
TOPOLOGICAL AND ERGODIC ASPECTS OF

PARTIALLY HYPERBOLIC DIFFEOMORPHISMS AND

NONHYPERBOLIC STEP SKEW-PRODUCTS
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Abstract. We review some ergodic and topological aspects of robustly tran-
sitive partially hyperbolic diffeomorphisms with one-dimensional center direc-

tion. We also discuss step skew-product maps whose fiber maps are defined on

the circle which model such dynamics. These dynamics are genuinely nonhy-
perbolic and exhibit simultaneously ergodic measures with positive, negative,

and zero exponents as well as intermingled horseshoes having different types

of hyperbolicity. We discuss some recent advances concerning the topology of
the space of invariant measures and properties of the spectrum of Lyapunov

exponents.
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1. Introduction

The paper [27] opens with the following general question:

To what extent is the behaviour of a generic dynamical system hyperbolic?

and observes that a substantial number of problems in Dynamical Systems Theory
are just reformulations of this question. In the beginning of the theory in the late
60’s the paper by Abraham-Smale [2] showed that nonhyperbolic systems are not
dense in the space of dynamical systems. Indeed there are open sets in the space
of diffeomorphisms consisting of nonhyperbolic ones. These findings showed the
necessity of weaker notions of hyperbolicity and lead to the ones of nonuniform
hyperbolicity due to Pesin [40] and partial hyperbolicity [29], among others.

Consider a differentiable dynamical system F : M →M defined on a closed and
compact manifold M . Recall that a closed and F -invariant transitive (existence of a
point in Γ whose orbit is dense in Γ) set Γ is hyperbolic if there exists a dF -invariant
splitting Es ⊕ Eu = TΓM of the tangent bundle and constants C > 0 and λ > 1
such that for every x ∈ Γ for every n ≥ 0 we have

‖dFnx (v)‖ ≤ Cλn‖v‖ for all v ∈ Es
x and ‖dF−nx (w)‖ ≤ Cλn‖w‖ for all w ∈ Eu

x .

Any variation of hyperbolicity is based on the notion of Lyapunov exponents.
Recall that a point x ∈M is called Lyapunov regular if there exist a positive integer

s(x), numbers χ1(x) < . . . < χs(x)(x), and a dF -invariant splitting TxM = ⊕s(x)
i=1E

i
x

of the tangent space at x such that for all i = 1, . . . , s(x) and v ∈ Eix \ {0} we have

(1.1) lim
n→∞

1

n
log ‖dFnx (v)‖ = χi(x)

and these numbers χ1(x) < . . . < χs(x)(x) are called the Lyapunov exponents of x.
By the Oseledets multiplicative ergodic theorem (see [38]), given an F -invariant

ergodic probability measure µ, the set of Lyapunov regular points has full measure
and s(·) = s(µ) and χi(·) = χi(µ), i = 1, . . . , s(µ), are constant µ-almost every-
where and the latter numbers are called the Lyapunov exponents of µ. If there
is ` such that χ`(µ) = 0 then the measure µ is called µ nonhyperbolic, otherwise
it is called hyperbolic and then we will refer to s(µ) as its (stable) index. When
talking about nonhyperbolic measures, we always assume ergodicity and hence ex-
clude nontrivial convex combination of ergodic measures. The easiest examples of
ergodic measures are the ones supported on a periodic orbit (we will call such mea-
sures simply periodic). The index of a hyperbolic periodic orbit is the index of the
(unique) invariant measure supported on its orbit. Below we will call a measure
nontrivial if its support is uncountable, hence such a measure cannot be periodic.
The easiest examples of a nonhyperbolic measure is a periodic one supported on
the orbit of a nonhyperbolic periodic point. A hyperbolic periodic orbit which has
both positive and negative exponents we will also call a saddle.

The discussion above leads to the following question:

To what extent does Ergodic Theory detect nonhyperbolic dynamics?

that is just a reformulation of the opening question above (though note that the
term “nonhyperbolic dynamics” is vague and differently used in different contexts).
The answer to this question is negative as there are examples of nonhyperbolic
systems (in the sense that the nonwandering set is not hyperbolic) for which all er-
godic measures are hyperbolic with Lyapunov exponents uniformly bounded away
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from zero [3, 14]. Note that these examples are fragile in the sense that they can
be destroyed by perturbations. On the other hand, by the Kupka-Smale generic-
ity theorem, see for instance [39, Chapter 3], generically1 periodic points are all
hyperbolic. Hence, considering nonhyperbolic periodic measures, one can get sys-
tems with nonhyperbolic ergodic measures only densely in the complement of the
hyperbolic ones. Thus, to go beyond dense subsets, one needs to investigate non-
hyperbolic measures which are not periodic. This was first done in [27] where it is
introduced the method of periodic approximations to construct nontrivial ergodic
measures as weak∗ limits of periodic ones.

In dimension strictly bigger than two one needs to take into account that a priori
different types of hyperbolicity may coexist together with nonhyperbolicity. Indeed
one may have hyperbolic periodic orbits of different stable index (dimension of
the stable bundle) which robustly are part of the same transitive set (existence of a
dense orbit), this leads to intermingled types of hyperbolicity in the same transitive
set. For instance, this is exactly what happens in the dynamics analysed in [27].

Having this in mind we rephrase the above question:

To what extent does Ergodic Theory distinguishes the different types
of hyperbolicity in nonhyperbolic dynamics?

In what follows we will restrict to systems which are transitive in the whole
ambience (this prevents the existence of attractors and repellers). In this setting,
the set of ergodic measures Merg will split into several disjoint components, which
will be analyzed separately (see (2.1)).

2. Partially hyperbolic dynamics

At the present state of the art, to advance in answering the above questions,
we need to assume more structure on the dynamics. We have to require the ex-
istence of a globally defined splitting of the tangent space into continuously vary-
ing invariant subbundles (a dominated splitting) which as a consequence incorpo-
rates the subspaces of the Oseledets splitting. In more specific terms, we will re-
quire that the dynamical system is partially hyperbolic having three such bundles
TM = Ess ⊕ Ec ⊕ Euu, where Ess is uniformly contracting and Euu is uniformly
expanding. Hence, zero Lyapunov exponents are automatically associated with the
central bundle Ec. The exponent associated with Ec we will simply call central
exponent. We denote by PH1(M) the set of C1 diffeomorphisms defined on a com-
pact closed manifold M having a partially hyperbolic splitting as above with three
nontrivial directions, the central one having dimension one.2

