the cylinders

[ηk . . . ηk+r]
def
=

{
ξ = (ξi)i∈Z : ξi = ηi, i = k, . . . , k + r

}
,

where r ≥ 0, and define the cylinders [ξ− . ξ0 . . . ξr] and [ξ−r . . . ξ−1 . ξ
+] in the natural way.

Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0...ξn]
def
= fξn ◦ . . . ◦ fξ1 ◦ fξ0 and f[ξ−m...ξ−1 . ]

def
=

(
fξ−1 ◦ . . . ◦ fξ−m

)−1
=

(
f[ξ−m...ξ−1]

)−1
.

We can naturally define the central Lyapunov exponent of a point X = (ξ, x) by

χc(X)
def
= lim

n→∞
1

n
log

∣∣f ′
[ξ0...ξn−1]

(x)
∣∣ = lim

n→∞
1

n

n−1∑
k=0

log
∣∣f ′

ξk

(
f[ξ0...ξk−1](x)

)∣∣,

whenever the limit exists, which is nothing but a Birkhoff average of a continuous function (with
respect to F ). If the step skew product F is regarded as a model of a certain partially hyperbolic
diffeomorphism, this exponent corresponds to some Lyapunov exponent in (1.1).

We will require that the fiber maps f0 and f1 of the map F satisfy Axioms CEC+ and Acc+,
that is, there is a closed interval J+ ⊂ S

1, called a forward blending interval, with the following
properties:

Axiom CEC+(J+) (controlled expanding forward covering relative to J+). There exist pos-
itive constants K1, . . . ,K5 such that for every interval H ⊂ S

1 intersecting J+ and satisfying the
inequality |H| < K1 the following conditions hold:

• (controlled covering) there exists a finite sequence (η0 . . . η�−1) for some positive integer � ≤
K2

∣∣log|H|
∣∣+K3 such that

f[η0... η�−1](H) ⊃ B(J+,K4),

where B(J+, δ) is the δ-neighborhood of the set J+;
• (controlled expansion) for every x ∈ H we have

log
∣∣(f[η0... η�−1]

)′
(x)

∣∣ ≥ �K5.

We let
O+(x)

def
=

⋃
n≥0

⋃
(θ0...θn−1)

f[θ0...θn−1](x).
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TOPOLOGICAL AND ERGODIC ASPECTS 105

Axiom Acc+(J+) (forward accessibility relative to J+).

O+(int J+) =
⋃

x∈int J+

O+(x) = S
1.

Analogously, F satisfies Axioms CEC− and Acc− if there is a closed interval J− ⊂ S
1, called

a backward blending interval, such that the inverse maps f−1
0 and f−1

1 satisfy Axioms CEC+ and
Acc+ (with J−).

The overall assumption for our consideration is transitivity.
Axiom T (transitivity). There is a point x ∈ S

1 such that the sets O+(x) and O−(x) are
both dense in S

1.
In what follows we denote by SP1

nh(Σ× S
1) the subset of SP1(Σ × S

1) of skew products satisfy-
ing Axioms CEC+(J+), Acc+(J+), CEC−(J−), Acc−(J−), and T for some intervals J+ and J−.
Under these assumptions it is possible to choose a common blending interval (see [22, Sect. 2.2] for
a discussion about relations between the choice of (common) blending intervals and transitivity).

Lemma 3.1 (common blending interval [22, Lemma 2.3]). Let F ∈ SP1
nh(Σ × S

1). Then for
every x ∈ S

1 and every δ sufficiently small the interval J = B(x, δ) satisfies Axioms CEC+(J),
Acc+(J), CEC−(J), and Acc−(J).

