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Abstract. In this paper we study the dimension theory of planar self-affine sets satisfying domin-
ated splitting in the linear parts and strong separation condition. The main results of this paper is
the existence of dimension maximizing Gibbs measures (Käenmäki measures). To prove this phe-
nomena, we show that the Ledrappier-Young formula holds for Gibbs measures and we introduce a
transversality type condition for the strong-stable directions on the projective space.

1. Introduction and Statements

Let A :“ pA1, A2, . . . , AN q be a finite set of contracting, non-singular 2 ˆ 2 matrices, and let

Φ :“ tfi : x ÞÑ Aix` tiu
N
i“1 be an iterated function system (IFS) on the plane with affine mappings,

where }Ai} ă 1 and ti P R2 for i “ 1, . . . , N . It is a well-known fact that there exists an unique
non-empty compact subset Λ of R2 such that

Λ “
N
ď

i“1

fipΛq.

We call the set Λ the attractor of Φ or self-affine set.
Let us denote the Hausdorff dimension of a set X by dimH X. Moreover, denote by dimBX and

by dimBX the lower and upper box dimension. If the upper and lower box dimensions coincide then
we call the common value the box dimension and denoted by dimBX. For the definitions and basic
properties, we refer to Falconer [7].

Denote by αipAq the ith singular value of a 2ˆ2 non-singular matrix A, i.e. the positive square root
of the ith eigenvalue of AA˚, where A˚ is the transpose of A. We note that in this case, α1pAq “ }A}
and α2pAq “ }A

´1}´1, where }.} is the usual matrix norm induced by the Euclidean norm on R2.
Moreover, α1pAqα2pAq “ |detA|. For s ě 0 define the singular value function φs as follows

φspAq :“

$

&

%

α1pAq
s 0 ď s ď 1

α1pAqα2pAq
s´1 1 ă s ď 2

pα1pAqα2pAqq
s{2 s ą 2.

(1.1)

Falconer [6] introduced the subadditive pressure

PApsq :“ lim
nÑ8

1

n
log

N
ÿ

i1,...,in“1

φspAi1 ¨ ¨ ¨Ainq. (1.2)

The function PA : r0,8q ÞÑ R is continuous, strictly monotone decreasing on r0,8q, moreover
PAp0q “ logN and limsÑ8 PApsq “ ´8. Falconer [6] showed that for the unique root s0 :“ s0pAq of
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the subadditive pressure function dimBΛ ď min t2, s0u and if }Ai} ă 1{3 for every i “ 1, . . . , N then

dimH Λ “ dimB Λ “ min t2, s0u for Lebesgue-almost every t “ pt1, . . . , tN q P R2N .

The condition was later weakened to }Ai} ă 1{2 by Solomyak, see [15]. We call the value s0 the
affinity dimension of Φ. Käenmäki [11] showed that for Lebesgue-almost every t “ pt1, . . . , tN q P R2N

there exists a measure νK (not necessarily self-affine) supported on Λ such that dimH µ
K “ dimH Λ “

min t2, s0u.
In this paper we consider IFSs of affinities which satisfy the strong separation condition (SSC), i.e.

fipΛq X fjpΛq “ H for every i ‰ j.

Falconer [8] proved that if Φ satisfies a separation condition (milder than SSC) and the projection
of Λ in every direction contains an interval separation then the box dimension of a self-affine set
is equal to the affinity dimension. Hueter and Lalley [10] gave conditions, which ensure that the
Hausdorff and box dimension of a self-affine set coincide and equal to the affinity dimension.

In the recent paper of Bárány [2], the result of Hueter and Lalley [10] was generalised for self-affine
measures. That is, under the same conditions of Hueter and Lalley [10] the Hausdorff dimension of
any self-affine measure is equal to its Lyapunov dimension. In particular, in [2] the author proved that
under slightly more general conditions any self-affine measure is exact dimensional and gave a formula,
which connects entropy, Lyapunov exponents and the projection of the measure (Ledrappier-Young
formula).

Recently, Falconer and Kempton [9] used methods from ergodic theory along with properties of
the Furstenberg measure and obtained conditions under which certain classes of plane self-affine sets
have Hausdorff and box dimension equal to the affinity dimension. By adapting the conditions of
Falconer and Kempton [9] and Bárány [2] we prove that for ”typical” linear parts (tAiu

N
i“1) if the

SSC holds then the dimension of self-affine set is equal to the affinity dimension. Precisely, let

M :“

"

A P R2ˆ2
` Y R2ˆ2

´ : 0 ă
| detA|

~A~2
ă

1

2
and }A} ă 1

*

, (1.3)

where

~A~ “ min t|a| ` |b|, |c| ` |d|u for A “

„

a b
c d



.

Let us define the following sets

N :“
 

A PM : }A´1}}A}2 ď 1
(

and ON :“
 

A PMN : s0pAq ą 5{3
(

, (1.4)

for every N ě 2.

Theorem 1.1. Let N ě 2. For L4N -almost every A P NN
Ť

ON , if t “ pt1, . . . , tN q P R2N is chosen

such that Φ :“ tfi : x ÞÑ Aix` tiu
N
i“1 satisfies the SSC then there exists a measure νK supported on

the attractor Λ of Φ such that

dimH ν
K “ dimH Λ “ dimB Λ “ s0pAq.

We call the measure νK the Käenmäki measure.
To prove Theorem 1.1, we will need a more detailed study of the dimension of invariant measures.

More precisely, we extend the results of [2] for the natural projections of Gibbs measures. Theorem 1.1
is studied in higher generality.

Structure of the paper. After the Preliminaries (Section 2) we introduce the main technical result
of the paper, the Ledrappier-Young formula generalised for Gibbs measures (Section 3). In Section 4
we introduce the strong-stable transversality condition (Definition 4.1) and show that under this
condition there exists a dimension maximizing Gibbs measure (Käenmäki measure) almost surely.
In the last section we show Theorem 1.1 as a consequence of the previous studies.
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2. Preliminaries

Let Σ “ t1, . . . , NuZ be the symbolic space of two side infinite sequences, Σ` “ t1, . . . , NuN be

the set of right side and Σ´ “ t1, . . . , NuZ
´

be the set of left side infinite words. Denote the left
shift operator on Σ and Σ` by σ and denote the right shift operator on Σ and Σ´ by σ´. Thus, σ
and σ´ are invertible on Σ and σ´1 “ σ´. For any i P Σ (or j P Σ˘q

ri|nms :“
 

j P Σ (or j P Σ˘) : ik “ jk for m ď k ď n
(

.

For an i “ p. . . i´2i´1i0i1 . . . q P Σ, denote by i` “ pi0i1 . . . q the right-hand side and by i´ “

p. . . i´2i´1q the left-hand side of i. To avoid confusion, we write also i` if i` P Σ` and i´ if i´ P Σ´.
For any i`, j` P Σ` let i`^j` “ min tn ě 0 : in ‰ jnu. We define i´^j´ “ min tn´ 1 ě 0 : i´n ‰ j´nu

similarly.
Let us denote the set of finite length words by Σ˚ “

Ť8
n“0 t1, . . . , Nu

n, and for every ı “
pi1, . . . inq P Σ˚ denote the reversed word by ÝÑı “ pin, . . . , i1q. Sometimes, we may also write pΣ´q˚

for finite length words to emphasize the negative indexes.
If Φ :“ tfipxq “ Aix` tiu

N
i“1 is an iterated function system on R2 with affine mappings such that

}Ai} ă 1 for i “ 1, . . . , N , we define the natural projection π´ from Σ´ to Λ in a natural way

π´p. . . i´2i´1q “ lim
nÑ8

fi´1 ˝ ¨ ¨ ¨ ˝ fi´np0q. (2.1)

Let A :“ tA1, A2, . . . , ANu be a finite set of non-singular 2 ˆ 2 real matrices. Define a map from

Σ to A in a natural way, i.e. Apiq :“ Ai0 . Let Apnqpiq :“ Apσn´1iq ¨ ¨ ¨Apiq for i P Σ and n ě 1.

Definition 2.1. We say that a set A “ tAiuNi“1 of matrices satisfies the dominated splitting if there
are constants C, β ą 0 such that for every n ě 1 and every i0, . . . , in´1 P t1, . . . , Nu

α1pAi0 ¨ ¨ ¨Ain´1q

α2pAi0 ¨ ¨ ¨Ain´1q
ě Cenβ.