In what follows we will consider F : M → M a C1 diffeomorphism of a Rie-
mannian manifold which is partially hyperbolic and transitive. We will assume
that the dynamics is robustly transitive, robustly nonhyperbolic, and there is some
F -invariant compact closed curve γ = F (γ). The latter property turns out to be
also robust, by normal hyperbolicity. We denote this open set by RTPH1(M)
(here we consider the uniform topology in the space of C1-diffeomorphisms). Note
that this implies that this curve γ is tangent to Ec and we refer to it as a compact

1A generic property is a property satisfied on a residual subset, that is, a set which contains

a countable intersection of open and dense subsets.
2In what follows, to simplify, we will assume that the splitting is defined on the whole ambient

space, similar approach can be done when the splitting is only locally defined.
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central leaf. Note that the robust nonhyperbolicity hypothesis excludes pathologi-
cal cases as the one of diffeomorphisms on T3 being a direct product of a Anosov
diffeomorphism on T2 and a irrational rotation. Note that for F ∈ RTPH1(M)
the set of ergodic measures Merg splits into three disjoint components

(2.1) Merg = Merg,<0 ∪Merg,0 ∪Merg,>0,

where the measures in Merg,0 are nonhyperbolic and the ones Merg,<0 and Merg,>0

are hyperbolic. Further, the measures in Merg,<0 have dimEss + 1 negative and
dimEuu positive exponents and the measures in Merg,>0 have dimEuu + 1 positive
and dimEss negative exponents.

2.1. Hyperbolic and nonhyperbolic measures. First observe that C1-open
and -densely in the set RTPH1(M), there exist hyperbolic periodic points which
are contracting in the central direction and hyperbolic periodic points which are
expanding in the central direction. Besides that there are horseshoes which are con-
tracting and horseshoes which are expanding in the central direction, respectively.
Hence there are also hyperbolic ergodic measures with positive entropy in the sets
Merg,<0 and Merg,>0. Indeed, in this setting the existence of a hyperbolic ergodic
measure with positive entropy implies the existence of horseshoes and hence of hy-
perbolic periodic orbits with corresponding type by Katok’s horseshoe construction
(see [31, 23]).

The existence of nonhyperbolic measures is a bit more subtle. Indeed, densely
in RTPH1(M) there are diffeomorphisms with nonhyperbolic periodic orbits and
hence with trivial nonhyperbolic measure (see [36])3. Since generic diffeomor-
phisms have hyperbolic periodic orbits, one can obtain at most a dense subset
in RTPH1(M) with trivial nonhyperbolic measures. Hence, to get larger sets of
diffeomorphisms with nonhyperbolic measures, it is necessary to investigate the oc-
currence of nontrivial nonhyperbolic measures. In [27] the authors introduce the
method of periodic approximations that produces a nontrivial nonhyperbolic (er-
godic) measure which is a weak∗ limit of hyperbolic periodic measures and apply it
to some specific step skew-product examples. This method builds on the existence
of controlled transitions between saddles of different indices. Using it, [21, 9, 15]
obtained a C1-generic set of C1-diffeomorphisms with nonhyperbolic nontrivial (er-
godic) measures (see also the variant [11]). Using this method, [33] provides some
specific open sets of robustly nonhyperbolic diffeomorphisms defined on T3 with
such measures. Following a different approach, using the so-called flip-flop con-
figuration which relies on the concept of a blender also explained below, [4] prove
that open and densely in RTPH1(M) there are diffeomorphisms with nonhyper-
bolic measures with positive entropy. Indeed, it is shown that there is a compact
invariant set with positive topological entropy consisting of points whose central
Lyapunov is zero and hence we can apply the variational principle in [49] to get

3This is a consequence of the so-called ergodic closing lemma in [36]. A recurrent point of a
diffeomorphism is called well-closable if its orbit can be closed by a small C1-perturbation in such
a way that the resulting periodic point shadows the original orbit along the periodic point’s entire
orbit. The ergodic closing lemma claims that almost every point of any invariant measure is well-
closable and implies that when the nonwandering set is nonhyperbolic then nonhyperbolic period

points can be created by perturbation. Note that the ergodic closing lemma also implies that C1-
generically in RTPH1(M) the hyperbolic periodic points having negative (positive, respectively)
central exponent are dense in M .
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such measures. We remark that the method of periodic approximations can only
lead to measures with zero entropy, see [32].

Summarizing, open and densely in RTPH1(M) each of the components in (2.1)
is nonempty and contains measures with positive entropy. Therefore, a natural
question is what type of behavior (negative, zero, or positive exponent) predom-
inates? In our context, it is natural to quantify this in terms of entropy. Here
we have two ways of doing so. First, given an central Lyapunov exponent α in
the possible spectrum of all exponents, determine the maximal entropy of ergodic
measures with that exponent:

(2.2) sup{µ ∈Merg : hµ(F ) = α}.
Or, given an exponent, determine the topological entropy of the set of Lyapunov
regular points with that exponent:

(2.3) htop(F,L(α)), where L(α)
def
= {x : χc(x) = α}.

The former is related to restricted variational principles and implicitly determines
the latter when performing a multifractal analysis (see Theorem 3.5). As there is an
intimate relation between ergodic measures and the corresponding generic points,
in a reasonable context we expect that both above introduced quantities coincide,
see Section 3.3 for a full discussion.

2.2. Invariant foliations. Let us finally describe quickly geometrical features of
the diffeomorphisms in RTPH1(M) which are also essential to study the above
discussed ergodic properties and the level sets (2.2) and (2.3). In particular, they
motivate the model we will study in Section 3. The existence of the partially
hyperbolic splitting TM = Ess⊕Ec⊕Euu implies that there are invariant foliations
F ss and Fuu tangent to Ess and Euu called the strong stable and strong unstable
foliations, respectively, see [29]. By [7, 42], because by assumption Ec is one-
dimensional and there is a compact central leaf, there is a C1-open and -dense
subset ORTPH1(M) of RTPH1(M) consisting of diffeomorphisms for which both
foliations are minimal (i.e., every leaf of the foliation is dense in the whole space). A
special case occurs when there is a center foliation (tangent to Ec) whose leaves are
all compact. Such systems are topologically of skew-product type. An important
example which still inspires many open questions is the example in [44].4 We will
further discuss this topic in Section 4.1.

The above geometric features are in the realm of the large family of step skew-
products we introduce and discuss in Section 3. On the other hand, the properties of
this family seem to capture the essential dynamical properties of diffeomorphisms in
RTPH1(M) that allow to study the level sets above and several ergodic properties
as well as to analyze the topology of the space of invariant measures. The latter
we further discuss in the following subsection.