Returning to our setting, for maps in SP1
nh(Σ × S

1) one can define homoclinic relations and
intersection classes as in Subsection 2.4 (for details see Section 5 below). By Proposition 5.1, there
are precisely two intersection classes:

Int<0
def
=

{
P ∈ Σ× S

1 : P hyperbolic periodic point, χc(P ) < 0
}

and the analogously defined set Int>0. Moreover, we have

Int<0 = Int>0 = Σ× S
1 = Homoclinic class(Q), (3.2)

where Q is any hyperbolic periodic point in Σ× S
1. Below we will conclude that each intersection

class corresponds to one connected component of ergodic measures. Given a hyperbolic ergodic
(not necessarily periodic) measure μ ∈ M, we define its intersection class, denoted by Int(μ), as in
Subsection 2.4. By Proposition 5.1, either Int(μ) = Int<0 or Int(μ) = Int>0.

3.1. Hyperbolic measures. The discussion in Subsection 2.4 can also be adapted to the
set SP1(Σ × S

1) (see [22, Sect. 3]). The following result is a version of [11, Theorem 2] and [31,
Theorems 1.1, 1.4] for SP1

nh(Σ× S
1).

Theorem 3.2. Let F ∈ SP1
nh(Σ × S

1). Every measure μ ∈ M<0 is accumulated by measures
νn ∈ Merg,<0 in the weak∗ topology and Int(μ) = Int<0. Moreover, every measure μ ∈ Merg,<0 is
accumulated by measures νn ∈ Merg,<0 in the weak∗ topology and in entropy. The analogous result
is true for M>0 and Merg,>0, respectively.

In particular, each of the sets Merg,<0 and Merg,>0 is arcwise connected.
The first of the above-stated results was shown in the case of a C1 diffeomorphism with a

dominated splitting E ⊕ F in [11], and the above statement is a translation to our setting (we recall
again that the isolation condition is satisfied since we study the dynamics on the entire ambient
space Σ × S

1). We point out that the essential ingredients in [11] are the C1 dominated Pesin
theory as well as the Kingman subadditive and the maximal ergodic theorems, which all have
their natural translation to our setting. We refrain from repeating this part of the proof. To see
that Merg,<0 is arcwise connected, we follow the steps of proof in [31]. In this paper the C1+α-
regularity of the diffeomorphisms is used only to apply Katok’s result for approximating an ergodic
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hyperbolic measure by hyperbolic periodic measures. As mentioned before, this also holds true for
a C1 diffeomorphism with a dominated splitting E ⊕ F (see [26]) and has its natural translation to
our setting. The two main properties assumed in [31] are as follows:

(i) every pair of hyperbolic periodic points of the same stable index is homoclinically related
(true by Proposition 5.1), and

(ii) the homoclinic class is isolated (true because of (3.2)).

However, we prefer to sketch the argument. Assume that μ0, μ1 ∈ Merg,<0. Then μi is accumulated
by a sequence of hyperbolic periodic measures νin ∈ Merg,<0 supported on the orbits of hyperbolic
periodic points P i

n, i = 0, 1. Since P 0
1 and P 1

1 are homoclinically related, there exists a continuous
path μ0 : [1/3, 2/3] → Merg,<0 joining the measures ν01 and ν11 . For any pair of measures ν0n, ν

0
n+1

and any neighborhood U of their convex combination {sν0n + (1− s)ν0n+1, s ∈ [0, 1]}, one can choose
a basic set Γ0

n such that all measures supported on it are contained in U . Hence, in particular, there
exists a continuous path μ0

n : [1/3
n+1, 1/3n] → Merg,<0 ∩ U joining the measure ν0n with ν0n+1. The

same applies to the measures ν1n, defining paths μ1
n : [1− 1/3n, 1 − 1/3n+1] → Merg,<0 which stay in

neighborhoods converging to μ1. Defining μ∞|(0,1) : (0, 1) → Merg,<0 by concatenating the domains
of those paths, we complete the definition of the path μ∞ by letting μ∞(0) = limn→∞ μ0

n(1/3
n) and

μ∞(1) = limn→∞ μ1
n(1− 1/3n).

3.2. Nonhyperbolic ergodic measures. For nonhyperbolic ergodic measures, the above
ergodic approximation methods do not apply in general. However, in our setting, for a step skew
product in SP1

nh(Σ× S
1), the special orbit structure enables us to somehow extend these methods.

The following was shown in [22].