Let C` :“
 

px, yq P R2ztp0, 0qu : xy ě 0
(

be the standard positive cone. A cone is an image of C`
under a linear isomorphism and a multicone is a disjoint union of finitely many cones. We say that a
multicone M is backward invariant w.r.t. A if

Ť

APAA
´1pMq ĂMo, where Mo denotes the interior

of M .

Lemma 2.2 ([1], [3],[4], [17]). The set A of matrices satisfies the dominated splitting then for every
i P Σ there are two one-dimensional subspaces esspiq, espiq of R2 such that

(1) Ai0e
jpiq “ ejpσiq for every i P Σ and j “ s, ss,

(2) there is a constant C ą 0 such that for every n ě 1 and i P Σ

C´1}Apnqpiq|espiq} ď α1pA
pnqpiqq ď C}Apnqpiq|espiq} and

C´1}Apnqpiq|esspiq} ď α2pA
pnqpiqq ď C}Apnqpiq|esspiq},

(3) there is a backward-invariant multicone M that

espiq “
8
č

n“1

Ai´1 ¨ ¨ ¨Ai´npM
cq and esspiq “

8
č

n“1

A´1
i0
¨ ¨ ¨A´1

in´1
pMq,

where M c denotes the closure of the complement of M .

We call the family of subspaces espiq stable directions and esspiq strong stable directions.

Let us observe that espiq depends only on i´ and esspi`q depends only on i`, so ess can be
considered as a natural projection from Σ` to P1, where P1 denotes the projective space. In the
later analysis, the dimension of strong stable directions in P1 plays an important role. For x, y P P1
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denote by ?px, yq the usual metric on P1, that is the angle between the subspaces corresponding to
x and y. For any v, w P R2 denote by Areapv, wq the area of parallelogram formed by v, w.

Lemma 2.3. For every x, y P P1

Areapv, wq

}v}}w}
ď ?px, yq ď

2Areapv, wq

}v}}w}
,

where v, w P R2 are arbitrary non-zero vectors from the subspaces corresponding to x and y.

The proof of the lemma is straightforward.

Lemma 2.4. There exists a constant C ą 0 such that for every i, j P Σ

?pesspiq, esspjqq ď Ce´βpi`^j`q and ?pespiq, espjqq ď Ce´βpi´^j´q

where β is the domination exponent in Definition 2.1. Thus, the maps i` P Σ` ÞÑ esspi`q and
i´ P Σ´ ÞÑ log }Ai´1 |e

spσ´i´q} are Hölder continuous.

Proof. We prove only the inequality for ess, for es the argument is similar. Fix i, j P Σ with i`^j` “ n.
Let v P esspσni`q and w P esspσnj`q be arbitrary such that }v} “ }w} “ 1. Then by Lemma 2.3,

?pesspiq, esspjqq ď 2
AreapA´1

i0
¨ ¨ ¨A´1

in´1
v,A´1

i0
¨ ¨ ¨A´1

in´1
wq

}A´1
i0
¨ ¨ ¨A´1

in´1
|esspσni`q}}A

´1
i0
¨ ¨ ¨A´1

in´1
|esspσnj`q}

ď

2C2
| detpA´1

i0
¨ ¨ ¨A´1

in´1
q|

}A´1
i0
¨ ¨ ¨A´1

in´1
}2

Areapv, wq ď 2C2e´βn.

�

Let ϕ : Σ´ ÞÑ R be a Hölder continuous potential function. Then there exist a constants C ą

0, P P R and σ´-invariant Borel probability measures µ´ and µ on Σ´ and Σ such that

C´1 ď
µ´pri´|

´1
´nsq

e´nP`
řn´1
k“0 ϕpσ

k
´i´q

ď C, for every i´ P Σ´, (2.2)

C´1 ď
µpri|´1

´nsq

e´nP`
řn´1
k“0 ϕpσ

k
´iq
ď C, for every i P Σ. (2.3)

We call the measures µ´ and µ the Gibbs measures of the potential ϕ on Σ´ and Σ. Moreover,
µ´ and µ are ergodic, see [5, Chapter 1]. Let ν “ pπ´q˚µ´, where π´ is defined in (2.1). Let us
denote the projection from Σ to Σ` by p` : Σ ÞÑ Σ`, and similarly, the projection from Σ to Σ´ by
p´ : Σ ÞÑ Σ´. It is easy to see that pp´q˚µ “ µ´.

Lemma 2.5. The measure µ` :“ pp`q˚µ is σ-invariant, ergodic quasi-Bernoulli measure on Σ` with
entropy hµ` “ hµ “ hµ´ “ P ´

ş

ϕpiqdµpiq.

Proof. First, we prove invariance. Let A Ď Σ` be measurable set. Then by using that µ is σ-invariant
we get

µ`pσ
´1Aq “ µ`

˜

N
ď

i“1

iA

¸

“ µ

˜

Σ´ ˆ
N
ď

i“1

iA

¸

“ µpΣ´ ˆAq “ µ`pAq.

Let A Ď Σ` be an arbitrary σ-invariant subset of Σ`. Then σ´1Σ´ ˆ A “ Σ´ ˆ
´

ŤN
i“1 iA

¯

“

Σ´ ˆ σ´1A “ Σ´ ˆA. Therefore, µpΣ´ ˆAq “ 0 or 1, which implies the ergodicity of µ`.
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Finally, let pi0, . . . , in`m`1q P pΣ
`q˚ be arbitrary and let j P Σ´ be such that j´1 “ in`m`1, . . . ,

j´pn`m`2q “ i0. Then by (2.3)

µ`pri0, . . . , in`m`1sq “ µpΣ´ˆri0, . . . , in`m`1sq “ µprj|´1
´pn`m`2qsq ď Ce´pn`m`2qP`

řn`m`1
k“0 ϕpσk´jq “

Ce´pn`1qP`
řn
k“0 ϕpσ

k
´jqe´pm`1qP`

řm
k“0 ϕpσ

k
´pσ

n`1
´ jqq ď C3µprj|´1

´pn`1qsqµprσ
n`1
´ j|´1

´pm`1qsq “

C3µpΣ´ ˆ ri0, . . . , insqµpΣ
´ ˆ rin`1, . . . , in`m`1sq “ C3µ`pri0, . . . , insqµ`prin`1, . . . , in`m`1sq.

The inequality µ`pri0, . . . , in`m`1sq ě C´3µ`pri0, . . . , insqµ`prin`1, . . . , in`m`1sq can be proven sim-
ilarly. By using the definition of entropy, see [16, Theorem 4.10, Theorem 4.18],

hµ` “ lim
nÑ8

´
1

n

ÿ

ıPSn
µ`prısq logµ`prısq ď P ´ lim

nÑ8

1

n

ÿ

ıPSn
µ`prısqϕpÝÑı jq “

P ´ lim
nÑ8

1

n

ÿ

ıPSn
µ´prısqϕpıjq “ P ´

ż

ϕpiqdµpiq.

�

By Oseledec’s multiplicative ergodic theorem, there are constants 0 ă χsµ ď χssµ that

lim
nÑ8

´
1

n
logα1pAi0 ¨ ¨ ¨Ain´1q “ χsµ and

lim
nÑ8

´
1

n
logα2pAi0 ¨ ¨ ¨Ain´1q “ χssµ for µ-a.e. i P Σ ( or µ`-a.e i` P Σ`).

We call the values χsµ the stable and χssµ the strong stable Lyapunov exponent of µ. We define the
Lyapunov exponents for µ´ similarly.

In our further analysis, a special Gibbs measure plays an important role.

Definition 2.6. Let A “ tA1, A2, . . . , ANu be a finite set of contracting, non-singular 2ˆ2 matrices
such that A satisfies the dominated splitting. Moreover, let s0 “ s0pAq be the unique root of the
subadditive pressure (1.2). We define ϕ : Σ´ ÞÑ R be Hölder continuous potential function as follows,

ϕpi´q “

$

&

%

log }Ai´1 |e
spσ´i´q}

s0 if 0 ď s0 ď 1,
log

`

|detAi´1 |
s0´1}Ai´1 |e

spσ´i´q}
2´s0

˘

if 1 ă s0 ď 2,

log |detAi´1 |
s0{2 if 2 ă s0.