2.3. Topology of the space of measures: Framework. Let us now have a look
at the topology of the space of Borel probability measures M invariant under a
continuous map of a compact metric space. Equipped with the weak∗ topology it is
a compact metrizable topological space [49, Chapter 6.1]. We denote by Merg ⊂M

4For example, [25] asks if a general ergodic volume preserving diffeomorphism sufficiently C1

close to a partially hyperbolic linear automorphism L : T3 → T3 given by L(x, y, z) = (A(x, y), z),

A a linear Anosov diffeomorphism, has dense ergodic measures. This would include the systems
in [44].
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the subset of ergodic measures. Recall that M is a nonempty Choquet simplex
(see [49, Chapter 6.2]). In particular, it is convex and compact. The extreme
points of M are the ergodic measures.

In general, when studying the topology of M, there are many properties that
can be of interest such as density and entropy density of ergodic measures (in M)
as well as connectedness of the set of ergodic measures. The density of ergodic
measures has immediately very strong consequences. Indeed, then M is either a
singleton (the map is uniquely ergodic) or a nontrivial Choquet simplex in which
extreme points are dense, and one calls M then a Poulsen simplex. Poulsen [41]
was the first who constructed an example of a space with such properties; by [35]
any two metrizable nontrivial simplices with dense extreme points are equivalent up
to affine homeomorphisms and hence one can consider M as the Poulsen simplex.
Note that, for example, Merg is then arcwise connected (see [35, 4. in Section 3]).
To conclude, recall that one says that ergodic measures are entropy dense if for any
µ ∈ M and any ε > 0, any neighborhood of µ contains an ergodic measure ν such
that hν(F ) > hµ(F )− ε.

Density of ergodic (even periodic) measures was first shown in [45, 46] under
the assumption that it the map satisfies the periodic specification property (in [47]
connectedness was concluded for shift spaces, which is however an immediate con-
sequence of density by [35] as explained above). Recall that for smooth dynamical
systems, periodic specification holds for any basic set of an axiom A diffeomorphism
(see [12]). In a more general context, in [1] it was shown that for Λ ⊂M being an
isolated nontrivial transitive set of a C1-generic diffeomorphism, periodic measures
are dense (and also have many further properties, see [24]). Below we will give
more details on two more recent results [28, 10].

All known results on properties such as (entropy) density and connectedness
involve approximations of hyperbolic ergodic measures by either periodic measures
or Markov ergodic measures supported on horseshoes. We will see that this can be
achieved also in some nonhyperbolic context, in particular when the set of ergodic
measures contains measures of different index as well as nonhyperbolic measures.

Let us observe that connectedness and (entropy) density of ergodic measures is
not always guaranteed. Note that [24] provides a number of counterexamples in
shift spaces, though, in the following we would like to focus on partially hyperbolic
systems. For that, we point out the porcupine-like examples of compact invariant
sets of partially hyperbolic transitive C1 diffeomorphism studied in [22, 34, 17, 18]
which have a spectrum of central Lyapunov exponents with at least two disjoint
components, and at least two connected components of ergodic measures. In par-
ticular, ergodic measures are not dense.

2.4. Topology of the space of measures: Intersection and homoclinic
classes. To understand the topology of the space M, it turns out useful to consider
so-called intersection and homoclinic classes of hyperbolic periodic points. To state
the results more precisely, let us briefly define them. We say that two hyperbolic
periodic points of the same index are homoclinically related if the invariant sets of
their orbits meet cyclically (note that in our partially hyperbolic setting with one
dimensional center transversality is not involved, see Section 5 for details). Note
that this is an equivalence relation on the set of hyperbolic periodic points and we
call intersection classes the equivalence classes for the homoclinic relation. Given
a hyperbolic periodic point P , we denote by Int(P ) its intersection class.
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The intersection class of a hyperbolic periodic point was first considered in [37]
and called h-class to obtain the so-called spectral decomposition of axiom A dif-
feomorphisms. With this terminology, a homoclinic class (called h-closure in [37])
is the closure of the intersection class it contains. Note that a homoclinic class is
always a transitive invariant set. Moreover, a homoclinic class of a hyperbolic pe-
riodic point may contain periodic points which are not homoclinically related with
it and, consequently, may contain several distinct intersection classes. Indeed, a
homoclinic class which is not hyperbolic may support ergodic measures of different
indices and/or nonhyperbolic ergodic measures ([27, 21, 4]). Moreover, there are
examples of homoclinic classes which are not hyperbolic whose ergodic measures
are all hyperbolic but that simultaneously support ergodic measures with negative
and positive central Lyapunov exponent, see [22, 34].

We call a (not necessarily ergodic) measure µ ∈ M hyperbolic with negative
central Lyapunov exponent if µ-almost every point has a negative central Lyapunov
exponent and denote by M<0 the set of all such measures. Similarly, we define
a measure to be hyperbolic with positive central Lyapunov exponent and define
M>0. By weak∗ and in entropy convergence we mean that the sequence of measures
converges in the weak∗ topology and their entropies also converge to the entropy
of the limit measure.

By [6, Theorem E], the C1-open and -dense subset ORTPH1(M) of RTPH1(M)
above can be chosen to consist of diffeomorphisms such that any pair of saddles
with the same index are homoclinically related, that is, share the same intersection
class. Thus, for F ∈ ORTPH1(M) there are precisely two intersection classes
which we will denote by Int<0 and Int>0, where

Int<0
def
= {P ∈M : P hyperbolic periodic point, χc(P ) < 0}

and Int>0 is analogously defined. Moreover, each of those two sets is dense in M .
Given a hyperbolic (not necessarily ergodic nor periodic) measure µ ∈M, we define
its intersection class, denoted by Int(µ), as the intersection class of hyperbolic
periodic orbits such that µ is accumulated by periodic measures from that class.
Hence, for F ∈ ORTPH1(M) either Int(µ) = Int<0 or = Int>0. By [10], the
intersection class of µ is indeed well-defined.

We can finally name two results which address the topics mentioned above.
We briefly restate them in our more specific setting of RTPH1(M). Note that
a key argument to show that an ergodic hyperbolic measure µ is accumulated by
hyperbolic periodic measures is Katok’s horseshoe construction. Note that this
method holds for either C1+α diffeomorphisms (see [31]) or C1 diffeomorphisms
which have a dominated splitting (hence, in particular in RTPH1(M), see [23])
and note that this construction enables approximation in the weak∗ topology and
entropy.

First, the question of density of ergodic measures in M is partially answered
in [10] by showing that for F ∈ RTPH1(M) every µ ∈ M<0 (not necessarily
ergodic) is approached in the weak∗ topology by ergodic measures if, and only
if, almost all ergodic measures in the ergodic decomposition of µ (with respect
to the corresponding distribution supported on the set of ergodic measures) share
one intersection class (necessarily, µ must have the same index as the hyperbolic
periodic orbits of that class). As a consequence, for F ∈ ORTPH1(M), we have
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that ergodic measures are dense in M<0 and M>0, respectively. The structure of
M0, however, seems to be much more complicated.

