MASS TRANSFERENCE PRINCIPLE: FROM BALLS TO
ARBITRARY SHAPES

HENNA KOIVUSALO AND MICHAL RAMS

ABSTRACT. The mass transference principle, proved by Beresnevich and Velani in
2006, is a strong result that gives lower bounds for the Hausdorff dimension of limsup
sets of balls. We present a version for limsup sets of open sets of arbitrary shape.

1. INTRODUCTION

For (A;) a sequence of subsets of R?, define the limsup set

limsup A; = ﬁ U A;.

n=1i>n
The geometry of limsup sets is of great importance in dimension theory, as large classes
of fractal sets, including attractors of iterated function systems and random covering
sets, are limsup sets. See [AT] and [FJJS] for discussion and references. Our main focus

is on the following, fundamental result on dimensions of limsup sets, from a 2006 article
of Beresnevitch and Velani [BV]:

Theorem 1.1 (Mass transference principle). Let (B;) be a family of balls in [0, 1]¢ such
that A(limsup B;) = 1. Let a > 1 and for each i, let E; be a ball with the same center
as B; but of diameter (diam B;)*. Then

d
dimy limsup E; > —.
a

Here A denotes the Lebesgue measure in R%. This theorem has found great many
applications in calculating the Hausdorff dimension of limsup sets, in metric number
theory and fractal geometry. It has also been generalized in several directions. For
recent development see [AB], where versions of this result with different, more general
assumptions on B; and limsup B; are established.

Of particular interest for us is the generalisation of Wang, Wu, and Xu [WWX]. In
their work, under the assumption A(lim sup B;) = 1, the authors let the sets E; to be not
balls of diameter (diam B;)® but ellipsoids with semiaxes (diam B;)%,1 < a; < ... < aq.
They obtain the lower bound

d+ia: —SY a
(1.1) mm{ + 4 Zf—la’}
a;
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Mass transference principle: from balls to arbitrary shapes

for the Hausdorff dimension of lim sup E;. In [WWX, Section 6] they also briefly address
the related problem of relaxing the condition on the shapes of the sets B;.

In this note we will generalize this result to arbitrary shapes E;: we will only assume
that E; C B; and that they are open and nonempty. We will provide a Hausdorff
dimension bound for these sets, and also calculate their packing dimension directly.
(The packing dimension claim also follows from the fact that limsup E; is a dense G-
set, see [SV].) The argument involves a generalization of what in the dimension theory
of iterated function systems is known as Falconer’s singular value function, see [F2] and
Section 2.

The paper is organized as follows. In Section 2 we introduce the generalized singular
value function and discuss its properties, in particular its relation to the Hausdorff
content. Except for Lemma 2.2, this section is not necessary for the proof of our main
result Theorem 3.1, but it explains why Corollary 3.4 follows. Our results are formulated
in Section 3, where we also present an example to show why the full Lebesgue measure
assumption is necessary (in a sense, see [AB]). The results are proved in Sections 4-6.

Acknowledgements. We thank the referees for many helpful comments, which helped
to significantly improve the article.

2. SINGULAR VALUE FUNCTION

In 1988 Kenneth Falconer [F2] introduced a function, the singular value function,
which for an ellipsoid £ C R? with semiaxes oy > ... > a4 and parameter s € 0, d]
assigns the value

O (E) = g ... aga), [,

where m = |s]| is the largest integer not larger than s. This notion was of crucial
importance in calculating in [F2] the dimension of certain self-affine sets.

Observe that the formula (1.1) is equivalent to ¢*(E;) = diam(B;)¢. This is not
a coincidence, the singular value function played important role in [WWX]. Up to
a multiplicative constant, the singular value function agrees with the better known
quantity of Hausdorff content

A (A) = inf{) (diam D;)* | A € U, D;},
=1

where the sets D; are, say, closed balls. In order to find a mass transference principle
for general shapes, we look for a version of the singular value function that applies to
all Borel sets and is also equivalent to the Hausdorff content. We come to the following
formula for a Borel set £ C R?