Theorem 3.3. Let F ∈ SP1
nh(Σ × S

1). Every measure in Merg,0 is accumulated by measures
in Merg,<0 in the weak∗ topology and in entropy and by measures in Merg,>0 in the weak∗ topology
and in entropy.

In particular, any such measure is arcwise connected with any ergodic measure in Merg,<0 and
in Merg,>0.

The rough idea of the proof of the above result is to first follow the essential ingredients in
Katok’s horseshoe construction (see [34; 26; 22, Sect. 3]), that is, given an ergodic measure, find
sufficiently many orbits (whose number growths roughly exponentially with a factor given by the
entropy hμ(F )) whose (noninvariant) orbital measures roughly approach μ in the weak∗ topology.
The second ingredient is, based on the special orbit structure of our maps, to choose so-called
skeletons which connect the previously obtained orbit pieces to almost recurrent orbits, which can
be shadowed by periodic ones. The main issue is to carefully control distortion (recall that we only
assume that the maps are C1 and that we shadow orbits which roughly have a central Lyapunov
exponent equal to zero). This collection of hyperbolic (with exponent close to zero) periodic orbits
allows to construct horseshoes; the only obstacle in this final step is that they have periods which
can vary in between some numbers, which is unavoidable because the “orbit-gluing” step is only
achieved by the topological constraints (in particular, guaranteed by Axioms Acc±). To bypass
this problem, we construct so-called multi-variable-time horseshoes. This way we construct by hand
horseshoes which support only measures which are weak∗ close to μ and whose entropy is close to μ.

Theorems 3.2 and 3.3 immediately imply the following result.

Corollary 3.4. Let F ∈ SP1
nh(Σ× S

1). Then Merg is arcwise connected.

3.3. Entropies of the spectrum of Lyapunov exponents. We will now answer the ques-
tion raised in Section 2 as to what type of behavior (negative, zero, or positive central exponent)
predominates? We will do this in terms of entropy.
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Fig. 1. Possible shapes of entropies E(α). The left graph occurs under the assumption of proximality.

Taking first an orbitwise point of view when studying the sets L(α) as in (2.3), we obtain the
following multifractal decomposition:

Σ× S
1 =

⋃
α∈R

L(α) ∪ Lirr,

where Lirr is the set of points where the central Lyapunov exponent is not well-defined (the limit
does not exist). Note that each level set L(α) is nonempty in some range of α which decomposes
into three natural nonempty parts

{α : L(α) �= ∅} = [αmin, 0) ∪ {0} ∪ (0, αmax].

It is easy to verify that the maximum and minimum are indeed attained. As an immediate con-
sequence of the fact that any pair of hyperbolic periodic orbits with the same stable index is
homoclinically related (and hence is contained in a common horseshoe), we find that for every
α ∈ (αmin, 0) ∪ (0, αmax) there exists an ergodic measure with positive entropy and central Lyapunov
exponent equal to α. The corresponding result for α = 0 is a consequence of [5]. We will determine
the “size” of those level sets in terms of topological entropy. Since these sets are invariant but in
general noncompact, we will rely on the general concept of topological entropy htop introduced by
Bowen [15].

The following result from [23] now makes a connection to the above via restricted variational
principles for the quantity (2.2), and Fig. 1 illustrates the theorem.

Denote by hμ(F ) the entropy of a measure μ. Recall that the system of fiber maps {f0, f1} is
proximal if for every x, y ∈ S

1 there exists at least one sequence ξ ∈ Σ such that |fn
ξ (x)− fn

ξ (y)| → 0
as |n| → ∞. Note that the system is proximal if, for example, f0 is a Morse–Smale map whose
nonwandering set contains only one attractor and one repeller and f1 is an irrational rotation (see
also Proposition 4.2 below).