(2.4)

Then we call the Gibbs measure µK with potential ϕ the Käenmäki measure on Σ´. In particular,
there exists a constant C ą 0 such that

C´1 ď
µKpri´|

´1
´nsq

φs0pAi´1 ¨ ¨ ¨Ai´nq
ď C, for every i´ P Σ´,

where φs is the singular value function (1.1).

The Hölder continuity of potential ϕ in (2.4) follows by Lemma 2.4.

3. Ledrappier-Young formula for Gibbs measures

In this section, we extend the result [2, Theorem 2.7] for Gibbs-measures. For every θ P P1 we
denote the orthogonal projection in the direction of θ by projθ. Let us define the transversal measure
for every i` P Σ` by νTi` “ ν ˝ pprojesspi`qq

´1.
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Theorem 3.1. Let A “ tA1, A2, . . . , ANu be a finite set of contracting, non-singular 2ˆ 2 matrices,

and let Φ “ tfipxq “ Aix` tiu
N
i“1 be an iterated function system on the plane with affine mappings.

Let µ´ be a right-shift invariant and ergodic Gibbs measure on Σ´ defined in (2.2), and ν “ pπ´q˚µ´
be the push-down measure of µ´. If

(1) A satisfies the dominated splitting,
(2) Φ satisfies the strong separation condition

then ν is exact dimensional and

dimH ν “
hµ
χsµ
`

ˆ

1´
χsµ
χssµ

˙

dimH ν
T
i` for µ`-almost every i` P Σ`.

During the proof of Theorem 3.1, we follow the proof of [2, Theorem 2.7]. The proof of [2, The-
orem 2.7] is decomposed into four propositions [2, Proposition 3.1, Proposition 3.3, Proposition 3.8
and Proposition 3.9]. However, [2, Proposition 3.1] and [2, Proposition 3.9] hold for general ergodic
measures. On the other hand, [2, Proposition 3.8] follows from [2, Proposition 3.3] exactly in the
same way for Gibbs measures as for Bernoulli measures. So, we extend in the rest of the section [2,
Proposition 3.3] for Gibbs measures.

Let F be the dynamical system defined in [2, Section 3] acting on O ˆ Σ`. Namely,

F px, iq :“ pfi0pxq, σiq,

where O is the open and bounded set such that

N
ď

i“1

fipOq Ď O and fipOq X fjpOq “ H for i ‰ j.

Since F is a hyperbolic map acting O ˆ Σ`, its unique non-empty and compact F -invariant set
is

Ş8
n“0 F

npO ˆ Σ`q “ Λ ˆ Σ`. It is easy to see that F is conjugate to σ by the projection
π : Σ ÞÑ Λˆ Σ`, where πpiq :“ pπ´pi´q, i`q. That is, π ˝ σ “ F ˝ π. Denote the measure π˚µ by pν.
Then pν is F -invariant ergodic measure.

Since ess depends only on i`, it defines a foliation on O for every i` P Σ`. Hence, it defines a
foliation ξss on Λˆ Σ`. Namely, for a y “ px, i`q P Λˆ Σ` let lsspyq be the line through x parallel

to esspi`q on R2 ˆ ti`u. Let the partition element ξsspyq be the intersection of the line lsspyq with
Λˆ ti`u. It is easy to see that Fξss is a refinement of ξss, that is, for every y, pFξssqpyq Ă ξsspyq.

Applying Rokhlin’s Theorem [13], there exists a canonical system of conditional measures, i.e.
for pν-a.e. y P Λ ˆ Σ` there exists a measure pνssy supported on ξsspyq such that the measures are

uniquely defined up to a set of zero measure and for every measurable set A the function y ÞÑ pνssy pAq

is measurable. Moreover,

pνpAq “

ż

pνssy pAqdpνpyq. (3.1)

Let us define the conditional entropy of Fξss with respect to ξss in the usual way,

HpFξss|ξssq :“ ´

ż

log pνssy ppFξ
ssqpyqqdpνpyq.

Applying again Rokhlin’s Theorem [13], for µ`-a.e. i` P Σ` there exists a uniquely defined system
of conditional measures µi` up to a set of zero measure, supported on Σ´ ˆ ti`u and

µpAq “

ż

µi`pAqdµ`pi`q.

By defining pνi` :“ pπ´q˚µi` , we get

pν “

ż

pνi`dµ`pi`q.
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For µ`-a.e. i` P Σ`, let us define the transversal measure of pνi` by

pνTi` :“ pprojesspi`qq˚pνi` .

By using the uniqueness of the conditional measures, we get

pνi` “

ż

pνsspx,i`qdpν
T
i`pxq for µ`-a.e. i` P Σ`.

Lemma 3.2. There exists a constant C ą 0 such that C´1µ´ˆ µ` ď µ ď Cµ´ˆ µ`. In particular,

C´1µ´ ď µi` ď Cµ´ for µ`-a.e. i` P Σ`. (3.2)

Proof. It is enough to show that there exists a C ą 0 such that for every i P Σ and n,m ě 0

C´1µ´pri|
´1
´nsqµ`pri|

m
0 sq ď µpri|m´nsq ď Cµ´pri|

´1
´nsqµ`pri|

m
0 sq.

Indeed, every set A in the σ-algebra can be approximated by cylinder sets. By the definition of Gibbs
measure µ

µpri|m´nsq “ µprσm`1i|´1
´pn`m`1qsq ď Ce´pn`m`1qP`

řn`m
k“0 ϕpσk´σ

m`1iq “

Ce´nP`
řn´1
k“0 ϕσ

k
´ie´pm`1qP`

řm
k“0 ϕpσ

k
´σ

m`1iq ď C2µ´pri|
´1
´nsqµprσ

m`1i|´1
´pm`1qsq “

C2µ´pri|
´1
´nsqµpri|

m
0 sq “ C2µ´pri|

´1
´nsqµ`pri|

m
0 sq.

The other inequality can be proven similarly. The relation (3.2) follows by the fact that the conditional
measures are uniquely defined up to a set of zero measure. �

By Lemma 3.2, the measures pνi` and ν are equivalent for µ`-a.e. i` P Σ`. Similarly, the measures

pνTi` and νTi` are equivalent for µ`-a.e. i` P Σ`.

For the examination of the local dimension of the projected measure, instead of looking at balls on
lines we introduce the transversal stable balls associated to the projection. Let Bt

rpx, iq be transversal
stable ball with radius r, i.e

Bt
rpx, iq “

 

py, jq : i “ j & distplsspx, iq, lsspy, jqq ď 2r
(

,

where lsspx, iq denotes the line trough x parallel to esspiq.
For technical reasons, we also have to introduce the modified transversal stable ball. Since the

IFS Φ satisfies the SSC, for an y “ px, iq P Λ ˆ Σ` we can define the stable direction espyq of y by
espyq :“ espxq :“ espi´q, where π´pi´q “ x. Denote distespyq the natural Euclidean distance on the

subspace espyq.

Then for an px, iq P Λˆ Σ`, we define the modified transversal stable ball with radius δ by

BT
δ px, iq “

 

py, jq P Λˆ Σ` : i “ j & distespx,iqplsspx, iq, lsspy, jqq ď δ
(

,

where distespx,iqplsspx, iq, lsspy, jqq means the distance of the intersections of the lines lsspx, iq, lsspy, jq
with the subspace espx, iq with respect to the distance distespx,iq. Since there exists a constant α ą 0
such that

?pespi´q, esspi`qq ě α ą 0, for every i´ P Σ´ and i` P Σ`,

there exists a constant c ą 0 that for every y P Λˆ Σ` and r ą 0

BT
c´1rpx, iq Ď Bt

rpx, iq Ď BT
crpx, iq. (3.3)

We are going to prove the following proposition.
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Proposition 3.3. For µ`-a.e. i` P Σ` the measure νTi` is exact dimensional and

dimH ν
T
i` “

hµ ´HpFξ
ss|ξssq

χsµ
.

In particular,

lim
rÑ0`

νpBT
r px, i`qq

log r
“
hµ ´HpFξ

ss|ξssq

χsµ
for pν-a.e. px, i`q.

