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Abstract
We investigate from a multifractal analysis point of view the increasing rate of the sums
of partial quotients S, (z) = Y_7_, a;(z), where z = [a1(z), az(z),---] is the continued
fraction expansion of an irrational = € (0,1). Precisely, for an increasing function ¢ :
N — N, one is interested in the Hausdorff dimension of the sets

E, = {xe 0,1) : Tim %) :1}.

n—oo @(n)

Several cases are solved by Iommi and Jordan, Wu and Xu, and Xu. We attack the
remaining subexponential case exp(n?), v € [1/2,1). We show that when v € [1/2,1),
E, has Hausdorff dimension 1/2. Thus, surprisingly, the dimension has a jump from 1 to
1/2 at p(n) = exp(n'/?). In a similar way, the distribution of the largest partial quotient
is also studied.

1. Introduction

Each irrational number z € [0, 1) admits a unique infinite continued fraction expansion
of the form

- : (1.1)

az(x) +

2010 Mathematics Subject Classification: Primary 11K50 Secondary 37E05, 28A80



2 LinegMIN L1AO AND MICHAL RAMS

where the positive integers a,(x) are called the partial quotients of z. Usually, (1.1) is
written as & = [aq, ag, - - - | for simplicity. The n-th finite truncation of (1.1): p,(x)/qn(x) =
[a1,- - ,ay] is called the n-th convergent of z. The continued fraction expansions can be
induced by the Gauss transformation T : [0,1) — [0,1) defined by

T(0) :=0, and T(z):= — (mod 1), for z € (0,1).

8|

It is well known that a;j(x) = |#71| (|-] stands for the integer part) and a,(z) =
a1 (T"1(z)) for n > 2.

For any n > 1, we denote by S,(z) = E?Zl a;(x) the sum of the n first partial
quotients. It was proved by Khintchine [5] in 1935 that S, (x)/(nlogn) converges in
measure (Lebesgue measure) to the constant 1/log2. In 1988, Philipp [7] showed that
there is no reasonable normalizing sequence ¢(n) such that a strong law of large numbers
is satisfied, i.e., Sp(z)/@(n) will never converge to a positive constant almost surely.

From the point of view of multifractal analysis, one considers the Hausdorff dimension
of the sets

E, = {x €(0,1): lim 28 _ 1}.
n—oo (n)
where ¢ : N — N is an increasing function.

The case p(n) = yn with v € [1,00) was studied by Iommi and Jordan [3]. It is
proved that with respect to 7, the Hausdorff dimension (denoted by dimg) of E, is
analytic, increasing from 0 to 1, and tends to 1 when ~ goes to infinity. In [9], Wu and
Xu proved that if ¢(n) = nY with v € (1,00) or ¢(n) = exp(n?) with v € (0,1/2), then
dimy E, = 1. Later, it was shown by Xu [10], that if ¢(n) = exp(n) then dimy E, = 1/2
and if p(n) = exp(y”) with v > 1 then dimy E, = 1/( + 1). The same proofs of [10]
also imply that for ¢(n) = exp(n?) with v € (1, 00) the Hausdorff dimension dimy E,,
stays at 1/2. So, only the subexponentially increasing case: p(n) = exp(n?),v € [1/2,1)
was left unknown. In this paper, we fill this gap.

THEOREM 1-1. Let ¢(n) = exp(n?) with v € [1/2,1). Then
1
3
We also show that there exists a jump of the Hausdorff dimension of E,, between ¢(n) =
exp(n'/?) and slightly slower growing functions, for example ¢(n) = exp(y/n(logn)™').

dimH E@ =

THEOREM 1-2. Let p(n) = exp(y/n-(n)) be an increasing function with ¢ being a
C! positive function on R, satisfying
Super T/’(y)Q . W/)I(f)

lim =0 and lim
T—00 1p(x) T—00 ¢(x)

=0. (1.2)

Then
dimH ESD =1.