Theorem 3.5. For every α ∈ [αmin, αmax] we have L(α) �= ∅. Moreover, for every α ∈
(αmin, 0) ∪ (0, αmax) we have

htop(L(α)) = sup
{
hμ(F ) : μ ∈ Merg, χc(μ) = α

}
, (3.3)

the function α �→ htop(L(α)) is continuous on [αmin, αmax], and htop(L(0)) > 0.
There exist (finitely many) ergodic measures μ+ and μ− of maximal entropy hμ±(F ) = log 2

and with χc(μ−) < 0 < χc(μ+). Moreover, under the proximality assumption, there exist unique
ergodic F -invariant probability measures μ− ∈ Merg,<0 and μ+ ∈ Merg,>0 of maximal entropy
hμ±(F ) = log 2 and we have

htop(L(α−)) = htop(L(α+)) = log 2, htop(L(α)) < log 2 for all α �= α−, α+,

where α− = χc(μ−) and α+ = χc(μ+).
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Assuming proximality, one can also show (see [23]) that no measure which is a nontrivial convex
combination of the two ergodic measures of maximal entropy is (simultaneously) a weak∗ and in-
entropy limit of ergodic measures.

We note that in [45] in a somewhat similar setting the authors obtain the finiteness of entropy-
maximizing measures and study their properties. Note that this is related to the so-called invariance
principle, which is also studied in [51], where a similar phenomenon as in Theorem 3.5 (entropy
achieving its maximum away from zero exponent) was observed (for certain ergodic measures of C2

partially hyperbolic diffeomorphisms).
Our main approach to showing Theorem 3.5 is to treat positive, negative, and zero spectra

separately. First, it is an immediate consequence of [15] that the restricted variational entropy (3.3)
provides a lower bound for htop(L(α)). Using the fact that by Proposition 5.1 for any pair of
uniformly hyperbolic sets with negative (positive) fiber exponents we can find a larger hyperbolic
set containing both of them, one can conclude that these values can be expressed via the Legendre–
Fenchel transform of a certain restricted pressure function (negative and positive values should be
treated separately). Finally, for any α with a level set of given entropy h one can choose so-called
skeletons established in [22, Sect. 4] to construct hyperbolic sets with entropy close to h and with
almost homogeneous exponents close to α. Hence, htop(L(α)) is limited from above by entropies of
ergodic measures with exponents close to α. Concavity of the Legendre–Fenchel transform implies
its continuity, which concludes the main argument.

4. EXAMPLES

In this section, we first return to the differentiable setting and provide some details about the
objects that characterize the diffeomorphisms in ORTPH1(M). Further, we also will see how they
motivate the axioms for the skew product in Section 3.

4.1. Blender-horseshoes and minimal foliations. The following discussion does not aim
for generality; it applies primarily to diffeomorphisms in PH1(M3), where the manifold is three-
dimensional, and is adapted to the setting where there are globally defined strong unstable and
stable foliations.

An unstable blender-horseshoe (see [6, Sect. 3]) is a hyperbolic and partially hyperbolic set Λ
of a diffeomorphism F conjugate to a complete shift of two symbols, such that there is a splitting
Ess ⊕ Ec ⊕ Euu over Λ (where Ess is its stable bundle and Ec ⊕ Euu its unstable one) and Λ is
isolated in an open neighborhood (a “cube”) C, that is, Λ =

⋂
n∈Z F

n(C). Moreover, the splitting is
defined in the whole neighborhood C and there is λ > 1 such that ‖dFx(v)‖ ≥ λ‖v‖ for every x ∈ C
and every vector v ∈ Ec ⊕ Euu. A stable blender-horseshoe is an unstable blender-horseshoe for F−1.

For the next discussion see Fig. 2. First consider the local stable set of Λ defined by W s
loc(Λ)

def
=⋂

n≤0 F
n(C). Naively, the cube C has six faces: two opposite stable–center faces “tangent” to

Ess ⊕ Ec, two opposite center–unstable faces “tangent” to Ec ⊕ Euu, and two opposite stable–
unstable faces “tangent” to Ess ⊕ Euu. A strong unstable curve is a closed curve contained in some
strong unstable leaf of Fuu whose boundary is contained in the stable–center faces of the cube (thus
the curve joins these two faces). Similarly, a strong stable curve is a closed curve contained in some
strong stable leaf of F ss whose boundary is contained in the center–unstable faces of the cube. An
unstable strip (or shortly strip) S is a “rectangle” that is foliated by strong unstable curves. The
width of a strip S, denoted by w(S), is the supremum of the numbers w such that there is some
curve η tangent to Ec and contained in S with length w. Note that there is a number κ > 0 such
that every strip contained in C has width at most κ.