2.1 *(F) = sup inf inf ———
(2.1) #'(E) #p zeEr>0 p( B.(z))’
where the supremum is taken over Borel probability measures supported on E and
B, (x) denotes the ball of radius  and center x. It is not hard to see that when F is an
ellipsoid this formula returns Falconer’s singular value function (up to a multiplicative

constant), so that our definition is indeed a generalization.
—2
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We note here that the function ¢® is not the only way of approximating the Haus-
dorff content. While studying large intersection properties of some random covering
sets, Persson [P] defined an approximating function g, which was later related to the
Hausdorff content under a positive density assumption, see [FJJS, Lemmas 3.2, 3.9].
Persson’s definition is applicable for sets of positive Lebesgues measure.

The following proposition relates the singular value function and the Hausdorff con-
tent for all bounded Borel sets E. We have formulated it for a bounded Borel set in a
Euclidean space, but note that the proof for Suslin sets (analytic sets) [C] in compact
metric spaces is the same. The second inequality is actually Frostman’s Lemma [M,
Theorem 8.8|, only with better constant: by a simple bootstrapping argument we show
that if Frostman Lemma holds, it holds with constant 6°.

Proposition 2.1. Let E be a bounded Borel set. Then
¢*(B) < AZ(E) < 6°0°(E).

Proof. Let € > 0. Find a probability measure p such that for every » > 0 and every

x € E we have
1,,8

wB(z)) < ———.
(B(w) < i
As every ball intersecting E is contained in a ball centred in E of twice the radius,
without assuming = € F we still have
2°r® (diam B,.(z))*
u(B,(x)) < - .
p(BE)—e  @(E)—¢

Thus, for any collection of balls D; covering E we have

Y (diam D;)* > (¢*(E) —¢) ZM(DD > ¢*(E) —e.

7

This proves the first inequality.
We will need some preparation to prove the second inequality. First, for n > 0, let p,
be a Borel probability measure supported on E such that

(2.2) igg;ggm > ¢*(E)(1 —n),

and denote i

T
O T
Z=lml gy =9

For ¢ > 0 let A = A, . be the set of those points x € I for which the following is true:
for all y € E and r > 0, if x € B,(y)) then u,(B,(y)) < (1 —e)r*/p*(E).

By Frostman’s Lemma ([C, Section II], [M, Theorem 8.8]), there exists a constant ¢4
only depending on d such that whenever 7#°(K) > 0 for a bounded Borel set K, there
is a Borel probability measure m supported on K such that

1
B < —rf
mB ) < )
for all r > 0,2 € R?, where ¢; only depends on d.
_3_
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We wish to prove the following fact; that 225 (A) is relatively small.

Fact: (B
H(A) < L)s-
ca(l —e+%)
Proof of Fact. Assume without loss of generality that 22 (A) > 0. Then also J#°(A) >

0 and by [C, Section II], [M, Theorem 8.8], as above, there exists a measure v supported
on A such that

1
B.(2)) < ———*
VB <
for all r > 0,2 € R%. For § € (0,1) let vs = (1 — 0)u, + dv and denote

Zs = inf inf .
O T 22150 v5(B, (1))

Choose some x € E,r > 0. If B.(x) N A = (), then from (2.2)
vs(Br(x)) = (1 = 0)y(Br())
1-6 7

< —- ) =: G41(9).

—_

3
AS)

Otherwise, by definitions of A and v
vs(Br(x)) = (1= 6)py(By(x)) + 6v(By(x))

(1-0)(1—¢) J )
<rs + =: G1(9).
< (e ) = 0
For § > n we have G1(6) < r®/°(E). If, contrary to the claim, we have
(23 HLA) > @ (B) - (afl = e+ 2))

then Ga(n) < r°/¢*(E). It follows that for some 0 > n

Zs > max(r®/G1(9),7°/G2(9)) > ¢*(E),
which is a contradiction with the definition of ¢°. Thus, (2.3) cannot hold. O

We can now compare ¢°(E) to 25 (E). Let (D;) be the family of balls B, (z) with
x € E for which p, (B, (x)) > (1—¢)r®/Z. This family can be infinite (even uncountable),
but it contains a ball of maximal radius (possibly more than one). We will inductively
construct a subfamily (E£;) C (D;) in the following way. We take the largest ball from
(D;), which is the first ball in (E;). We then inductively add to (E;) the largest ball
from (D;) not contained in | J; 3E; (where 3E; means the ball with the same center as
E; but three times larger radius). This way we construct a family of disjoint balls B, (z)
satisfying 1, (B,(x)) > (1 —€)r*/Z and such that |J Bs,(z) D E'\ A.