Second, by [28], given F ∈ ORTPH1(M) and a saddle P of F , the set of ergodic

measures supported on Int(P ) with the same index such as P is arcwise connected.
Observe that in [28] the authors originally assume C1+α to apply Katok’s result
which can be replaced by C1 plus partial hyperbolicity as explained above. Another
crucial assumption is that Int(P ) is isolated (observe that this guarantees that
approximating measures stay in the same space of measures such as µ). Note that
in our setting this is automatically guaranteed since the entire ambient space M is
a homoclinic class. One further assumption is that any two saddles with the same
index are homoclinically related, which also holds in our case.

3. Step skew-product model

We now turn towards the step skew-product setting. For simplicity, we restrict
to a setting with two symbols only. Let σ : Σ → Σ be the usual shift map on the
space Σ = {0, 1}Z of two-sided sequences, equipped with the standard metric and
consider C1 diffeomorphisms f0, f1 : S1 → S1 and the associated step skew-product

(3.1) F : Σ× S1 → Σ× S1, F (ξ, x) = (σ(ξ), fξ0(x)), where ξ = (ξi)i∈Z.

We denote by SP1(Σ × S1) the family of maps F as in (3.1) and call f0, f1 also
their fiber maps.

As motivated in Section 2 (see also the discussions in [26, 30]), a step skew-
product can be seen as a model of a particular example of a partially hyperbolic
diffeomorphism with compact center leaves (homeomorphic to circles).

Before describing precisely our setting let us introduce some notation. Given

a sequence ξ = (ξi)i∈Z ∈ Σ we write ξ = ξ−.ξ+, where ξ− = (. . . ξ−1.) ∈ Σ−
def
=

{0, 1}−N and ξ+ = (ξ0ξ1 . . .) ∈ Σ+ def
= {0, 1}N0 are the corresponding one-sided

infinite sequences. We also consider the cylinders

[ηk . . . ηk+r]
def
= {ξ = (ξi)i∈Z : ξi = ηi, i = k, . . . , k + r},

where r ≥ 0, and define the cylinders [ξ−.ξ0 . . . ξr] and [ξ−r . . . ξ−1.ξ
+] in the natural

way.
Given finite sequences (ξ0 . . . ξn) and (ξ−m . . . ξ−1), we let

f[ξ0... ξn]
def
= fξn ◦ · · · ◦ fξ1 ◦ fξ0 and

f[ξ−m... ξ−1.]
def
= (fξ−1

◦ . . . ◦ fξ−m)−1 = (f[ξ−m... ξ−1])
−1.

We can naturally define the central Lyapunov exponent of a point X = (ξ, x) by

χc(X)
def
= lim

n→∞

1

n
log |f ′[ξ0...ξn−1 ](x)| = lim

n→∞

1

n

n−1∑
k=0

log |f ′ξk(x)|,

whenever the limit exists, which is nothing but a Birkhoff average of a continuous
function (with respect to F ). Taking the point of view that the step skew-product
F is a model of a certain partially hyperbolic diffeomorphism, this exponent would
correspond to some Lyapunov exponent in (1.1).

We will require that the fiber maps f0, f1 of the map F satisfy the axioms CEC+
and Acc+, that is, there is a (closed) so-called forward blending interval J+ ⊂ S1

having the following properties:
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CEC+(J+) (Controlled Expanding forward Covering relative to J+).
There exist positive constants K1, . . . ,K5 such that for every interval H ⊂ S1

intersecting J+ and satisfying |H| < K1 we have

• (controlled covering) there exists a finite sequence (η0 . . . η`−1) for some pos-
itive integer ` ≤ K2 |log |H||+K3 such that

f[η0... η`−1](H) ⊃ B(J+,K4),

where B(J+, δ) is the δ-neighborhood of the set J+.
• (controlled expansion) for every x ∈ H we have

log |(f[η0... η`−1])
′(x)| ≥ `K5.

We let

O+(x)
def
=
⋃
n≥0

⋃
(θ0...θn−1)

f[θ0... θn−1](x).

Acc+(J+) (forward Accessibility relative to J+).

O+(int J+) =
⋃

x∈int J+

O+(x) = S1.

Analogously, F satisfies the axioms CEC− and Acc− if there is a so-called (closed)
backward blending interval J− ⊂ S1 such that the inverse maps f−1

0 , f−1
1 satisfy

CEC+ and Acc+ (with J−).
The overall assumption for our consideration is transitivity.

Axiom T (Transitivity). There is a point x ∈ S1 such that the sets O+(x) and
O−(x) are both dense in S1.

In what follows we denote by SP1
nh(Σ× S1) the subset of SP1(Σ× S1) of skew

products satisfying the axioms CEC+(J+), Acc+(J+), CEC−(J−), Acc−(J−),
and T for some intervals J+ and J−. Under these assumptions it is possible to
choose a common blending interval, see [19, Section 2.2] for a discussion about
relations between the choice of (common) blending intervals and transitivity.

Lemma 3.1 (Common blending interval, [19, Lemma 2.3]). Let F ∈ SP1
nh(Σ×S1).

Then for every x ∈ S1 and every δ sufficiently small the interval J = B(x, δ)
satisfies Axioms CEC+(J), Acc+(J), CEC−(J), and Acc−(J).

Returning to our setting, for maps in SP1
nh(Σ × S1) one can define homoclinic

relations and intersection classes as in Section 2.4 (for details see Section 5). By
Proposition 5.1, there are precisely two intersection classes:

Int<0
def
= {P ∈ Σ× S1 : P hyperbolic periodic point, χc(P ) < 0}

and the analogously defined set Int>0. Moreover, we have

(3.2) Int<0 = Int>0 = Σ× S1 = homoclinic class(Q),

where Q is any hyperbolic periodic point in Σ×S1. Below we will conclude that each
intersection class corresponds to one connected component of ergodic measures.
Given a hyperbolic ergodic (not necessarily periodic) measure µ ∈M, we define its
intersection class, denoted by Int(µ), as in Section 2.4. By Proposition 5.1, either
Int(µ) = Int<0 or = Int>0.
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3.1. Hyperbolic measures. Following the discussion in Section 2.4 which can be
adapted also to SP1(Σ× S1) (see [19, Section 3]), the following result is a version
of [10, Theorem 2] and [28, Theorems 1.1 and 1.4] for SP1

nh(Σ× S1).