We remark that the assumption (1.2) on the function 3 says that ¢ decreases to 0
slower than any polynomial. We also remark that when v is decreasing, then the first
condition of (1.2) is automatically satisfied.

Theorems 1-1 and 1-2 show that, surprisingly, there is a jump of the Hausdorff dimen-
sions from 1 to 1/2 in the class p(n) = exp(n?) at v = 1/2 and that this jump cannot be
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easily removed by considering another class of functions. See Figure 1 for an illustration
of the jump of the Hausdorff dimension.

dimp E,,
A
1 . 0
1/2 r—
1 0 1/2 1 "
. . ial e"
linear yn subexponential e’ superexponential e

Fig. 1. dimy E,, for different ¢.

By the same method, we also prove some similar results on the distribution of the
largest partial quotient in continued fraction expansions. For = € [0,1) \ Q, define

To(z) :=max{ag(z) : 1<k <n}.
One is interested in the following lower limit:

T, (z)logl
T(x) := liminf M.

n—00 n

It was conjectured by Erdos that almost surely T'(z) = 1. However, it was proved by
Philipp [6] that for almost all z, one has T'(x) = 1/log2. Recently, Wu and Xu [8]
showed that

T, (x) log]
Ya >0, dimH{xe[o,l)\Q:hmW’gog”:a}:L

n—00 n

They also proved that if the denominator n is replaced by any polynomial the same result
holds. In this paper, we show the following theorem.

THEOREM 1-3. For all a > 0,
F(v,a) = {x €0, 1)\Q: li_>m T, (z)/exp(n?) = a}
satisfies

1 ifvy€(0,1/2)
if v € (1/2,00).
We do not know what happens in the case v = 1/2.

N|—=

dimgy F(v,a) = {

2. Preliminaries

For any a1,as, -+ ,a, € N, call
I’n(al7"' ;an) = {.’I} S [071) : al(x) =ay, - ,an<.'1}) = an}’

a rank-n basic interval. Denote by I,,(x) the rank-n basic interval containing x. Write ||
for the length of an interval I. The length of the basic interval I,,(a1, as, - - - ,a,) satisfies

[+ 172 < |L(ar, -+ yan)| < J] e (2.1)
k=1

k=1
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Let A(m,n) := {(i1,...,in) € {1,...,m}": Y7_ i = m}. Let ¢(-) be the Riemann
zeta function.

LEMMA 2-1. For any s € (1/2,1), for alln > 1 and for all m > n, we have

> H 2 < ( 2+C(2s))>nm_23.

(i1,eeerin)EA(mMm,n) k=1
Proof. The proof goes by induction. First consider the case n = 2. For m = 2 the
assertion holds, assume that m > 2. We will estimate the sum ;- 11 i~2%(m—1i)~2%. For

any u € [1,m/2] we have

m—1 m—u

Z i—2$( _Z _227/ S _ 29_"_ Z i—QS(m_Z')—QS
% =

(Zz S) —u)" 4 (m—2u+ 1)u"*(m —u)"

< 2¢(28)(m —u) "% 4+ (m — 2u + Du~ 2 (m — u) 2%,
Take u = [m/3]. Then one has
(m—2u+1u"2 = (m+1u"2 —2u'"2 < (m+1) L%J T _9<4

Hence, the above sum is bounded from above by

(+2(29) - (51) 7 < @+ (28)) 7™

Suppose now that the assertion holds for n € {2,n¢}. Then for n = ng + 1, we have

no+1

—29
Uk

(1150 sing+1)€{1,...om}rotl, 3T i =m k=1

3
L

o

.25 —25
33

(3150+058ng ) E{Lsee;m}m0, ST dp=m—i k=1

9

52 +c@) -

Il
N
[
o

~

IN
3
L
~.
|
[\v]
w
7~ N

-
Il

IN
7/ N 7 N N
N|© N © N ©

rcan)” v
2+ 4(28))>n0 : (3(2 + 4(25))> m=2s

no+1
(2+ C(2s))> m=2,

Let

A(v,c1,c9,N) := {azE(O,l):cl < a:;gf) VnZN}.