By hypothesis, the hyperbolic set Λ has two fixed points P and Q, and we consider their local
stable manifolds W s

loc(P ) and W s
loc(Q) (the connected components of W s

loc(Λ) containing P and Q,
respectively). There are now two isotopy classes of strong unstable curves disjoint from W s

loc(P ),
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Fig. 2. Blender-horseshoe: strong unstable curves and strips (projection along the strong stable
direction).

say to the right and to the left of W s
loc(P ), and there are two similar classes for W s

loc(Q). Then the
local strong unstable leaves of points of Λ \ {P,Q} are strong unstable curves which are to the right
of W s

loc(P ) and to the left of W s
loc(Q). A strip S foliated by strong unstable curves to the right of

W s
loc(P ) is called a strip to the right of W s

loc(P ).
The key property of a blender-horseshoe is the following: for every strip S to the right of W s

loc(P )
there are two possibilities (that may occur simultaneously):

(1) the set F (S) contains a strip S′ (called the successor of S) to the right of W s
loc(P ) such that

w(S′) > λw(S) (where λ > 1 is as above), or
(2) F (S) contains a strip S′ that intersects W s

loc(P ) at a point lying at some uniform distance ρ
from the boundary of S′.

Note that case (1) can occur at most �(S) consecutive times where � = �(S) is the least number
with λ�w(S) > κ (with κ as above). Here by “consecutive” we mean that case (1) also holds for the
successor of S and so on. In case (2) let k = k(ρ) be the least number with λkρ > κ; considering now
k additional iterates, we have that F k(S′) contains a strip that crosses the two stable–unstable faces
of the cube C. Summarizing, given any unstable strip S to the right of W s

loc(P ), we have that Fm(S)
contains a strip that crosses the two stable–unstable faces of the cube C for some m ≤ �(S) + k.

The blender-horseshoe has the following geometric property that we state using the approach
in [5]. The family of strong unstable curves D defined as the ones to the right of W s

loc(P ) and
to the left of W s

loc(Q) satisfies the following invariance and covering properties: every D ∈ D
contains a subset D0 such that F (D0) ∈ D. This implies that the local stable set of Λ, W s

loc(Λ),
intersects every curve of the family D (see [6, Remark 3.10] and [5, Lemma 3.13]). We call D the
distinctive family of curves of the blender. Finally, let us also observe that blender-horseshoes have
well-defined continuations: if Λ is a blender-horseshoe for F , then for every G close enough to F
the continuation ΛG of Λ is also a blender-horseshoe (see [6, Lemma 3.9]).

As mentioned above, there is a C1 open and dense subset ORTPH1(M3) of RTPH1(M3)
whose strong stable and strong unstable foliations are both minimal. The main step of proving
this is the following (see [9]). There is an unstable blender-horseshoe Λ+ with associated cube C+,
a stable blender-horseshoe Λ− with associated cube C−, and a constant � > 0 such that

• every curve α contained in some leaf of Fuu with length �(α) ≥ � contains strong unstable
curves α+ ⊂ C+ and α− ⊂ C−; moreover, α+ is in the distinctive family of curves of Λ+;

• every curve β contained in some leaf of F ss with length �(β) ≥ � contains strong stable curves
β+ ⊂ C+ and β− ⊂ C−; moreover, β− is in the distinctive family of curves of Λ−.