Theorem 3.2. Let F ∈ SP1
nh(Σ×S1). Every measure µ ∈M<0 is accumulated by

measures νn ∈Merg,<0 in the weak∗ topology and Int(µ) = Int<0. Moreover, every
measure µ ∈Merg,<0 is accumulated by measures νn ∈Merg,<0 in the weak∗ topology
and in entropy. The analogous result is true for M>0 and Merg,>0, respectively.

In particular each of the sets Merg,<0 and Merg,>0 are arcwise connected.

The first of the above stated results was shown in the case of a C1 diffeomorphism
with a dominated splitting E⊕F in [10] and the above statement is a translation to
our setting (we recall again that the isolation condition is satisfied since we study
the dynamics on the entire ambient space Σ × S1). We point out that the essen-
tial ingredients in [10] are the C1 dominated Pesin theory as well as the Kingman
subadditive and the maximal ergodic theorems, which all have their natural trans-
lation to our setting. We refrain from repeating this part of the proof. To see that
Merg,<0 is arcwise connected, we follow the steps of proof in [28]. In this paper
the C1+α-regularity of the diffeomorphisms is used only to apply Katok’s result for
approximating an ergodic hyperbolic measure by hyperbolic periodic measures. As
mentioned before, this also holds true for a C1 diffeomorphism with a dominated
splitting E ⊕ F ([23]), and has its natural translation to our setting. The two
main properties assumed in [28] are (i) every pair of hyperbolic periodic points of
the same stable index Σ × S1 are homoclinically related (true by Proposition 5.1)
and (ii) the homoclinic class is isolated (true because of (3.2)), but we prefer to
sketch the argument. Assume that µ0, µ1 ∈ Merg,<0. Then µi is accumulated by
a sequence of hyperbolic periodic measures νin ∈ Merg,<0 supported on the orbits
of hyperbolic periodic points P in, i = 0, 1. Since P 0

1 and P 1
1 are homoclinically

related, there exists a continuous path µ0 : [1/3, 2/3] → Merg,<0 joining the mea-
sures ν0

1 and ν1
1 . For any pair of measures ν0

n, ν
0
n+1 and any neighborhood U of

their convex combination {sν0
n + (1 − s)ν0

n+1, s ∈ [0, 1]}, one can choose a basic
set Γ0

n such that all measures supported on it are contained in U . Hence, in par-
ticular, there exists a continuous path µ0

n : [1/3n+1, 1/3n] → Merg,<0 ∩ U joining
the measure ν0

n with ν0
n+1. The same applies to the measures ν1

n, defining paths
µ1
n : [1−1/3n, 1−1/3n+1]→Merg,<0 which stay in neighborhoods converging to µ1.

Defining µ∞|(0,1) : (0, 1) → Merg,<0 by concatenating the domains of those paths,

we complete the definition of the path µ∞ by letting µ∞(0) = limn→∞ µ0
n(1/3n)

and µ∞(1) = limn→∞ µ1
n(1− 1/3n).

3.2. Nonhyperbolic ergodic measures. For nonhyperbolic ergodic measures,
the above ergodic approximation methods in general do not apply. However, in our
setting, for a step skew-product in SP1

nh(Σ×S1), the special orbit structure enables
us to somehow extend these methods. The following was shown in [19].

Theorem 3.3. Let F ∈ SP1
nh(Σ × S1). Every measure in Merg,0 is accumulated

by measures in Merg,<0 in the weak∗ topology and in entropy and by measures in
Merg,>0 in the weak∗ topology and in entropy.

In particular, any such measure is arcwise connected with any ergodic measure
in Merg,<0 and in Merg,>0, respectively.
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The rough idea of the proof of the above result is to first follow the essential
ingredients in Katok’s horseshoe construction (see [31, 23] and [19, Section 3]) that
given an ergodic measure to find sufficiently many orbits (whose number growths
roughly exponentially with a factor given by the entropy hµ(F )) whose (nonin-
variant) orbital measures roughly approach µ in the weak∗ topology. The second
ingredient is, based on the special orbit structure of our maps, to choose so-called
skeletons which connect the before obtained orbit pieces to almost recurrent orbits,
which can be shadowed by periodic ones. The main issue is to carefully control
distortion (recall that we only assume that the maps are C1 and that we shadow
orbits which roughly have a central Lyapunov exponent equal to zero). This collec-
tion of hyperbolic (with exponent close to zero) periodic orbits allows to construct
horseshoes, the only obstacle in this final step is that they have periods which can
vary in between some numbers which is unavoidable because the “orbit-gluing” step
is only achieved by the topological constraints (in particular guaranteed by axioms
Acc±). To bypass this problem, we construct so-called multi-variable-time horse-
shoes. This way we construct by hand horseshoes which support only measures
which are weak∗ close to µ and whose entropy is close to µ.

Theorems 3.2 and 3.3 immediately imply the following result.

Corollary 3.4. Let F ∈ SP1
nh(Σ× S1). Then Merg is arcwise connected.

3.3. Entropies of the spectrum of Lyapunov exponents. We will now answer
the question raised in the introduction about what type of behavior (negative, zero,
or positive central exponent) predominates? We will do this in terms of entropy.

Taking first an orbitwise point of view studying the sets L(α) as in (2.3), we
obtain the following multifractal decomposition

Σ× S1 =
⋃
α∈R

L(α) ∪ Lirr,

where Lirr is the set of points where the central Lyapunov exponent is not well-
defined (the limit does not exist). Note that each level set L(α) is nonempty in
some range of α which decomposes into three natural nonempty parts

{α : L(α) 6= ∅} = [αmin, 0) ∪ {0} ∪ (0, αmax].

It is easy to verify that max and min are indeed attained. It is an immediate conse-
quence of the fact that any pair of hyperbolic periodic orbits with the same stable
index are homoclinically related (and hence are contained in a common horseshoe)
that for every α ∈ (αmin, 0)∪(0, αmax) there exists an ergodic measure with positive
entropy and central Lyapunov exponent equal to α. The corresponding result for
α = 0 is a consequence of [4]. We will determine the “size” of those level sets in
terms of topological entropy. Since these sets are invariant but in general noncom-
pact, we will rely on the general concept of topological entropy htop introduced by
Bowen [13].

The following result from [20] now makes a connection to the above via restricted
variational principles (2.2), Figure 1 provides a picture theorem.

Denote by hµ(F ) the entropy of a measure µ. Recall that the system of fiber
maps {f0, f1} is proximal if for every x, y ∈ S1 there exists at least one sequence
ξ ∈ Σ such that |fnξ (x)− fnξ (y)| → 0 as |n| → ∞. Note that the system is proximal
if, for example, f0 is a Morse-Smale map whose nonwandering set contains only on
attractor and one repeller and f1 is an irrational rotation (see also Proposition 4.2).