Denote by Ny the smallest integer n such that (cz—c;)-e®” > 1. Then the set A(y, ¢, cz, N)
is non-empty when N > Nj.
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LEMMA 2-2. For any v >0, any N > Ny and any 0 < ¢1 < ca,
1
3

Proof. This lemma is only a simple special case of [2, Lemma 3.2], but we will sketch
the proof (based on [4]), needed for the next lemma. Without loss of generality, we
suppose Ny = 1 and let N =1 (the proof for other N is almost identical).

Let aq,as9,...,a, satisfy ¢ < aje_jw < ¢g for all j. Those are exactly the possible

dimpg A(vy,c1,¢2,N) =

sequences for which the basic interval I, (aq,...,a,) has nonempty intersection with

A(’Y) C1,C2, 1)
There are approximately

n
H(02 - C1)€jW ~ et (2.2)
j=1
of such basic intervals, each of diameter
L (ay, ... an)| = e 22777 (2.3)

(both estimations are up to a factor exponential in n). Hence, by using the intervals
{I.(a1,...,an)} as a cover, we obtain

1
dimpg A(vy,c1,¢2,1) < 3

To get the lower bound, we consider a probability measure p uniformly distributed on
A(~,c1,c2,1), in the following sense: given aq, ..., a,—1, the probability of a,, taking any
particular value between cqe” and cpe™’ is the same.

The basic intervals I,, (a1, . . ., a,) have, up to a factor ¢”, the length exp(—2 Y.} j7) and
the measure exp(— >} j7). They are distributed in clusters: all I,,(ay, ..., a,) contained
in a single I,,(a1,...,a,—1) form an interval of length exp(n”) - exp(—2>_7 j7) (up to a
factor ¢”, with ¢ being a constant), then there is a gap, then there is another cluster.
Hence, for any 7 € (exp(—2 3.7 j7), exp(—2 377" 57)) and any = € A(y, c1, ca, 1) we can
estimate the measure of B(z,r):

roe X0 ifr < e 2RI

B ~
'u( (.Z‘,T)) {6_ 2?71j7 if r> 6_2 ST +nY

(up to a factor ¢"). The minimum of logu(B(x,r))/logr is thus achieved for r =
e 22177477 " and this minimum equals

_ynly _n+1 1 1
nl. J ~ n /(’Y"i_ ) :7_0(1/1%)
Sy 2wy + ) a2
Hence, the lower local dimension of u equals 1/2 at each point of A(y,c1,¢a,1), which
implies

DN | =

dimp A(’Y’ €1, C2, 1) 2
by the Frostman Lemma (see [1, Principle 4.2]). O

Let now ¢; and ¢y not be constant but depend on n:

an(@)

B(v,¢1,¢2,N) = {a: € (0,1) : c1(n) < o < ca(n) Vn > N}.
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A slight modification of the proof of Lemma 2-2 gives the following.

LEMMA 2-3. Fiz v > 0. Assume 0 < c1(n) < ca(n) for all n. Assume also that

log(ca(n) — c1(n))

lim =0
n—oo n”y
and
I I
lim inf M > —o00 and limsup M < +o00.
n— oo logn n—00 ogn

Then there exists an integer Ny such that (ca(n) — ci(n)) - e > 1 for alln > Ny, and
for all N > Ny,
dimpy B(v,¢1,c2,N) =1/2.

Proof. We need only to replace the constants ¢; and co by ¢1(n) and c2(n) in the proof
of Lemma 2-2. Notice that by the assumptions of Lemma 2-3, the formula (2.2) holds up
to a factor exp(e >} j7) for a sufficiently small e > 0. While the formula (2.3) holds up
to a factor exp(cnlogn) for some bounded c. All these factors are much smaller than the

main term exp(>_} j7) which is of order exp(n'*7). The rest of the proof is the same as
that of Lemma 2-2. [

3. Proofs

Proof of Theorem 1-1 Let ¢ : N — N be defined by ¢(n) = exp(n?) with v > 0. For
this case, we will denote E, by E,.