Let P be the natural partition, i.e. P “ tfipΛq ˆ Σ`u
N
i“1. Denote the kth refinement of P by Pk

1 ,

i.e. for every y P ΛˆΣ`, Pk
1 pyq “

´

Žk
i“1 F

ipPq
¯

pyq “ PpyqXF pPpF´1pyqqqX¨ ¨ ¨XF kpPpF´kpyqqq.
Let us define almost everywhere the measurable functions gkpyq :“ pνssy pPk

1 pyqq and

gδ,kpyq :“
pνi`pB

T
δ pyq X Pk

1 pyqq

pνi`pB
T
δ pyqq

.

By definition, gδ,k Ñ gk as δ Ñ 0` for pν almost everywhere and, since gδ,k is uniformly bounded,
(3.1) implies gδ,k Ñ gk in L1ppνq as δ Ñ 0`.

Lemma 3.4. The function supδą0 t´ log gδ,ku is in L1ppνq for every k ě 1.

The proof of Lemma 3.4 coincides to [2, Lemma 3.6].

Lemma 3.5. For every x “ π´pi´1, i´2, . . . q P Λ, i` P Σ`, δ ą 0 and k ě 1

F k
´

BT
δ pF

´kpyqq ˆ ri´k, . . . , i´1s

¯

“

´

BT
}Ai´1

¨¨¨Ai´k |espF
´kpyqq}δpyq X Pk

1 pyq
¯

ˆ Σ`,

where y “ px, i`q.

By using the fact that ν “ pπ´q˚µ´ “ pπ
´q˚pp´q˚µ, we have

νpBT
δ pyq X Pk

1 q “ pν
´

BT
δ pyq X Pk

1 ˆ Σ`
¯

“

pν
´

F´k
´

BT
δ pyq X Pk

1 ˆ Σ`
¯¯

“ pν
´

BT
}Ai´1

¨¨¨Ai´k |espF
´kpyqq}´1δpF

´kpyqq ˆ ri´k, . . . , i´1s

¯

,

where in the last equation we used Lemma 3.5. By Lemma 3.2,

νpBT
δ pyq X Pk

1 pyqq “ pν
´

BT
}Ai´1

¨¨¨Ai´k |espF
´kpyqq}´1δpF

´kpyqq ˆ ri´k, . . . , i´1s

¯

ď

Cν
´

BT
}Ai´1

¨¨¨Ai´k |espF
´kpyqq}´1δpF

´kpyqq
¯

µ`pri´k, . . . , i´1sq, (3.4)

and

νpBT
δ pyq X Pk

1 pyqq ě C´1ν
´

BT
}Ai´1

¨¨¨Ai´k |espF
´kpyqq}´1δpF

´kpyqq
¯

µ`pri´k, . . . , i´1sq (3.5)

for every δ ą 0, k ě 1, and y P Λˆ Σ`.

Proof of Proposition 3.3. By the definition of the transversal measure, the statement of the propos-
ition is equivalent to

lim
δÑ0`

log νpBt
δpx, i`qq

log δ
“
hν ´HpFξ

ss|ξssq

χsµ
for ν ˆ µ`-a.e px, i`q.
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Hence, by (3.3) and by Lemma 2.2, it is enough to show that if y “ px, i`q P Λ ˆ Σ` with
x “ π´pi´1, i´2, . . . q,

lim
pÑ8

log ν

ˆ

BT
}Ai´1

¨¨¨Ai´pk |espF
´pkpyqq}

pyq

˙

logα1pAi´1 ¨ ¨ ¨Ai´pkq
“
hν ´HpFξ

ss|ξssq

χsµ
for ν ˆ µ`-a.e y.

By Oseledec’s Theorem, we have

lim
pÑ8

1

p
logα1pAi´1 ¨ ¨ ¨Ai´pkq “ ´kχ

s
µ for µ´-a.e i´. (3.6)

By applying (3.4), (3.5) and Lemma 3.2,

ν
´

BT
}Ai´1

¨¨¨Ai´pk |espF
´pkpyqq}pyq

¯

“ ν
´

BT
1 pF

´pkq

¯

p
ź

l“1

ν

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq

˙

ν

ˆ

BT
}Ai´lk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´lkpyqq

˙ ď

Cpν
´

BT
1 pF

´pkq

¯

p
ź

l“1

ν

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq

˙

µ`pri´pl´1qk´1, . . . , i´lksq

ν

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq X Pk
1 pF

´pl´1qkpyq

˙ ď

C3pν
´

BT
1 pF

´pkq

¯

p
ź

l“1

pνF´pl´1qkpyq

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq

˙

µ`pri´pl´1qk´1, . . . , i´lksq

pνF´pl´1qkpyq

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq X Pk
1 pF

´pl´1qkpyq

˙ .

Similarly,

ν
´

BT
}Ai´1

¨¨¨Ai´pk |espF
´pkpyqq}pyq

¯

ě C´3pν
´

BT
1 pF

´pkq

¯

¨

p
ź

l“1

pνF´pl´1qkpyq

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq

˙

µ`pri´pl´1qk´1, . . . , i´lksq

pνF´pl´1qkpyq

ˆ

BT
}Ai´pl´1qk´1

¨¨¨Ai´pk |espF
´pkpyqq}

pF´pl´1qkpyqq X Pk
1 pF

´pl´1qkpyq

˙ .

By taking logarithm and dividing by p we get

1

p
log ν

´

BT
1 pF

´pkq

¯

´ 3 logC ´
1

p

p
ÿ

l“1

log g}Ai´lk´1
¨¨¨Ai´pk |espF

´pkpyqq},kpF
´lkpyqq`

1

p

p
ÿ

l“1

logµ`pri´pl´1qk´1, . . . , i´lksq ď
1

p
log ν

´

BT
}Ai´1

¨¨¨Ai´pk |espF
´pkpyqq}pyq

¯

ď

1

p
log ν

´

BT
1 pF

´pkq

¯

` 3 logC ´
1

p

p
ÿ

l“1

log g}Ai´lk´1
¨¨¨Ai´pk |espF

´pkpyqq},kpF
´lkpyqq`

1

p

p
ÿ

l“1

logµ`pri´pl´1qk´1, . . . , i´lksq.
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By Lemma 3.4, we may apply the result of Maker [12, Theorem 1], so we get

lim
pÑ8

´
1

p

p
ÿ

l“1

log g}Ai´lk´1
¨¨¨Ai´pk |espF

´pkpyqq},kpF
´lkpyqq “ ´

ż

log gkpyqdpνpyq “ kHpFξss|ξssq

for pν-a.e. y. Applying Birkhoff’s ergodic theorem and (3.6) we get

´3 logC ´ kHpFξss|ξssq ´
ř

ıPSk µ`prısq logµ`prısq

kχsµ
ď dνTi`

pxq ď dνTi`
pxq ď

3 logC ´ kHpFξss|ξssq ´
ř

ıPSk µ`prısq logµ`prısq

kχsµ
for pν-a.e. y and every k ě 1.

By taking the limit k Ñ8, we get that

dνTi`
pxq “ dνTi`

pxq “
hµ ´HpFξ

ss|ξssq

χsµ
for pν-a.e. y.

Since pν is equivalent to ν ˆ µ`, the statement follows. �

Proof of Theorem 3.1. Since the proofs of [2, [Proposition 3.1, Proposition 3.8 and Proposition 3.9]
do not use that the examined measure is Bernoulli, one can modify them to show that for pν-a.e.
y P Λˆ Σ` the measure pνssy is exact dimensional and

dimH pνssy “
HpFξss|ξssq

χssµ
.

Moreover,

lim inf
rÑ8

pνi`pBrpxqq

log r
ě
HpFξss|ξssq

χssµ
`
hµ ´HpFξ

ss|ξssq

χsµ
for pν-a.e. px, i`q

and by using that ν “ pp´q˚pν

lim sup
rÑ8

νpBrpxqq

log r
ď
HpFξss|ξssq

χssµ
`
hµ ´HpFξ

ss|ξssq

χsµ
for ν-a.e. x.

Since the measure ν is equivalent to pνi` for µ`-a.e. i`, the statement follows by Proposition 3.3. �

As a corollary of Theorem 3.1, we are able to give two conditions which ensure that the dimension
of a Gibbs measure is equal to its Lyapunov dimension. The second part of condition (iii) in the next
theorem appears in [9], as well, for the Gibbs measure generated by the subadditive pressure.