12 L. J. DÍAZ, K. GELFERT, AND M. RAMS

E(α)

α
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Figure 1. Possible shapes of entropies. Left figure: assuming proximality

Theorem 3.5. For every α ∈ [αmin, αmax] we have L(α) 6= ∅. Moreover, for every
α ∈ (αmin, 0) ∪ (0, αmax) we have

(3.3) htop(L(α)) = sup
{
hµ(F ) : µ ∈Merg, χc(µ) = α

}
,

the function α 7→ htop(L(α)) is continuous on [αmin, αmax] and satisfies htop(L(0)) >
0.

There exist (finitely many) ergodic measures µ+, µ− of maximal entropy hµ±(F ) =
log 2 and with χc(µ−) < 0 < χc(µ+). Moreover, assuming also proximality,
there exist unique ergodic F -invariant probability measures µ− ∈ Merg,<0 and
µ+ ∈Merg,>0 of maximal entropy hµ±(F ) = log 2 and we have

htop(L(α−)) = htop(L(α+)) = log 2, htop(L(α)) < log 2

for all α 6= α−, α+, where α− = χc(µ−) and α+ = χc(µ+).

Assuming proximality, one can also show (see [20]) that no measure which is a
nontrivial convex combination of the two ergodic measures of maximal entropy is
(simultaneously) a weak∗ and in entropy limit of ergodic measures.

We note that [43] in a somewhat similar setting obtains the finiteness of entropy-
maximizing measures and properties about them. Note that this is related to the so-
called invariance principle which is also studied in [48] where a similar phenomenon
as in Theorem 3.5 (entropy achieving its maximum away from zero exponent) was
observed (for certain ergodic measures of C2 partially hyperbolic diffeomorphisms).

To show Theorem 3.5, our main approach is to treat positive, negative, and zero
spectra separately. First, it is an immediate consequence of [13] that the restricted
variational entropy (3.3) provides a lower bound for htop(L(α)). Using the fact that
by Proposition 5.1 for any pair of uniformly hyperbolic sets with negative (positive)
fiber exponents we can find a larger one containing them both, one can conclude
that these values can be expressed via the Legendre-Fenchel transform of a certain
restricted pressure function (treating negative and positive values separately). Fi-
nally, for any α with a level set of given entropy h one can choose so-called skeletons
established in [19, Section 4] to construct hyperbolic sets with entropy close to h
with almost homogeneous exponents close to α. Hence, htop(L(α)) is limited from
above by entropies of ergodic measures with exponents close to α. Concavity of
the Legendre-Fenchel transform implies its continuity, which concludes the main
argument.

4. Examples

In this section, we first return to the differentiable setting and provide some
details about the objects that characterize the diffeomorphisms in ORTPH1(M).
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Figure 2. Blender-horseshoe: strong unstable curves and strips
(projection along the strong stable direction)

Further, we also will see how they motivate the axioms for the skew-product in
Section 3.

4.1. Blender-horseshoes and minimal foliations. The following discussion does
not aim for generality and it is first done for diffeomorphisms in PH1(M3), where
the manifold is three-dimensional, and adapted to this setting where there are glob-
ally defined strong unstable and stable foliations.

An unstable blender-horseshoe, see [5, Section 3], is a hyperbolic and partially
hyperbolic set Λ of a diffeomorphism F conjugate to a complete shift of two symbols
and having a splitting Ess⊕Ec⊕Euu (where Ess is its stable bundle and Ec⊕Euu

its unstable one) and being isolated in an open neighborhood (a “cube”) C, that
is, Λ =

⋂
n∈Z F

n(C). Moreover, the splitting is defined in whole neighborhood C
and there is λ > 1 such that for every x ∈ C and every vector v ∈ Ec⊕Euu it holds
‖dFx(v)‖ ≥ λ‖v‖. A stable blender-horseshoe is an unstable blender-horseshoe for
F−1.

For the next discussion see Figure 2. First consider the local stable set of Λ de-

fined by W s
loc(Λ)

def
=
⋂
n≥0 F

n(C). Naively, the cube C has six faces: two opposed
stable-center faces “tangent” to Ess ⊕Ec, two opposed center-unstable faces “tan-
gent” to Ec⊕Euu, and two opposed stable-unstable faces “tangent” to Ess⊕Euu. A
strong unstable curve is a closed curve contained in some strong unstable leaf of Fuu

whose boundary is contained in the stable-center faces of the cube (thus the curve
joins these two faces). Similarly, a strong stable curve is a closed curve contained in
some strong stable leaf of F ss whose boundary is contained in the center-unstable
faces of the cube. An unstable strip (or shortly strip) S is a “rectangle” that is
foliated by strong unstable curves. The width of a strip S, denoted by w(S), is the
supremum of the numbers w such that there is some curve η tangent to Ec and
contained in S with length w. Note that there is a number κ > 0 such that every
strip contained in C has width at most κ.

By hypothesis, the hyperbolic set Λ has two fixed points P and Q and we con-
sider their local stable manifold W s

loc(P ) and W s
loc(Q) (the connected component

of W s
loc(Λ) containing P and Q, respectively). There are now two isotopy classes

of strong unstable curves disjoint from W s
loc(P ), say to the right and to the left of

W s
loc(P ). Similarly for W s

loc(Q). One has that the local strong unstable leaves of
points of Λ \ {P,Q} are strong unstable curves which are to the right of W s

loc(P )
and to the left of W s

loc(Q). A strip S foliated by strong unstable curves to the right
of W s

loc(P ) is called a strip to the right of W s
loc(P ).
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The key property of a blender-horseshoe is the following: for every strip S to
the right of W s

loc(P ) there are two possibilities (that may occur simultaneously):
either (1) the set F (S) contains a strip S′ (called the successor of S) to the right
of W s

loc(P ) and such that w(S′) > λw(S) (where λ > 1 is as above), or (2) F (S)
contains a strip S′ that intersects W s

loc(P ) in a point at some uniform distance ρ
from the boundary of S′. Note that case (1) can occur at most `(S) consecutive
times where ` = `(S) is the first number with λ` w(S) > κ (with κ as above).
Here by “consecutive” we mean that the successor of S also satisfies case (1) and
so on. In case (2) let k = k(ρ) the first number with λk ρ > κ, considering now
k additional iterates we have that F k(S′) contains a strip that crosses the two
stable-unstable faces of the cube C. Summarizing, given any unstable strip S to
the right of W s

loc(P ), we have that Fm(S) contains a strip that crosses the two
stable-unstable faces of the cube C for some m ≤ `(S) + k.