From now on, consider the sequences €, — 0 and 1, = €2 fixed. Then, by Fact above,

¢*(E) ¢*(E)
Cd<1—€n+f]—:) Cd(1_€n+i)

'}foi (Annvsn) <

<

=:4,.
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By subadditivity of 2222, for all n
‘%OZ(E) S %OZ(E \ A77n7£ﬂ> + %;(Aﬁnvan) < Z (6T)s + ‘gn

Br(ilT)GEj
<6°Z/(1—20) > pin(Br(x)) + Ly < 6°Z/(1 — £5) + Ly,
As e,, 0, — 0 and Z < ¢*(FE), this finishes the proof of the proposition. O

We finish the section with a lemma showing that for open sets E the supremum in
(2.1) is attained over absolutely continuous measures.

Lemma 2.2. There exists ky > 0 such that for every open bounded set E C RY there
exists an absolutely continuous probability measure n of bounded density, such that the
support of n is a finite union of disjoint d-dimensional cubes contained in E and

,r.S
(R < - inf inf ————.
A P LA

Proof. Fix ¢ > 0. Let p; be a probability measure supported on E such that

S

r
p*(E) < (1+¢) 2eE 150 1 (E O By (1))

For 9 > 0 let Es denote the points in E lying at distance greater than ¢ from OF.
We choose § so small that p;(E5) > 1 — ¢ and define

1
M2 = mﬂl’ﬂs-
Note
inf inf S > (1 — ¢) inf inf rs
inf in —¢) inf in :
z€Er>0 uo(E'N B(x)) — z€Br>0 uy (E N B,(x))

Let fs be the normalized characteristic function of Bs(0) and define

)= [ et

This is an absolutely continuous probability measure with density bounded by (A(B;(0))) ™.
For x € E and r > ¢ we have

(2.4) p3( B (7)) < pa(Bris(x)) < pra( By ().
For x € E and r < § we have

(25) ps(B(2)) < £52(Braa(e) < 2 Bas()).

Hence, for every z € F and r > 0 one can find 7’ > 0 such that
_5_
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TS B (T,)S
(2.6) | i
ps(Br(x)) p2(By ()
We obtain the following statement: for every x € E and r > 0 one can find 7' > 0 such
that

7as B (7",)8
(2.7) —_— > 27—
pa(Br () piz(Br(x))
Finally, we choose some finite union F' C E of disjoint cubes such that us(F) > 1—¢
and define

1
e MB(F)MglF'
We have
TS ,r‘S
inf inf ————— > (1 — &) inf inf
R EA )~ TR EN B W)
which ends the proof with x; arbitrarily close to 2°. 0

3. STATEMENT OF RESULTS
The following is the main theorem of this article.

Theorem 3.1. Let (B;) be a sequence of balls in [0, 1]¢ C R? such that A(limsup,_, ., B;) =
1. Let (E;) be a sequence of open sets, such that E; C B;. Define

s = sup{t | Mlimsup{B; | ¢ (E;) > X\(B;)}) = 1}.
Then
dime limsup F; > s
and
dim limsup F; = d.
The claim dim g limsup F; = d also follows by observing that limsup F; is a dense

Gs-set [SV, Fact 12], but we give a direct proof. We will actually prove the following
result; it is clear that Theorem 3.1 is an immediate corollary.

Theorem 3.2. Let (B;) be a sequence of balls in [0,1] C RY such that A(limsup,_,., B;) =
1. Let (E;) be a sequence of open sets, such that E; C B;. Assume that for some s > 0
each pair (B;, E;) satisfies
©*(E;) = M Bi).
Then
dimy limsup E; > s
and

dimyp limsup F; = d.
_6_
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Remark 3.3. In particular, the sets (E;) being balls as in [BV] or ellipsoids as in
[WWX] satisfy the assumptions of Theorem 3.1, so that Theorem 3.1 recovers these
dimension results. Furthermore, as is the case in [BV, WWX], the lower bound we
provide can be sharp, see e.g. [WWX, Corollary 5.1].