Theorem 3.6. Let A “ tAkuNk“1 be a family of 2ˆ2 real non-singular matrices and Φ “ tAkx` tku
N
k“1

be an IFS of affinities on the plane. Moreover, let µ´ be a σ´-invariant ergodic Gibbs measures on
Σ´, let µ be its unique extension to Σ and let µ` be the quasi-Bernoulli measure defined in Lemma 2.5.
Assume that

(i) the IFS Φ satisfies the strong separation condition,
(ii) A satisfies dominated splitting condition

(iii) either dimHpe
ssq˚µ` ě min t1,dimLyap µ´u or dimHpe

ssq˚µ` ` dimHpπ
´q˚µ´ ą 2

Then

dimHpπ
´q˚µ “ min

"

hµ
χsµ
, 1`

hµ ´ χ
s
µ

χssµ

*

.

By Theorem 3.1, the proof is similar to the proofs of [2, Theorem 2.8 and Theorem 2.9].
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4. Dimension of Gibbs measures and transversality condition of strong stable
directions

In this section and the rest of the paper, we are going to study the dimension of Gibbs measures.
To be able to calculate the dimension of Gibbs measure, we have to handle the dimension of strong
stable directions, see (iii) of Theorem 3.6. In the case, when the matrices satisfies the backward non-
overlapping condition, i.e. there exists a backward invariant multicone M such that A´1

i pM
oq ĎMo

and A´1
i pM

oq X A´1
j pM

oq “ H for every i ‰ j, it is possible to calculate the dimension of strong

stable directions. Namely, by [2, Lemma 4.2], for every σ-invariant ergodic measure µ on Σ`

dimHpe
ssq˚µ “

hµ
χssµ ´ χ

s
µ

,

where hµ denotes the entropy of µ.
In general a set of matrices does not satisfy this phenomena. In this section we introduce a

condition, which makes us able to handle the problem of overlaps. Namely, we consider a parametrized
family of matrices Apλq with the corresponding map of stable- and strong stable directions esλ and
essλ .

Definition 4.1. Let U Ă Rd be open and bounded. We say that a parametrized family of matrices
Apλq “ tAipλquNi“1 satisfies the strong-stable transversality on U if

‚ the parametrisation λ ÞÑ Aipλq is continuous for every i “ 1, . . . , N on an open neighbourhood
of U

‚ for every λ P U the set Apλq satisfies the dominated splitting
‚ there exists a constant C ą 0 that for every i, j P Σ` with i0 ‰ j0

Ld tλ P U : ?pessλ piq, e
ss
λ pjqq ă ru ď Cr for every r ą 0.

The definition of strong-stable transversality is a natural generalisation of the transversality con-
dition for iterated function systems, see [14, (2.9)].

Theorem 4.2. Let U Ă Rd be an open and bounded set and let Apλq “ tAkpλquNk“1 be a parametrized

family of 2ˆ 2 real matrices and Φpλq “ tAkpλqx` tkpλqu
N
k“1 be a parametrized family affine IFSs

on the real plane such that

(i) for every λ P U the IFS Φpλq satisfies the strong separation condition,
(ii) Apλq satisfies the strong-stable transversality on U .

Let tµλuλPU be a parametrized family of σ´-invariant ergodic Gibbs measures on Σ´ such that the
family of the corresponding Hölder continuous potential functions tφλuλPU is continuously paramet-
rized, moreover,

(iii) either
hµλ

χssµλpλq ´ χ
s
µλ
pλq

ě min

"

1,
hµλ

χsµλpλq

*

or
hµλ

χssµλpλq ´ χ
s
µλ
pλq

` 2
hµλ

χssµλpλq
ą 2

Then

dimHpπ
´
λ q˚µλ “ min

"

hµλ
χsµλpλq

, 1`
hµλ ´ χ

s
µλ
pλq

χssµλpλq

*

for Ld-a.e. λ P U .

The proof of Theorem 4.2 is based on the combination of Theorem 3.6 and the following theorem.

Theorem 4.3. Let U Ă Rd be an open and bounded set and let Apλq “ tAkpλquNk“1 be a parametrized
family of 2ˆ2 real matrices such that Apλq satisfies the strong-stable transversality on U . Moreover,
let tµλuλPU be a family of σ-invariant quasi-Bernoulli ergodic measures on Σ` that λ ÞÑ hµλ is
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continuous and for every λ0 P U and ε ą 0 there exists a δ “ δpε,λ0q ą 0 that for every i P Σ, every
n ě 1 and every }λ´ λ0} ă δ

e´εn ď
µλpri|

n´1
0 sq

µλ0pri|
n´1
0 sq

ď eεn. (4.1)

Then

dimHpe
ss
λ q˚µλ “ min

"

hµλ
χssµλpλq ´ χ

s
µλ
pλq

, 1

*

for Ld-a.e λ P U .

The proof uses the standard transversality method but for completeness we present it here. First,
we give an upper bound for the dimension.

Lemma 4.4. Let A “ tAiu
N
i“1 be a set of matrices satisfying the dominated splitting and let ess :

Σ` ÞÑ P1 be the map to strong-stable directions. Then for every µ σ-invariant ergodic measure on
Σ`,

dimHpe
ssq˚µ ď min

"

1,
hµ

χssµ ´ χ
s
µ

*

.

Proof of Lemma 4.4. For any x P P1 let B?
r pxq :“

 

y P P1 : ?px, yq ă r
(

. It is enough to show that

lim inf
rÑ0`

logpessq˚µpB
?
r pe

sspiqqq

log r
ď

hµ
χssµ ´ χ

s
µ

for µ-a.e. i P Σ`.

By Lemma 2.3 and Lemma 2.2(2), if i, j P Σ` that ik “ jk for k “ 0, . . . , n

?pesspiq, esspjqq ď
AreapA´1

i0
¨ ¨ ¨A´1

in
v,A´1

i0
¨ ¨ ¨A´1

in
wq

}A´1
i0
¨ ¨ ¨A´1

in
|esspσn`1jq}}A´1

i0
¨ ¨ ¨A´1

in
|esspσn`1iq}

ď C
| detpA´1

i0
¨ ¨ ¨A´1

in
q|

}A´1
i0
¨ ¨ ¨A´1

in
}2

,

where v P esspσn`1iq and w P esspσn`1jq such that }v} “ }w} “ 1. Let npr, iq P N be the smallest
number such that

| detpA´1
i0
¨ ¨ ¨A´1

in
q|

}A´1
i0
¨ ¨ ¨A´1

in
}2

ă C´1r.

Hence, pessq˚µpB
?
r pe

sspiqqq ě µpri|
npr,iq
0 sq. Therefore,

logpessq˚µpB
?
r pe

sspiqqq

log r
ď

logµpri|
npr,iq
0 sq

logC ` log | detpA´1
i0
¨ ¨ ¨A´1

inpr,iq´1
q| ´ 2 log }A´1

i0
¨ ¨ ¨A´1

inpr,iq´1
}

By ergodicity and Lemma 2.2(2),

lim
nÑ8

´
1

n
logµpri|n0 sq “ hµ

lim
nÑ8

´
1

n
log | detpA´1

i0
¨ ¨ ¨A´1

in´1
q| “ ´χssµ ´ χ

s
µ

lim
nÑ8

1

n
log }A´1

i0
¨ ¨ ¨A´1

in´1
} “ χssµ for µ-a.e. i P Σ`.

�

Lemma 4.5. Let U Ă Rd be open and bounded and let Apλq “ tAipλquNi“1 be a parametrized family
of matrices that the map λ ÞÑ Aipλq is continuous for any i “ 1, . . . , N in an open neighbourhood
of U , and Apλq satisfies the dominated splitting on U . Then the map λ ÞÑ essλ piq is continuous
uniformly for every i P Σ`. That is, for every λ0 P U and every ε ą 0 there exists a δ “ δpλ0, εq ą 0
that

}λ´ λ0} ă δ ùñ ?pessλ piq, e
ss
λ0
piqq ă ε for every i P Σ`.