The uniform expansion of the bundle Euu implies that for every curve α contained in some leaf
of Fuu there is n = n(α) such that �(Fn(α)) > �. Therefore, α0 = Fn(α) contains curves α±

0 as
above. Similarly, the uniform contraction of the bundle Ess implies that for every curve β contained
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in some leaf of F ss there is m = m(β) such that β0 = F−m(β) contains curves β±
0 as above. In

particular, this implies that there is a number n0 such that for every n ≥ n0 and every strong
unstable curve α contained in either C+ or C− the curve Fn(α) contains a strong unstable curve
in C+ and a strong unstable curve in C−. A similar statement holds for strong stable curves β
in C+ or C− and F−n. This means that there are transitions along the strong unstable and strong
stable foliations in finite time n0 between the cubes of the blenders.

4.2. Blender-horseshoes in step skew products. We now reformulate the ingredients
from above for step skew products (see [33, Sect. 5] and [22, Sect. 8.3] for dictionaries stabilizing the
relations between step skew products and partially hyperbolic diffeomorphisms). We will describe
the blender-horseshoes in terms of the underlying one-dimensional dynamics. We consider only
the strong unstable foliation; the translation for the strong stable foliation is straightforward and
follows by considering negative iterations.

Note that the “local strong unstable leaf” Fuu
loc(ξ, x) of a point (ξ, x) is the set [ξ− . ] × {x}, where

ξ = ξ− . ξ+, and the iteration of this leaf is completely governed by the fiber dynamics:

F k(Fuu
loc(ξ, x)) ⊂ Fuu

loc(F
k(ξ, x)) = [ξ−ξ0 . . . ξk−1 . ]×

{
f[ξ0...ξk−1](x)

}
.

Therefore, the equivalent of a curve contained in some strong unstable leaf is a set of the form
[ξ− . ξ0 . . . ξk−1]× {x}. Note that

F k
(
[ξ− . ξ0 . . . ξk−1]× {x}

)
= [ξ−ξ0 . . . ξk−1 . ]×

{
f[ξ0...ξk−1](x)

}

is a local strong unstable leaf. Thus, to study the dynamics of a local strong unstable leaf, it
is enough to consider the forward orbit of the central coordinate for the iterated function system
generated by the fiber maps f0 and f1. This also means that to obtain blenders in step skew
products, it is enough to consider the dynamics in the fiber coordinate. We now define a blender-
horseshoe for a step skew-product map F as in (3.1) with fiber maps f0 and f1 (see Fig. 3) using
the terminology commonly adopted for blenders (see [10, Sect. 6.2]).

Definition 4.1 (unstable blender-horseshoe for a step skew product). The skew-product map F
in (3.1) has an unstable blender-horseshoe if there are β > 1, an interval [p, q] ⊂ S

1, points a, b ∈
[p, q], a < b, and finite sequences (ξ0 . . . ξr) and (η0 . . . ηr), ξi, ηj ∈ {0, 1}, such that the maps f[ξ0... ξr ]
and f[η0... ηr ] have the following properties:

• (uniform expansion) (f[ξ0... ξr])
′(x) ≥ β for all x ∈ [p, b] and (f[η0... ηr ])

′(x) ≥ β for all x ∈ [a, q];
• (fixed points) f[ξ0... ξr](p) = p and f[η0... ηr ](q) = q;
• (covering and invariance) f[ξ0... ξr ]([p, b]) = f[η0... ηr ]([a, q]) = [p, q].

We say that [p, q] is the domain of definition of the blender and that [a, b] is the superposition
interval of the blender.

The step skew-product map F has a stable blender-horseshoe provided F−1 has an unstable
blender-horseshoe.

To consider the corresponding set for the cube C+ in the skew-product setting, we consider
the union Ĉ+ of the sets [. ξ0 . . . ξr] × [p − ε, b] (for some small ε > 0) and [. η0 . . . ηr] × [a, q] and
define Λ+ as the maximal invariant set of F r+1 in Ĉ+. In this case, the fixed points of the blender
are P = ((ξ0 . . . ξr)

Z, p) and Q = ((η0 . . . ηr)
Z, q), and the strong unstable “curves” to the right (of

the local stable set) of P are of the form [. ξ0 . . . ξr]× {x} if x ∈ [p, b] or [. η0 . . . ηr]× {x} if x ∈ [a, q].
With this definition it is immediate that the image under F r+1 of any strong unstable curve to the
right of P contains a strong unstable curve to the right of P . The stable blender-horseshoe has an
associated “cube” Ĉ− given by the union of the sets [ξ−k . . . ξ−1 . ] × [p − ε, b] (for some small ε > 0)
and [η−k . . . η−1 . ]× [a, q].
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Fig. 3. Unstable blender-horseshoe.