Let us start from some easy observations, giving (among other things) a simple proof
of dimy E, = 1/2 for v > 1.

Consider first v > 1/2. If « € E, then for any ¢ > 0 and for n large enough

(1—e)e™ < Sp(x) < (1+e)e™ (3.1)
and

(1—e)e™D" <G (x) < (1+e)emtD)7,

Hence
(1—e)e™V" —(14e)e™ <appi(x) < (1+e)e™D — (1 —e)e.
For v > 1 this implies
E, C UA(%cl,CQ,N)
N

for some constants ¢y, ce. By Lemma 2-2,
1
dimg E, < ok vy > 1.
Consider now any ~ > 0. Set
n+1

— e D e™ and  ey(n) = c1(n).
n

~

For v > 1, ¢1(n) and c2(n) are bounded from below. For v < 1 and n large, we have

(" — e e pITL
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Thus, in both cases the assumptions of Lemma 2-3 are satisfied. Checking B(vy, ¢1, c2, N) C
E,, we deduce by Lemma 2-3 that

1
dimp By > 5, ¥y >0.

Therefore, we have obtained dimy E, = 1/2 for v > 1 and dimyg E, > 1/2 for v > 0.
What is left to prove is that for v € [1/2,1) we have dimpy E, < 1/2.

Let us first assume that v > 1/2. Remember that if € E,, then for any ¢ > 0 and
for n large enough we have (3.1). Take a subsequence ng = 1, and nj, = k'/7 (k > 1).
Then there exists an integer N > 1 such that for all £k > N,

(1—¢e)e™ < Sy, () < (1+¢)e™
and (as exp(n]) = e¥)
(1—e)ek — (1+e)eb 1 < S (2) = Sy, (1) < (14 )eF — (1 —e)ek L.
Thus

E,c|J ) A(. k,N),

N k>N

with A(v, k, N) being the union of the intervals {I,, (a1, a2, - ,an,)} such that
ne
> aj=m with meD, N<l<Ek,

Jj=ne—1+1

where Dy :=[(1 —e)e™ — (1+¢e)e™ 1 (1 +e)e™ — (1 —e)e™ ).

Now, we are gomg to estimate the upper bound of the Hausdorff dimension of E(l)
Ny A(v,k,1). For E = Ne>n A(7: k, N) with N > 2 we have the same bound and the
proofs are almost the same.

Observe that every set A(vy,k,N) has a product structure: the conditions on a; for
i € (ng,,ne,+1] and for i € (ng,,ne,+1] are independent from each other. Hence, for any
s € (1/2,1) we can apply Lemma 2-1 together with the formula

S

|Ink |S < H(anl—l"!‘lanffl'f'z e aw)i%
=1

to obtain

S ml=I Y (o) e

In, CA(v,k,1) {=1meDy,

Denote 7, :=2¢(1 —e™1) and ry := (e — 1 — ce — ¢) /e. Then we have |Dy| < rief and
any m € Dy is not smaller than ryef. Thus we get

o/ (¢ 1)1/7
Z [1n,.]° < H riet ( (2+ C(2s))) Cr2sem2st, (3.2)
I, CA(v,k,1)
We have £Y/7 — (¢ — 1)Y/7 ~ ¢Y/7=1. As v > 1/2, we have 1/y — 1 < 1, and the main
term in the above estimate is e(!=2%)¢, Thus for any s > 1/2, the product is uniformly
bounded. Thus dimy ES) < 1/2.
If v = 1/2, we take ny = k?/L? with L being a constant and we repeat the same