DIMENSION MAXIMIZING MEASURES 13

Proof. Let λ0 P U and ε ą 0 be arbitrary but fixed. Let M be the backward invariant multicone of
Apλ0q. By definition of backward invariant multicone, there exists a δ1 “ δ1pλ0q ą 0 that for every
λ with }λ´λ0} ă δ1, M is a backward invariant multicone for Apλq. Hence, the angles between the
directions of the dominated splitting are uniformly bounded from below. Thus, by Lemma 2.2(2)
and Lemma 2.3, there exists a constant C “ Cpλ0q ą 0 that for every for every, m ě 0 integer we
have

?pessλ piq, e
ss
λ0
piqq ď

?pA´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qe

ss
λ0
pσm`1iq, A´1

i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qe

ss
λ pσ

m`1iqq`

?pA´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qe

ss
λ pσ

m`1iq, A´1
i0
pλq ¨ ¨ ¨A´1

im
pλqessλ pσ

m`1iqq ď

Cpλ0q
22
| detpA´1

i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qq|

}A´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0q}

2
?pessλ pσ

m`1iq, essλ0
pσm`1iqq`

ř2
i“1 |A

´1
i0
pλq ¨ ¨ ¨A´1

im
pλqui ˆA

´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qui| ` |

ř2
i“1A

´1
i0
pλq ¨ ¨ ¨A´1

im
pλqui ˆA

´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qu3´i|

}Ai0pλq ¨ ¨ ¨Aimpλq}
´1}Ai0pλ0q ¨ ¨ ¨Aimpλ0q}

´1
,

where u1, u2 is the standard basis of R2. Since Apλq satisfies the dominated splitting on U , there
exists an integer m “ mpλ0q ą 0 that

Cpλ0q
22
| detpA´1

i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qq|

}A´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0q}

2
ă

1

2
,

for every i0, . . . , im P t1, . . . , Nu. Let fpλ,λ0q :“ supiPΣ` ?pessλ piq, e
ss
λ0
piqq, then

fpλ,λ0q ď 2 max
i0,...,im

#

ř2
i“1 |A

´1
i0
pλq ¨ ¨ ¨A´1

im
pλqui ˆA

´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qui|

}Ai0pλq ¨ ¨ ¨Aimpλq}
´1}Ai0pλ0q ¨ ¨ ¨Aimpλ0q}

´1
`

|
ř2
i“1A

´1
i0
pλq ¨ ¨ ¨A´1

im
pλqui ˆA

´1
i0
pλ0q ¨ ¨ ¨A

´1
im
pλ0qu3´i|

}Ai0pλq ¨ ¨ ¨Aimpλq}
´1}Ai0pλ0q ¨ ¨ ¨Aimpλ0q}

´1

+

.

Since the maps λ ÞÑ Aipλq are continuous, there exists a δ “ δpλ0, εq ą 0 that the right hand side is
less that ε ą 0 for every λ with }λ´ λ0} ă δ. �

Lemma 4.6. Let U Ă Rd be open and bounded and let tµλuλPU be a family of σ-invariant quasi-
Bernoulli ergodic measures on Σ` that (4.1) holds. Then the map λ ÞÑ µλ is continuous in weak*-

topology. Moreover, if Apλq “ tAipλquNi“1 is a parametrized family of matrices that the map λ ÞÑ

Aipλq is continuous for any i “ 1, . . . , N in an open neighbourhood of U , and for every λ P U the set
Apλq satisfies the dominated splitting then the maps λ ÞÑ χssµλpλq and λ ÞÑ χsµλpλq are continuous.

Proof. To prove the first assertion of the lemma it is enough to show that for every O Ď Σ` open
set and every λ0 P U

lim inf
λÞÑλ0

µλpOq ě µλ0pOq. (4.2)

Since the cylinder sets form a base of open sets we get O “
Ť8
k“1rik|

mk
nk
s. Since for every cylinder

rik|
mk
nk
s “

Ť

|j|“nk
rjσnk ik|

mk
0 s without loss of generality we may write O “

Ť8
k“1rik|

mk
0 s. On the other

hand, for every pair of cylinder sets of the form rik|
mk
0 s either they are disjoint or one contains the

other, thus, we may assume that rik|
mk
0 s X ril|

ml
0 s “ H if k ‰ l. Hence,

µλ0pOq “ lim
nÑ8

ÿ

|i|“n
risĎO

µλ0prisq.
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Therefore, by (4.1) for every n ě 1

lim inf
λÑλ0

µλpOq ě lim inf
λÑλ0

ÿ

|i|“n
risĎO

µλprisq “
ÿ

|i|“n
risĎO

µλ0prisq.

Since n ě 1 was arbitrary we get (4.2).
To prove the second assertion, by Lemma 2.2(2) and multiplicative ergodic theorem

χssµλpλq “

ż

log }A´1
i0
pλq|essλ pσiq}dµλpiq and χssµλpλq ` χ

s
µλ
pλq “

ż

log | detpA´1
i0
pλqq|dµλpiq.

By Lemma 4.5, the map λ ÞÑ log }A´1
i0
pλq|essλ pσiq} is continuous, thus by the weak*-continuity of

λ ÞÑ µλ, the map λ ÞÑ χssµ pλq is continuous. The continuity of λ ÞÑ χsµλpλq follows by the continuity

of λ ÞÑ µλ, λ ÞÑ χssµλpλq and λ ÞÑ log | detpA´1
i0
pλqq|. �

Proposition 4.7. Assume that the assumptions of Theorem 4.3 hold. Then for every λ0 P U and
ε ą 0 there exists a δ ą 0 such that

dimHpe
ss
λ q˚µλ ě min

#

1,
hµλ0

χssµλ0
pλ0q ´ χsµλ0

pλ0q

+

´ ε for Ld-a.e. λ P Bδpλ0q.

Before we prove Proposition 4.7, we prove that for every λ P U the map i ÞÑ essλ piq is Hölder
continuous.

Lemma 4.8. For every λ0 P U there exists a δ “ δpλ0q ą 0 and for every r ą 0 there exists a
positive integer N “ Npλ0, rq that for every λ P U with }λ ´ λ0} ă δ and for every i, j P Σ` with
i0 ‰ j0

I t?pessλ piq, essλ pjqq ă ru ď I
 

?pessλ pi|
N
0 1q, essλ pj|

N
0 1qq ă 2r

(

,

where 1 “ p1, 1, . . . q P Σ`. Precisely, Npλ0, rq “ r
2 log r
´βpλ0q

` cpλ0qs, where βpλ0q is the domination

exponent in Definition 2.1 and cpλ0q is some constant depending only on λ0.

Proof. Fix λ0 P U . Then by Lemma 2.3 for every N and every i, j P Σ` with i0 ‰ j0

|?pessλ piq, e
ss
λ pjqq ´?pessλ pi|

N
0 1q, essλ pj|

N
0 1qq| ď ?pessλ piq, e

ss
λ pi|

N
0 1qq `?pessλ pjq, e

ss
λ pj|

N
0 1qq ď

2
| detpA´1

i0
pλq ¨ ¨ ¨A´1

iN
pλqq|

}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ pσ

N`1iq}}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ p1q}

?pessλ pσ
N`1iq, essλ p1qq`

2
| detpA´1

j0
pλq ¨ ¨ ¨A´1

jN
pλqq|

}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ pσ

N`1jq}}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ p1q}

?pessλ pσ
N`1jq, essλ p1qq.

Since λ ÞÑ Aipλq is continuous, by Lemma 4.5, there exists a δ “ δpλ0q ą 0 that

| detpA´1
j0
pλq ¨ ¨ ¨A´1

jN
pλqq|

}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ pσ

N`1jq}}A´1
j0
pλq ¨ ¨ ¨A´1

jN
pλq|essλ p1q}

ď

e
δpλ0q

2
N

|detpA´1
j0
pλ0q ¨ ¨ ¨A

´1
jN
pλ0qq|

}A´1
j0
pλ0q ¨ ¨ ¨A

´1
jN
pλ0q|essλ0

pσN`1jq}}A´1
j0
pλ0q ¨ ¨ ¨A

´1
jN
pλ0q|essλ0

p1q}

for every j P Σ`. Thus, by Lemma 2.2(2)

|?pessλ piq, e
ss
λ pjqq´?pessλ pi|

N
0 1q, essλ pj|

N
0 1qq| ď 2πe

δpλ0q
2

NCpλ0q
2 max
j0,...,jN

#

| detpA´1
j0
pλ0q ¨ ¨ ¨A

´1
jN
pλ0qq|

}A´1
j0
pλ0q ¨ ¨ ¨A

´1
jN
pλ0q}

2

+
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By Definition 2.1, there exists an N “ Npλ0, rq that the right hand side of the inequality is less than
r, thus the statement follows. �

Proof of Proposition 4.7. Let λ0 P U and ε ą 0 be arbitrary but fixed. Let δ “ δpλ0, εq ą 0 be
chosen according to Lemma 4.5, Lemma 4.8 and (4.1). By Shannon-McMillan-Breiman Theorem
and (4.1), for every λ P Bδpλ0q

hµλ0
´ ε ď lim inf

nÑ8
´

1

n
logµλpri|

n´1
0 sq ď lim sup

nÑ8
´

1

n
logµλpri|

n´1
0 sq ď hµλ0

` ε for µλ-a.e. i P Σ`.