The forward transition from Ĉ+ to Ĉ− means that for each x ∈ [p, b] there is a finite sequence
of the form (ξ0 . . . ξr . . . ξr+m), m ≥ 0, such that f[ξ0... ξr ... ξr+m](x) ∈ (p, q) and for each x ∈ [a, q]
there is a finite sequence of the form (η0 . . . ηr . . . ηr+n), n ≥ 0 such that f[η0... ηr ... ηr+n](x) ∈ (p, q).
The forward transition from Ĉ− to Ĉ+ is defined similarly. The two backward transitions are the
corresponding reformulation for backward iterates.

Finally, for the conditions in Section 3 to hold, the two blenders must capture all the dynamics of
the map F (e.g., Axioms Acc±). For this we require that every point x ∈ S

1 has some forward and
backward iterates under the iteration of the fiber maps in the intervals (p, q) and (p′, q′) associated
to the blenders. For a complete discussion of these constructions we refer to [22, Sect. 8.1].

4.3. Contraction–expansion–rotation in step skew products. The next result does not
aim for generality and is just a reformulation of the constructions in [30, Theorem 2], where the
assumption of forward minimality is replaced by a density-like hypothesis. It also restates [22,
Proposition 8.8] in a slightly different way.

Proposition 4.2. Consider a step skew-product map F as in (3.1) with fiber maps f0, f1 :
S
1 → S

1. Suppose that

• there are δ > 0 and finite sequences (ξ0 . . . ξr) and (η0 . . . ηs) such that f[ξ0... ξr ] has an at-
tracting fixed point p and is uniformly contracting in [p− δ, p + δ] and f[η0... ηs] has a repelling
fixed point q and is uniformly expanding in [q − δ, q + δ];

• every point x ∈ S
1 has some forward and some backward iterates in (p − δ, p + δ) and some

forward and some backward iterates in (q − δ, q + δ).

Then there are intervals J+, J− ⊂ S
1 such that the fiber maps of F satisfy Axioms CEC+(J+) and

Acc±(J+) and Axioms CEC−(J−) and Acc±(J−).

To get the hypothesis of the orbits visiting the neighborhoods of p and q, it is enough to have a
finite sequence (ζ0 . . . ζt) such that f[ζ0... ζt] is an irrational rotation or such that every orbit of the
system is “sufficiently dense” in S

1. In particular, if some map f[ζ0... ζt] is an irrational rotation, then
small perturbations of the skew product satisfy the hypotheses of Proposition 4.2.

5. HOMOCLINIC AND INTERSECTION CLASSES

We briefly discuss the homoclinic relations in the setting of skew products (for details see, for
instance, [18, Sect. 2.1]). For skew-product maps F as in (3.1) that are only differentiable in the
fiber direction, we call a periodic point P = ((ξ0 . . . ξπ−1)

Z, p) hyperbolic if

(
f[ξ0...ξπ−1]

)′
(p) �= ±1
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and call it contracting if this derivative has modulus less than one and expanding otherwise. As in
the hyperbolic case, these points have well-defined and uniquely defined continuations for maps G
close to F , that is, for G(ξ, x) = (σ(ξ), gξ0(x)) where each gi is close to fi.