The blender-horseshoe satisfies the following geometric property that we state
using the approach in [4]. The family of strong unstable curves D defined as the ones
to the right of W s

loc(P ) and to the left of W s
loc(Q) satisfies the following invariance

and covering properties: every D ∈ D contains a subset D0 such that F (D0) ∈ D.
This implies that the local stable set of Λ, W s

loc(Λ), intersects every curve of the
family D, see [5, Remark 3.10] and [4, Lemma 3.13]. We call D the distinctive
family of curves of the blender. Finally, let us also observe that blender-horseshoes
have well-defined continuations: if Λ is a blender-horseshoe for F then for every
G close enough to F the continuation ΛG of Λ is also a blender-horseshoe, see [5,
Lemma 3.9].

As mentioned above, there is a C1-open and -dense subset ORTPH1(M3) of
RTPH1(M3) whose strong stable and strong unstable foliations are both mini-
mal. The main step of this proof is the following (see [7]). There are an unstable
blender-horseshoe Λ+ with associated cube C+, a stable blender-horseshoe Λ− with
associated cube C−, and a constant % > 0 such that:

• Every curve α contained in some leaf of Fuu with length `(α) ≥ % contains
strong unstable curves α+ ⊂ C+ and α− ⊂ C−. Moreover, α+ is in the
distinctive family of curves of Λ+.

• Every curve β contained in some leaf of F ss with length `(β) ≥ % contains
strong stable curves β+ ⊂ C+ and β− ⊂ C−. Moreover, β− is in the
distinctive family of curves of Λ−.

The uniform expansion of the bundle Euu implies that for every curve α contained
in some leaf of Fuu there is n = n(α) such that `(Fn(α)) > %. Therefore α0 = Fn(α)
contains curves α±0 as above. Similarly, the uniform contraction of the bundle Ess

implies that for every curve β contained in some leaf of F ss there is m = m(β) such
that β0 = F−m(β) contains curves β±0 as above. In particular this implies that
there is a number n0 such that for every n ≥ n0 and every strong unstable curve α
contained in either C+ or C− the curve Fn(α) contains a strong unstable curve in
C+ and a strong unstable curve in C−. Similarly for strong stable curves β in C+

or C− and F−n. This means that there are transitions along the strong unstable
and strong stable foliations in finite time n0 between the cubes of the blenders.

4.2. Blender-horseshoes in step skew-products. We now reformulate the in-
gredients from above for step skew-products, see [30, Section 5] and [19, Section 8.3]
for dictionaries stabilizing the relations between step skew-products and partially
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Figure 3. Unstable blender-horseshoe

hyperbolic diffeomorphisms. We will state the blender-horseshoes in terms of the
underlying one-dimensional dynamics. We consider only the strong unstable foli-
ation, the translation for the strong stable foliation is straightforward and follows
considering negative iterations.

Note that the “local strong unstable leaf” Fuu
loc(ξ, x) of a point (ξ, x) is the set

{x} × [ξ−.], where ξ = ξ−.ξ+, and the iteration of this leaf is completely governed
by the fiber dynamics

F k(Fuu
loc(ξ, x)) ⊂ Fuu

loc(F k(ξ, x)) = {f[ξ0...ξk−1 ](x)} × [ξ−ξ0 . . . ξk−1.].

Therefore the equivalent of a curve contained in some strong unstable leaf is a set
of the form {x} × [ξ−.ξ0 . . . ξk−1]. Note that

F k({x} × [ξ−.ξ0 . . . ξk−1]) = {f[ξ0... ξk−1 ](x)} × [ξ−ξ0 . . . ξk−1.]

is a local strong unstable leaf. Thus, for studying the dynamics of a local strong
unstable leaf it is enough to consider the forward orbit of the central coordinate
for the iterated function system generated by the fiber maps f0 and f1.This also
means that for obtaining blenders in step skew-products it is enough to consider
the dynamics in the fiber coordinate. We now define a blender-horseshoe for a step
skew-product map F as in (3.1) with fiber maps f0 and f1 using the terminology
commonly used for blenders (see [8, Chapter 6.2]), see Figure 3.

Definition 4.1 (Unstable blender-horseshoe for a step skew-product). The skew
product map F in (3.1) has an unstable blender-horseshoe if there are β > 1,
an interval [p, q] ⊂ S1, points a, b ∈ [p, q], a < b, finite sequences (ξ0 . . . ξr) and
(η0 . . . ηr), ξi, ηj ∈ {0, 1}, such that the maps f[ξ0... ξr] and f[η0... ηr] satisfy the
following properties:

• (uniform expansion) (f[ξ0... ξr])
′(x) ≥ β for all x ∈ [p, b] and (f[η0... ηr])

′(x) ≥
β for all x ∈ [a, q],
• (fixed points) f[ξ0... ξr](p) = p and f[η0... ηr](q) = q,
• (covering and invariance) f[ξ0... ξr]([p, b]) = f[η0... ηr]([a, q]) = [p, q].

We say that [p, q] is the domain of definition of the blender and that [a, b] is the
superposition interval of the blender.

The step skew-product map F has a stable blender-horseshoe provided F−1 has
an unstable blender-horseshoe.

To consider the corresponding set for the cube C+ in the skew-product setting

we consider the union Ĉ+ of the sets [p − ε, b] × [.ξ0 . . . ξr] (for some small ε > 0)
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and [b, q]× [.η0 . . . ηr] and define Λ+ as the maximal invariant set of F r+1 in Ĉ+.
In this case, the fixed points of the blender are P =

(
a, (ξ0 . . . ξr)

Z) and Q =(
b, (η0 . . . ηr)

Z), and the strong unstable “curves” to the right (of the local stable
set) of P are of the form {x}× [.ξ0 . . . ξr] if x ∈ [p, b] or {x}× [.η0 . . . ηr] if x ∈ [a, q].
With this definition it is immediate that the image by F r+1 of any strong unstable
curve to the right of P contains a strong unstable curve to the right of P . The

stable blender-horseshoe has an associated “cube” Ĉ− given by the union of the
sets [p′ − ε, b′]× [ξ−k . . . ξ−1.] (for some small ε > 0) and [b′, q′]× [η−k . . . η−1.].

The forward transition from Ĉ+ to Ĉ− means that for each x ∈ [p, b] there is a
finite sequence of the form (ξ0 . . . ξr . . . ξr+m), m ≥ 0, such that f[ξ0...ξr...ξr+m](x) ∈
(p′, q′) and for each x ∈ [a, q] there is a finite sequence of the form (η0 . . . ηr . . . ηr+n),

n ≥ 0 such that f[η0...ηr...ηr+n](x) ∈ (p′, q′). The forward transition from Ĉ−

to Ĉ+ is defined similarly. The two backward transitions are the corresponding
reformulation for backward iterates.