By Proposition 2.1, we have the following corollary:

Corollary 3.4. Let (B;) be a family of balls in [0,1]¢, such that A(limsup B;) = 1. For
some s € (0,d) for every i let E; C B; be an open set satisfying S5 (E;) > N(B;). Then
dim_y limsup E; > s and dimg limsup F; = d.

Example 3.5. The following example shows that the assumption that lim sup B; have
full Lebesgue measure cannot be relaxed to positive Lebesgue measure.

Denote by 3, the countable set | J~ {0,1}". For a word w € ¥, let |w| denote its
length. We will construct a countable family of closed intervals B, € [0,1],w € ¥, such
that A(limsup B,) > 0 but for every a > 1 limsup E, = (), where E,, is an interval with
the same center as B, but with diameter |B,|* In particular, there is no nontrivial
lower bound for the dimension of lim sup E,,

Let a, = 1/2(n + 1)%. Let By = [0, 1]. Inductively, for w € X, define J, = a,B2.
Then letB,,, and B, be the left and right components of B, \ J.

For every n > 0 we have A(U,¢(01n Bw) = 120 (1—a) > s o= [[2,(1 —a;) > 0.
In particular, |B,| > - 27l and A(limsup B,) = k > 0 as desired.

Choose a > 1 and define E,. There is N = N(a) such that for all n > N we have
(k27™)* < a,k2~™. Thus, for |w| > N we have E, C J,, hence E,, eventually become
disjoint with all E,,|v| > |w|. This implies limsup E,, = 0.

The strategy of the proof of Theorem 3.1 is as follows: We will construct a large
Cantor subset F' of limsup E;, define a mass distribution p on the construction tree of
F and estimate the local dimension of p. This will give a lower bound to the dimension.

4. CONSTRUCTION OF THE CANTOR SUBSET

We note that we can freely assume that the size of balls B; forms a nonincreasing
sequence converging to 0. Indeed, the statement of the theorem does not depend on the
order of B;’s, and moreover if the size of the balls B; has a non-zero lower bound and
if *(E,,) > A(B,,) for some s > 0 and some subsequence E,,, then by the definition of
¢ we will have a nonzero lower bound for A\(E,,), and hence for A(limsup E,,,) as well.

For a ball B, denote by M B a ball of the same center and M times the radius. The
following lemma has been proven as [BV, Lemma 5|, but, as it is a crucial ingredient

in the construction of the Cantor set F', for completeness we present a proof.

Lemma 4.1. Assume A(limsup B;) = 1. Then there exists ko > 0 such that for every
cube C' C [0,1]% there exists a finite family of balls B,, C C such that the balls 3B, are
pairwise disjoint and that

> A(B.,) = K2A(C).

Proof. Let r denote the side of C'. As the diameter of balls B; converges to 0, for any

positive € we know that
_7_
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,B;CC 4;,B;CC
where (1 — ¢)C denotes a cube of the same center as C' but of side (1 — &)r.
Applying the 5r-covering theorem [M, Theorem 2.1], we find a (finite or countable)
subfamily of balls B;, C C such that

158, o (1-2)C,
and that the balls 3B;, are disjoint. Hence,

D ABi,) = (1 —e)1571

and we can choose a finite subfamily such that

D> ABi,) = (1 - 201577
As M(C) = r?, we are done. O

We will now begin the construction of the Cantor set F. First, for every set F;
denote by 7; the absolutely continuous measure provided by Lemma 2.2 and by ¢; the
supremum of its density. We will denote by E; the support of 7;, which by Lemma 2.2 is
a finite union of disjoint cubes. It suffices to give the lower bound for dim y lim sup E;
and dim g lim sup E;.

We will now inductively construct a family of sets Fy D F; D ... such that each
Fj;j > 1is a finite union of some E;’s. Clearly,

F .= ij C limsup E; C limsup E;.