Given a hyperbolic fixed point p of the map f[ξ0... ξπ−1], consider its local invariant manifolds
W

s/u
loc (p, f[ξ0...ξπ−1]). If p is contracting, then W u

loc(p, f[ξ0...ξm]) = {p} and W s
loc(p, f[ξ0...ξm]) is an open

interval containing p. When p is expanding, the situation is similar.
In what follows let P = ((ξ0 . . . ξπ−1)

Z, p) be a hyperbolic periodic point of F . Note that the
stable and unstable sets of the orbit O(P ) of P are defined, respectively, by

W s(O(P ), F ) =
{
(η, x) : η =

(
. . . η−1.η0 . . . ηk(ξ0 . . . ξπ−1)

N
)
, k ≥ 0,

and f[η0... ηk](x) ∈ W s
loc

(
p, f[ξ0...ξπ−1]

)}
,

W u(O(P ), F ) =
{
(η, x) : η =

(
(ξ0 . . . ξπ−1)

N η−k . . . η−1 . η0 . . .
)
, k ≥ 0,

and f−1
[η−1... η−k]

(x) ∈ W u
loc

(
p, f[ξ0...ξπ−1]

)}
.

We now adapt the definitions of a homoclinic class and homoclinic relations of differentiable
dynamics to the skew-product setting.

First, two hyperbolic periodic points P and Q of the same index are homoclinically related
if the invariant manifolds of their orbits intersect cyclically, W u(O(P ), F ) ∩ W s(O(Q), F ) �= ∅

and W u(O(Q), F ) ∩ W s(O(P ), F ) �= ∅. The intersection class of P is the set of all hyperbolic
periodic points homoclinically related to P . A point X ∈ W u(O(P ), F ) ∩W s(O(P ), F ) is called a
homoclinic point of P . As the transverse ones in the differentiable case, these points have well defined
continuations. The homoclinic class of P is the closure of the homoclinic points of the orbit of P .
Note that this definition does not involve transversality. As in the case of differentiable dynamics,
the homoclinic class of P is a transitive set that coincides with the closure of its intersection class.

Proposition 5.1. Suppose that the skew-product map F in (3.1) satisfies the conditions in
Section 3. Then

• every pair of hyperbolic periodic points of the same index is homoclinically related ;
• every homoclinic class is the whole set Σ× S

1.

We sketch the proof of this proposition. Consider two hyperbolic periodic points P =
((ξ0 . . . ξπP−1)

Z, p) and Q = ((η0 . . . ηπQ−1)
Z, q) such that there is a point c ∈ W u

loc(p, f[ξ0...ξπP−1])
and a finite sequence (β0 . . . βr) with

f[β0... βr](c) ∈ W s
loc

(
q, f[η0... ηπQ−1]

)
.

Then

C =
(
(ξ0 . . . ξπP−1)

N . β0 . . . βr(η0 . . . ηπQ−1)
N, c

)
∈ W s(O(Q), F ) ∩W u(O(P ), F ).

This fact implies that, under the conditions in Section 3, any homoclinic class (of a hyperbolic
periodic point) is the whole Σ × S

1 and that any pair of hyperbolic periodic points of the same
index is homoclinically related. To see why this is so, assume that P and Q are both expanding
and show that W u(O(P ), F ) ∩W s(O(Q), F ) �= ∅. Consider now a blending interval J containing q
in its interior, as in Lemma 3.1. By Axiom Acc−(J) there is a small δ > 0 and a finite sequence
(τ0 . . . τk) such that

(p − δ, p + δ) ⊂ W u
loc

(
p, f[ξ0... ξπP−1]

)
and f[τ0... τk ](p − δ, p + δ) ⊂ J.
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Now Axiom CEC+(J) provides a finite sequence (η0 . . . η�) such that

J ⊂ f[τ0... τkη0... η�](p− δ, p + δ).

Hence there is c ∈ (p− δ, p + δ) such that

q = f[τ0... τkη0... η�](c).

Taking C =
(
(ξ0 . . . ξπP−1)

N . τ0 . . . τkη0 . . . η�(η0 . . . ηπQ−1)
N, c

)
, we get

C ∈ W s(O(Q), F ) ∩W u(O(P ), F ).

The intersection W s(O(P ), F ) ∩W u(O(Q), F ) �= ∅ is obtained by reversing the roles of P and Q.
The fact that the homoclinic class is the whole set Σ× S

1 follows from similar arguments.
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