Finally, to get the conditions in Section 3, the two blenders must capture all the
dynamics of the map F (e.g. Acc±). For this we require that every point x ∈ S1

has some forward and backward iterate by the iteration of the fiber maps in the
intervals (p, q) and (p′, q′) associated to the blenders. For a complete discussion of
these constructions we refer to [19, Section 8.1].

4.3. Contraction-expansion-rotation in step skew-products. The next re-
sult does not aim for generality and is just a reformulation of the constructions
in [27, Theorem 2], where the assumption of forward minimality is replaced by a
density-like hypothesis. It also restates [19, Proposition 8.8] in a slightly different
way.

Proposition 4.2. Consider a step skew-product map F as in (3.1) with fiber maps
f0, f1 : S1 → S1. Suppose that:

• There are δ > 0 and finite sequences (ξ0 . . . ξr) and (η0 . . . ηs) such that
f[ξ0... ξr] has an attracting fixed point p and is uniformly contracting in [p−
δ, p+ δ] and f[η0... ηs] has a repelling fixed point q and is uniformly expanding
in [q − δ, q + δ].

• Every point x ∈ S1 has some forward and some backward iterates in (p −
δ, p+ δ) and some forward and some backward iterates in (q − δ, q + δ).

Then there are intervals J+, J− ⊂ S1 such that the fiber maps of F satisfy Axioms
CEC+(J+) and Acc±(J+) and Axioms CEC−(J−) and Acc±(J−).

To get the hypothesis of the orbits visiting the neighborhoods of p and q it
is enough to have a finite sequence (ζ0 . . . ζt) such that f[ζ0... ζt] is an irrational

rotation or such that every orbit of the system is “sufficiently dense” in S1. In
particular, if some map f[ζ0... ζt] is an irrational rotation then small perturbations
of the skew-product satisfy the hypotheses of Proposition 4.2.

5. Homoclinic and intersection classes

We briefly discuss the homoclinic relations in the setting of skew-products, for
details see, for instance, [16, Section 2.1]. For skew-product maps F as in (3.1)
that are only differentiable in the fiber direction we call a periodic point P =(
(ξ0 . . . ξπ−1)Z, p

)
hyperbolic if

(f[ξ0...ξπ−1])
′(p) 6= ±1
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and call it contracting if this derivative has modulus less than one and expanding
otherwise. As in the hyperbolic case, these points have well-defined and uniquely
defined continuations for maps G close to F , that is, for G(ξ, x) = (σ(ξ), gξ0(x))
where each gi is close to fi.

Given a hyperbolic fixed point p of f[ξ0...ξπ−1] consider its local invariant man-

ifolds W
s/u
loc (p, f[ξ0... ξπ−1]). If p is contracting then W u

loc(p, f[ξ0... ξm]) = {p} and
W s

loc(p, f[ξ0... ξm]) is an open interval containing p. Similarly when p is expanding.

In what follows let P = ((ξ0 . . . ξπ−1)Z, p) be a hyperbolic periodic point of F .
Note that the stable and unstable sets of orbit O(P ) of P are defined, respectively,
by

W s(O(P ), F ) =
{

(η, x) : η = (. . . η−1.η0 . . . ηk(ξ0 · · · ξπ−1)N), k ≥ 0,

and f[η0... ηk](x) ∈W s
loc(p, f[ξ0...ξπ−1])

}
,

W u(O(P ), F ) =
{

(η, x) : η = ((ξ0 . . . ξπ−1)N η−k . . . η−1.η0 . . .), k ≥ 0

and f−1
[η−1··· η−k](x) ∈W u

loc(p, f[ξ0... ξπ−1])
}
.

We now adapt the definitions of a homoclinic class and homoclinic relations of
differentiable dynamics to the skew-product setting.

First two hyperbolic periodic points P andQ of the same index are homoclinically
related if the invariant manifolds of their orbits intersect cyclically, W u(O(P ), F )∩
W s(O(Q), F ) 6= ∅ and W u(O(Q), F ) ∩W s(O(P ), F ) 6= ∅. The intersection class
of P is the set of all hyperbolic periodic points homoclinically related to P . A
point X ∈ W u(O(P ), F ) ∩W s(O(P ), F ) is called a homoclinic point of P . As the
transverse ones in the differentiable case, these points have well defined continua-
tions. The homoclinic class of P is the closure of the homoclinic points of the orbit
of P . Note that this definitions does not involve transversality. As in the case of
differentiable dynamics, the homoclinic class of P is a transitive set that coincides
with the closure of its intersection class.

Proposition 5.1. Suppose that the skew-product map F in (3.1) satisfies the con-
ditions in Section 3. Then

• Every pair of hyperbolic periodic points of the same index are homoclinically
related.

• Every homoclinic class is the whole set Σ× S1.

We sketch the proof of this proposition. Consider two hyperbolic periodic points
P =

(
(ξ0 . . . ξπP−1)Z, p

)
and Q =

(
(ζ0 . . . ζπQ−1)Z, q

)
such that there are a point

c ∈W u
loc(p, f[ξ0...ξπP−1]) and a finite sequence (β0 . . . βr) with

f[β0...βr](c) ∈W s
loc(q, f[η0...ηπQ−1]).

Then

C =
(
(ξ0 · · · ξπP−1)N . β0 · · ·βr (η0 · · · ηπQ−1)N, c

)
∈W s(O(Q), F ) ∩W u(O(P ), F ).

This fact implies that, under the conditions in Section 3, any homoclinic class (of
a hyperbolic periodic point) is the whole Σ × S1 and that any pair of hyperbolic
periodic points of the same index are homoclinically related. To see why this is
so assume that P and Q are both expanding and we show that W u(O(P ), F ) ∩
W s(O(Q), F ) 6= ∅. Consider now a blending interval J containing q in its interior,
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as in Lemma 3.1. By condition Acc−(J) there are small δ > 0 and a finite sequence
(τ0 . . . τk) such that

(p− δ, p+ δ) ⊂W u
loc(p, f[ξ0···ξπP−1]) and f[τ0...τk](p− δ, p+ δ) ⊂ J.

Now property CEC+(J) provides a finite sequence (η0 . . . η`) such that

J ⊂ f[τ0...τkη0...η`](p− δ, p+ δ).

Hence there is c ∈ (p− δ, p+ δ) such that

q = f[τ0...τkη0...η`](c).

Taking C =
(
(ξ0 · · · ξπP−1)N .τ0 . . . τkη0 . . . η`(η0 · · · ηπQ−1)N , c

)
we get

C ∈W s(O(Q), F ) ∩W u(O(P ), F ).

The intersection W s(O(P ), F ) ∩W u(O(Q), F ) 6= ∅ is obtained reversing the roles
of P and Q. The fact that the homoclinic class in the whole set Σ × S1 follows
using similar arguments.
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