8 LINGMIN L1IAO AND MICHAL RAMS
argument. Observe that now exp(n}) = e®/L. Then the same estimation will lead to

02_(e—1)2
L2

k
Z |1, ]° < H riras . (g (2 + C(Zs))) e1=29)¢/L (3.3)
) =1

Ink CA('YJC)l

The main term of the right side of the above inequality should be

9 20/ L2
(2(2+C(28))> e(1=29)¢/ L

We solve the equation

9 2/L?
(2(2 + c(25))> e

which is equivalent to

(g(z + 4(28))> =k (3-4)

Observe that the graphs of the two sides of (3.4) (as functions of the variable s) always
have a unique intersection for some sy, € [1/2,1], when L is large enough. These sy, are
upper bounds for the Hausdorff dimension of Eé,l). Notice that the intersecting point
s — 1/2 as L — oo since the zeta function ¢ has a pole at 1. Thus the dimension of
ES) is not greater than 1/2.

So, in both cases, we have obtained dimpy E, <1/2. [

Sketch proof of Theorem 1-2 The proof goes like Section 4 of [9] with the following
changes. We choose e, = 1(k). Let n1 be such that ¢(n;) > 1 and define ny as the
smallest positive integer such that

p(ni) > (1 + ep—1)p(ne—1). (3.5)

For a large enough integer M, set

Eni(p) i={w € [0,1) : an, (2) = |1 +21)p(n) | + 1,
an, () = [(1+ ex)(ne)] — [(1+ ex—1)p(ne—1)] + 1 for all k > 2,
and 1 < a;(x) < M for i # ny, for any k > 1}.

We can check that Ep(p) C E,.

To prove dimy E, = 1, for any ¢ > 0, we construct a (1/(1 + ¢))-Lipschitz map
from Ep(p) to Epy, the set of numbers with partial quotients less than some M in its
continued fraction expansion. The theorem will be proved by letting e — 0 and M — oc.

Such a Lipschitz map can be constructed by send a point = in Ej/(¢) to a point
Z by deleting all the partial quotients a,, in its continued fraction expansion. Define
r(n) := min{k : n, <n}. The (1/(1 + €))-Lipschitz property will be assured if

— =0, (3.6)

and

log(ag,,, an., - - ap,
lim (0Bm O O) (3.7)

n—00 n
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In fact, by (1.2), we can check for any & > 0, 1)(n) < n® for n large enough. Thus by
definition of ng, we can deduce that r(n) < n'/2t9. Hence (3.6) is satisfied.
Further, we have

k=1
By (3.5)
r(n)—1 .
p(n) = ¢(nrm) = (1+er)p(na) = eXi=t = 2p(ny),
k=1
Thus (3.8) implies
r(n)i(r(n)) < Vi (n), (3.9)

where a,, < b, means that a, /b, is bounded by some constant when n — oo.
On the other hand, by (2.1) and (3.5), we have

r(n)
10g (@, Gy -+ an,,)) < 7(n) log(2p(n)) + Y _ ex.
k=1

Hence (3.8) and (3.9) give

n?(n)
Sty T

Finally, (3.7) follows from the assumption (1.2) and the already proved formula (3.6). [

10g(an, @n, -+~ an,,,) < r(n)v/nip(n) +r(n)i(r(n)) <

Proof of Theorem 1-3 For the case v < 1/2, the set constructed in Section 4 of [9] (as
a subset of the set of points for which S, (z) ~ e"') satisfies also T,,(z) ~ e and has
Hausdorft dimension one. We proceed to the case v > 1/2.