In the next section we will proceed to distribute a measure p on F'.
Start with the cube Fy = [0, 1]¢. Applying Lemma 4.1 to the cube Fy we can find a
finite family of disjoint balls .#; C {B;} such that

Z )\(Bz) > Ko,
B, €%
where k9 is from Lemma 4.1. Let F} = UBie% El

Fix some sequence ; N\, 0 and recall that each E’i for B; € %, is a union of cubes.
Denote by r; the diameter of the smallest of these cubes. Further, let

1
(CE— . 7 . . - Bz c {gz 1/51 )
7 = min(ry, (Ko mm{gi/\(Bi) 1 1))
Now divide all the components of all F; with B; € .%; into cubes Dil), cee DE&B of di-
ameter between 71 /2 and 7 (notice that different components might need to be divided
into cubes of different size). These cubes will be where the construction continues.
We carry on inductively. Assume that the notions .%#;_q, 7;_1,

Fa= {J E

BiELQj_1
_8_
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and the cubes ng_l), el D%j__ll) C F;_; of diameter between 7;_/2 and 7;_; as above
have been defined. ‘
Now apply Lemma 4.1 to each D,(Cj_l), k=1,...,N,;_;. Obtain in this way a family

Z; of balls B; such that for D,(gjfl), k=1,...,Nj_q,
ST AB) = rADYTY).
Bieyj;BiCijil)
Let ‘F} = UBiGJ{'?j EZ
Finally, define r; as the smallest diameter of cube components of Fj. Set
. : . . 1 ..
T = HllIl(Tj, Tj—1- (:‘432 . mln{m, B,L c y]})l/ J),

and subdivide F}; into cubes of diameter between 7;/2 and tilder; as above to continue.

5. CONSTRUCTION OF THE MASS DISTRIBUTION

We will now construct a mass distribution on F', and proceed in the next section by
investigating its local dimension. Begin by setting the notations

Fi(E)={B;€ #;| Bi.CE}and F;(E)= | ] E
Bie7;(E)
for £ C Fy.

We start with p defined as the Lebesgue measure A restricted to Fy. As an interme-
diate step in the definition of puy, in the first level of construction F}, define

_ :u0|Bi

> e Ho(Br)
for all + such that B; € .7, and no mass elsewhere. Then define, for B; € %, and
E; C B;, the measure p; supported on Fj by setting

M1|Ei = v1(Bi) - ;.

1B

Continue in this way; assume that u,,_; has been defined on the sets Ei with B; € %, _;.
Let B, € %, B, C D§n_1)7 where D§"_1) is a cube of side length approximately 7, 1
from the cube decomposition of E;. Then define

n—1
pn-1 (D)),
y AM(Be)’

Vn|B —
k § . (n—1
Beeyn(Ei),BgCDj

and for each Ej, C B, € %,
obtaining a measure supported on F,.

Notice that (u,) is a sequence of probability measures supported on the compact
set [0,1]¢, so that it has a weakly convergent subsequence. Denote the limit of this
subsequence by p, and notice that it is by construction supported on F'. In fact, p,(B;) =

finsk(B;) for all k >0, for all B; € .%,, and similarly for E; C B; € .%,.
_9_
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6. ESTIMATING THE LOCAL DIMENSION

We now bound the local dimension of p. Pick a point x € F' and r > 0. We want to
give an estimate to the p-measure of the ball B,.(z). Let n be such that 7, <r < 7,_;.
Since x € F, we can write z € B; C B;, , C ... C B;,, with B;, € %}, for all k.

There are two cases to consider: diam B;, <r < 7,_; and 7, <r < diam B; .