Moreover, by ergodic theorem and weak*-continuity of λ ÞÑ µλ

χssµλ0
pλ0q ` χ

s
µλ0
pλ0q ´ ε ď lim

nÑ8

1

n
log | detpA´1

i0
pλq ¨ ¨ ¨A´1

in´1
pλqq| “ χssµλ0

pλ0q ` χ
s
µλ0
pλ0q ` ε,

χssµλ0
pλ0q ´ ε ď lim

nÑ8

1

n
log }A´1

i0
pλq ¨ ¨ ¨A´1

in´1
pλq|essλ pσ

niq} ď χssµλ0
pλ0q ` ε

for µλ-a.e. i P Σ`. By Egorov’s theorem for every λ P Bδpλ0q there exists a set Ωλ Ď Σ` that
µpΩλq ą 1´ ε and there exist a constant Cpλq ą 1 that for every i P Σ` and every n,m ě 1

Cpλq´1µλpri|
n´1
0 sqµλprσ

ni|m´1
0 sq ď µλpri|

n`m´1
0 sq ď Cpλqµλpri|

n´1
0 sqµλprσ

ni|m´1
0 sq

and for every i P Ωλ and every n ě 1

Cpλq´1e
´nphµλ0

`2εq
ď µλpri|

n´1
0 sq ď Cpλqe

´nphµλ0
´2εq

, (4.3)

Cpλq´1e
´npχssµλ0

pλ0q´χsµλ0
pλ0q`6εq

ď
|detpA´1

i0
pλq ¨ ¨ ¨A´1

in´1
pλqq|

}A´1
i0
pλq ¨ ¨ ¨A´1

in´1
pλq}2

ď Cpλqe
´npχssµλ0

pλ0q´χsµλ0
pλ0q´6εq

.

(4.4)
By Lusin’s theorem for every ε1 ą 0 there exists a set Jδpλ0q Ď Bδpλ0q that LdpBδpλ0q{Jδpλ0qq ă ε1

and there exists a C ą 1 that Cpλq ď C for every λ P Jδpλ0q. Denote the measure rµλ :“ µ|Ωλ
and

for a finite length word k “ pk0, . . . , kn´1q denote the set

Σk :“
 

pi, jq P Σ` : im “ jm “ km for m “ 0, . . . , n´ 1 and in ‰ jn
(

.

Then for every s ą 0 by Lemma 4.5, the continuity of λ ÞÑ Aipλq and (4.4)

I :“

ż

Jδpλ0q

ĳ

?pessλ piqq, e
ss
λ pjqq

´sdrµλpiqdrµλpjqdλ “

8
ÿ

n“0

ÿ

k“n

ż

Jδpλ0q

ĳ

Σk

?pessλ piqq, e
ss
λ pjqq

´sdrµλpiqdrµλpjqdλ ď

8
ÿ

n“0

ÿ

k“n

ż

Jδpλ0q

ĳ

Σk

Cpλq2

˜

| detpA´1
k0
pλq ¨ ¨ ¨A´1

kn´1
pλqq|

2}A´1
k0
pλq ¨ ¨ ¨A´1

kn´1
pλq}2

¸´s

?pessλ pσ
niqq, essλ pσ

njqq´sdrµλpiqdrµλpjqdλ ď

8
ÿ

n“0

C 1esnpχ
ss
µ pλ0q´χsµpλ0q`6εq

ÿ

k“n

ż

Jδpλ0q

ĳ

Σk

?pessλ pσ
niqq, essλ pσ

njqq´sdrµλpiqdrµλpjqdλ.
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By Lemma 4.8, for any k with |k| “ n

Ik :“

ż

Jδpλ0q

ĳ

Σk

?pessλ pσ
niqq, essλ pσ

njqq´sdrµλpiqdrµλpjqdλ ď

8
ÿ

m“0

2pm`1qs

ż

Jδpλ0q

ĳ

Σk

I
"

?pessλ pσ
niq, essλ pσ

njqq ă
1

2m

*

drµλpiqdrµλpjqdλ ď

8
ÿ

m“0

2pm`1qs

ż

Jδpλ0q

ĳ

Σk

I
"

?pessλ pσ
ni|

Npλ0,mq
0 1q, essλ pσ

nj|
Npλ0,mq
0 1qq ă

2

2m

*

drµλpiqdrµλpjqdλ “

8
ÿ

m“0

2pm`1qs
ÿ

|l|“Npλ0,mq
|h|“Npλ0,mq

ż

Jδpλ0q

ĳ

rklsˆrkhs

I
"

?pessλ ph1q, essλ pl1qq ă
2

2m

*

drµλpiqdrµλpjqdλ

(4.5)

By applying (4.3), the quasi-Bernoulli property of µλ0 , (4.1) and the continuity of λ ÞÑ hµλ

ż

Jδpλ0q

I
"

?pessλ ph1q, essλ pl1qq ă
2

2m

*

rµλprklsqrµλprkhsqdλ ď

C2

ż

Jδpλ0q

I
"

?pessλ ph1q, essλ pl1qq ă
2

2m

*

rµλprksq
2
rµλprlsqrµλprhsqdλ ď

c1µλ0prksqµλ0prlsqµλ0prhsqe
2εpn`Npλ0,mqqe

´nphµλ0
´2εqLd

ˆ

λ P Jδpλ0q : ?pessλ ph1q, essλ pl1qq ă
2

2m

˙

.

Hence, by (4.5) and the strong-stable transversality

Ik ď c1µλ0prksq
8
ÿ

m“0

2pm`1qs
ÿ

|l|“Npλ0,mq
|h|“Npλ0,mq

µλ0prlsqµλ0prlsqe
2εpn`Npλ0,mqqe

´nphµλ0
´2εq C

2m
“

c2µλ0prksqe
´nphµλ0

´4εq
8
ÿ

m“0

2mps´1q`2εNpλ0,mq{ log 2

Since Npλ0,mq{ log 2 ď m 2
βpλ0q

` cpλ0q

I ď c3
8
ÿ

n“0

e
npspχssµ pλ0q´χsµpλ0qq´hµλ0

`10εq
8
ÿ

m“0

2
mps´1`ε 4

βpλ0q
q
.

Hence, by choosing s ă min

"

1´ ε 5
βpλ0q

,
hµλ0

´11ε

χssµ pλ0q´χsµpλ0q

*

the right hand side of the inequality is finite.

By Frostman’s Lemma [7, Theorem 4.13],

dimHpe
ss
λ q˚rµλ ě min

"

1´ ε
5

βpλ0q
,

hµλ0
´ 11ε

χssµ pλ0q ´ χsµpλ0q

*

for Ld-a.e. λ P Jδpλ0q.

But for every λ P Bδpλ0q, dimHpe
ss
λ q˚µλ ě dimHpe

ss
λ q˚rµλ, moreover, LdpBδpλ0q{Jδpλ0qq can be

chosen arbitrary small, thus, the statement follows. �
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Proof of Theorem 4.3. By Lemma 4.4 we have

dimHpe
ss
λ q˚µλ ď min

"

1,
hµλ

χssµλpλq ´ χ
s
µλ
pλq

*

for every λ P U.

So it is enough to establish the lower bound. Let us argue by contradiction. Assume that there exist
a set U 1 Ă U with LdpU 1q ą 0 and a ε ą 0 that

dimHpe
ss
λ q˚µλ ď min

"

1,
hµλ

χssµλpλq ´ χ
s
µλ
pλq

*

´ ε for Ld-a.e. λ P U 1.

Let λ0 P U
1 a Lebesgue density point. Thus, there exists a δ0 ą 0 that for every δ0 ą δ ą 0

Ld
ˆ

λ P Bδpλ0q : dimHpe
ss
λ q˚µλ ď min

"

1,
hµλ

χssµλpλq ´ χ
s
µλ
pλq

*

´ ε

˙

ą 0.

By using the continuity of entropy and Lyapunov exponents we have for sufficiently small δ ą 0

Ld

˜

λ P Bδpλ0q : dimHpe
ss
λ q˚µλ ď min

#

1,
hµλ0

χssµλ0
pλ0q ´ χsµλ0

pλ0q

+

´
ε

2

¸

ą 0,

but this contradicts Proposition 4.7. �

Proof of Theorem 4.2. By Theorem 4.3, we have

dimHpe
ss
λ q˚µλ “ min

"

hµλ
χssµλpλq ´ χ

s
µλ
pλq

, 1

*

for Ld-a.e λ P U .

On the other hand, by Theorem 3.6, if

hµλ
χssµλpλq ´ χ

s
µλ
pλq

ě min

"

hµλ
χsµλpλq

, 1

*

the statement holds. Thus, we may assume that

hµλ
χssµλpλq ´ χ

s
µλ
pλq

ă 1, χssµλpλq ą 2χsµλpλq and
hµλ

χssµλpλq ´ χ
s
µλ
pλq

` 2
hµλ

χssµλpλq
ą 2.

By [2, Lemma 4.12], we get that dimHpπ
´
λ q˚µλ ě 2

hµλ
χssµλ

pλq and the statement follows by Theorem 3.6.

�

5. Proof of Theorem 1.1

Finally, in this section we prove Theorem 1.1 as an application of Theorem 4.2.
For a matrix A P R2ˆ2

` Y R2ˆ2
´ let

Spx,Aq :“
|a|x` |c|p1´ xq

p|a| ` |b|qx` p|c| ` |d|qp1´ xq
where A “

„

a b
c d



. (5.1)

Simple calculations show that the maps Si P C
2r0, 1s, Moreover,

sup
xPr0,1s

|S1px,Aq| “ max
 

|S1p0, Aq|, |S1p1, Aq|
(

“
| detA|

~A~2
, and (5.2)

inf
xPr0,1s

|S1px,Aq| “ min
 

|S1p0, Aq|, |S1p1, Aq|
(

“
| detA|

}A}28
,

where }A}8 “ max t|a| ` |b|, |c| ` |d|u the usual 8-norm of matrices.
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Lemma 5.1. Let A “ tA1, . . . , ANu be a set of non-singular matrices with either strictly posit-

ive or strictly negative elements such that |detAi|
~Ai~2

ă 1. Let φ “ tSip.q :“ Sp., Aiqu
N
i“1 be IFS on

r0, 1s and let Π : Σ` ÞÑ r0, 1s be the natural projection of φ. Then for every i` P Σ` the vec-

tor pΠpi`q ´ 1,Πpi`qq
T
P esspi`q.

Proof. Let A “ tA1, . . . , ANu and the IFS φ “ tS1, . . . , SNu be as required. It is easy to see that the
cone M “

 

px, yq P R2{ tp0, 0qu : xy ď 0
(

is backward invariant. So, by [3, Theorem B], A satisfies
the dominated splitting.

For an i` P Σ` let esspi`q be the invariant strong stable direction defined in (5.1). By the definition
of Π : Σ` ÞÑ r0, 1s

ˆ

Πpi`q ´ 1
Πpi`q

˙

“

ˆ

´bi0Πpσi`q ´ di0p1´Πpσi`qq
ai0Πpσi`q ` ci0p1´Πpσi`qq

˙

p|ai0 | ` |bi0 |qΠpσi`q ` p|ci0 | ` |di0 |qp1´Πpσi`qq
“

detAi0
p|ai0 | ` |bi0 |qΠpσi`q ` p|ci0 | ` |di0 |qp1´Πpσi`qq

A´1
i0

ˆ

Πpσi`q ´ 1
Πpσi`q

˙

.

Thus, by Lemma 2.2 and uniqueness, the 1 dimensional subspace esspi`q contains pΠpi`q ´ 1,Πpi`qq
T .
�

Lemma 5.2. Let A “ tA1, . . . , ANu be arbitrary such that Ai P M, where M is defined in (1.3).
Moreover, let Aptq “ tA1 ` t1B1, . . . , AN ` tNBNu, where t P RN

Ai “

ˆ

ai bi
ci di

˙

and Bi “

ˆ

ai ` bi ´pai ` biq
ci ` di ´pci ` diq

˙

. (5.3)

Then there exists a δ “ δpAq ą 0 such that the IFS φt “
!

S
t
i p.q :“ Sp., Ai ` tiBiq

)N

i“1
satisfies the

transversality condition on p´δ, δqN .
In particular, Aptq satisfies the strong-stable transversality condition on p´δ, δqN .

Proof. Since MN is open, there exists a ε “ εpAq ą 0 that Aptq P MN for every t P p´ε, εqN . Let

φ “ tS1, . . . , SNu be the IFS for A and φt “
!

S
t
1, . . . , S

t
N

)

be the IFS for Aptq. Simple calculations

show that S
t
i pxq “ Sipxq ` ti for every i “ 1, . . . , N . By the definition of M, by (5.2) and by [14,

Corollary 7.3] there exists δ “ δpAq ą 0 such that δ ă ε and φt satisfies the transversality condition.
By Lemma 5.2 and Definition 4.1, it follows that Aptq satisfies the strong-stable transversality on
p´δ, δqN . �

Lemma 5.3. Let us define for every A PMN

P pAq :“MN X
ď

tPRN
Aptq,

where Aptq is defined in Lemma 5.2. Then P defines a measurable partition of MN .

Proof. By the definition of P it is enough to show that if A ‰ A1 then either P pAq “ P pA1q or
P pAq X P pA1q “ H.

Let us fix A ‰ A1 and suppose that P pAq X P pA1q ‰ H. Then there exist t1, . . . , tN P R and
t11, . . . , t

1
N P R that Ai`tiBi “ A1i`t

1
iB
1
i for every i “ 1, . . . , N , where Bi and B1i defined in (5.3). Thus

ai`bi “ a1i`b
1
i and ci`di “ c1i`d

1
i. Hence, P pAq “ P pA1q. The measurability is straightforward. �

Proof of Theorem 1.1. First we show that if A P NN YON , where NN and ON are defined in (1.4),
then condition (iii) of Theorem 4.2 holds for the Käenmäki measure µK of A, defined in Definition 2.6.
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Indeed, if A P NN then
hµK

χss
µK
´ χs

µK
ě
hµK

χs
µK

and on the other hand, if A P ON then

hµK

χss
µK
´ χs

µK
` 2

hµK

χss
µK
“
χs
µK
` ps0 ´ 1qχss

µK

χss
µK
´ χs

µK
` 2

χs
µK
` ps0 ´ 1qχss

µK

χss
µK

“

´ 3`

¨

˚

˝

2`
1

1´
χs
µK

χss
µK

˛

‹

‚

s0 ` 2
χs
µK

χss
µK
ą

1

3
`

5

3

ˆ

1´
χs
µK

χss
µK

˙ ` 2
χs
µK

χss
µK
ą 2.

Now, let V Ă NN YON ĂMN be a compact set such that V o “ V . Let us define for a A P V
QpAq :“ V X P pAq,

Thus,
Ť

BPP pAq

!

Ť

tPp´δpBq,δpBqqN Bptq
)

defines an open cover of QpAq. Since QpAq is compact there is

a finite set tB1, . . . ,Bnu that
Ťn
i“1

!

Ť

tPp´δpBiq,δpBiqqN Biptq
)

is a cover for QpAq. But by Lemma 5.2,

for every i “ 1, . . . , n the parametrized family of matrices Biptq satisfies the strong-stable transvers-
ality condition on p´δpBiq, δpBiqqN . Thus, by Theorem 4.2 for every i “ 1, . . . , n

dimH µ
K
t “ dimH Λt “ dimB Λt “ s0ptq for LN -a.e t P p´δpBiq, δpBiqqN ,

where µKt is the Käenmäki measure of the system Biptq and s0ptq is the affinity dimension. In
particular, for every A P V

dimH µ
K “ dimH Λ “ dimB Λ “ s0pBq for LN -a.e B P QpAq.

By Lemma 5.3, Q is a measurable foliation of V , thus, by Rokhlin’s Theorem

dimH µ
K “ dimH Λ “ dimB Λ “ s0pAq for L4N -a.e. A P V.

Since V was arbitrary, the statement follows. �
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