Case 1: diam B;, < r < r,_;. Recall that in the construction we divide the set Ein_l
into the (n — 1)-st generation cubes DJ(-n_l), j=1,...,N,_; of diameter approximately

Tn_1, and for each of them

(DY) = paa (DY),

Further,
n—1 n—1 n—1 n—1 n—1
Ha-a (DY) = v (D), (D) < v (D), MDY

To continue, set the notation

p\"YcE, ,cB, ,cD"?CE,_,CB,,_,.
Then by the definition of v,,_1,

. . D(n—2)
pa(D ) = B )y, )
ZB@E:;ézn_l;BgCchn71> )\(Bg)
where .%,_; was chosen using Lemma 4.1 so that
> A(By) > ko MD).
BgEE?n_l;BgCDI(Cn_Q)
Combining the above, we obtain
(n—2)
n— pn—1(D gin—1)‘(Bin—1) n—
ﬂnfl(D](' 1)) < ((nk2) ) ) A(D]( 1))
AMDy ) 2
Using this inductively, we end up with
n—1 n—1 n—1
(6.1) u(DY ) = €y (DY) - ADSY),
where
- MBi) - NBy, )byl
2

Let now D™~ be the (n — 1)-st generation cube containing . We will write C,,_; ()
for C,,_1(D"D).
Recall that 7,,_; was chosen in such a way that

gin—l )\(Bin—l )
K2

[log 71| < 1/e,-1 log( )+ log 7o

éin—l )\(Bln—l)

=1/g1
/51 og( g

)+ -+ 1 e log(
—10—

g’il)\(B’il) )
K9 )
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In particular, by (6.2) and the choice of 1/e,, — oo, we have

(6.3) lim max [og Cu(y)]

n—oo  y | log 7|

=0.

Using, essentially, (6.1), in the cube D=1 we find a collection of balls B; € .%,, such
that each of them satisfies

(6.4) W(B) = n(B) < - - Corr(2)A(B)

and 3B; are disjoint. Observe that, since r < 7,_;, the ball B,(z) can intersect at

most 5% of the (n — 1)-st generation cubes. Furthermore, if indeed there is some D](-nfl)

such that y € DJ(-"_l) N F N B.(z) then B.(x) N Dj(.n_l) C By (y) N Dj(-"_l). Hence,
(B, (x)) < 10%u(B,.(x) N D"=V) and we continue with the latter. We have
p(B)NDO <Y (B,

Bi eegn ;Bi OBT‘ (x);ﬁ@

However, by the construction, balls 3B;, and 3B; are disjoint for any ¢ # i,, and
in particular, since x € B;,, we have z ¢ 3B;. Hence, if B,(x) intersects B; then
diam B; < r, and we have from (6.4) and the disjointness of B;

Cnfl (ZE) ‘

H(B, (x) 1 D) < A(By () - =2

Summing up the estimates from above, we get
1
p(Br(x)) < 20%- = max Cpp s (y)r
K2 vy
and hence by (6.3), for diam B;, < r < 7,_1 we have

log 11(B,(z))

6.5
(6.5) logr

with ¢, — 0.

Case 2: 7, < r < diam B;, . In this case B,(z) is not going to intersect any B; €
9mi 7£ Zn Hence, M(Br<x)> = M(Br(x) N Em)~
Consider the distribution of measure p on E;,. We have

(6.6) Pnlg, < Co1 ()65 ' N(By,) - -

Hence, for each of the n-th level cubes D§”) we have

(DY) = (D) < Coma (@) "A(By,) - i, (D).
We note that these are n-th generation cubes, of size approximately 7, not the (n—1)-
st generation cubes we considered in the previous case. However, we do not yet know
how exactly p is distributed on each DJ(-") — this will be decided on the following stages

of the construction. Nevertheless, we can write



w(B,(x) N E;,) < > u(DS)
DD B, (2)£0

and we also know that if D§”) N B,(x) # 0 then D](-”) C B,17,(x). Combining this with
(6.6) we get

WBr(2)) < Coa(2)iy ' A( By, )iy (Brsr, () N By, ).
Note that r + 7, < 2r. By the definition of 7;, and the assumption A\(B;) > ¢*(E;)
we have
(2r)°Ky
i (Bar S ST

and, using (6.3)
log u(B,(x)) S8 log 2 + log Cy—1(x) + log k1 — log ko
logr - logr

(6.7) +5> 5+ qn
with ¢, — 0.

We finish the proof of Theorem 3.2 applying the mass distribution principle [F,
Proposition 2.3] to (6.5) and (6.7).
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