The lower bound is a corollary of Lemma 2-3. Take c1(n) = a(1 — 1) and c;(n) = a.
Let N; be the smallest integer n such that %e"W > 1. Then the conditions of Lemma 2-3
are satisfied, and for all points 2 such that c;(n)e™’ < an,(x) < ca(n)e™, we have

and
To(x)/e" =ap/e” <aet /e <a,
where k < n is the position at which the sequence aq, ..., a, achieves a maximum. Thus
for all z € B(v,c1,c2, N1)
lim T, (z)/e" = o

n— oo

Hence, B(7,c1,c2, N1) C F(v,«) and the lower bound follows directly from Lemma 2-3.
The upper bound is a modification of that of Theorem 1-1. We consider the case a = 1
only, since for other v > 0, the proofs are similar.
Notice that for any € > 0, if z € F(v,1), then for n large enough,

(1—e)e™ < Sp(x) <n(l+e)e™ .
Take a subsequence n, = k'/7(log k)l/’yz. Then

(1—e)ekMeM™ <5, () < kY7 (log k)" (1 + e)eklosM
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and
up < Snk (x) - Snk—l(x) < Uk,
with
up = (1 —e)eklos WYY (k —1)Y7(log(k — 1))1/”’2(1 + s)e(kfl)(log(k’l))l/w,
and

ok 1= K17 (log k)77 (1 -+ £)H098 T — (1 — g)ek=Dlon(-1)' 7,
We remark that
v 3 3 v
e > MO < S0 log k) hom k) (3.10)

when k is large enough.
Observe that

c|JB(.N
N
with B(v, N) being the union of the intervals {I,,, (a1, a2, - ,an,)} x>~ such that
ne
> aj=m with meD, N<C<E,
J=ne—1+1

where Dy is the set of integers in the interval [ug, vg].
As in the proof of Theorem 1-1, we need only study the set B(«, 1). For any s € (1/2,1),
since

E

|Iﬂk ‘S < H(anz71+1aﬂ271+2 T anz)izsa

by Lemma 2-1,

> =Y (o) e

In, CB(v,N) {=1meD,

Note that by (3.10) the number of integers in D, satisfies

| Dol <wvp—up <wvp < g -61/7(log£)1/72.
By (3.10), we also have

m > uy > %ez(logz)l/v for any m € Dy.

Similar to (3.2) and (3.3), we deduce that Zlnk CB(y.N) i | i less than
k ng—ng—1
3 ) t(log )t/ (9 2s ,—2s((log £)'/"
|7|5 07 (log £)1/7" ¢tl0s ) 5(2+§(23)) 928~ 2stlog )77

Since ny — ny_q & (/7710 and 1/y =1 < 1, the main term in the above estimation
is e(1=29)¢00s 0" Thyg for any s > 1/2 the product is uniformly bounded and we
have the Hausdorff dimension of B(+,1) is not greater than 1/2. Then we can conclude
dimg F'(y,1) < 1/2 and the proof is completed. [
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4. Generalizations

In this section we consider after [4] certain infinite iterated function systems that are
natural generalizations of the Gauss map. For each n € N, let f,, : [0,1] — [0,1] be C*
maps such that

(1) there exists m € N and 0 < A < 1 such that for all (a1, ...,an) € N™ and for all
z € [0,1]

0<|(fay 00 fa,) (@) <A<,

(2) forany i,j €N £:((0,1)) 1 £5((0,1)) = 0,

(3) there exists d > 1 such that for any £ > 0 there exist Cy(¢),Ca(g) > 0 such that
for i € N there exist constants &;, \; such that for all z € [0,1] & < |fl(z)] < N\
and

Cy
Z‘dfs

Cq
jd+e

<&E <ML

We will call such an iterated function system a d-decaying system. It will be further called
Gauss like if

U fi[0, 1)) = [0, 1)

and if for all = € [0, 1] we have that f;(z) < f;(z) implies ¢ < j.
We have a natural projection IT : NN — [0, 1] defined by

II(a) = ILm fay 0 0 fa, (1),

which gives for any point = € [0, 1] its symbolic expansion (a1 (z), az(x),...). This expan-
sion is not uniquely defined, but there are only countably many points with more than
one symbolic expansions.

For a d-decaying Gauss like system we consider S, (z) = Y.} a;(x). Given an increasing
function ¢ : N — N we denote

Ea(p) = {x c(0,1): tim &) _ 1}.

n=o0 p(n)

THEOREM 4-1. Let {f;} be a d-decaying Gauss like system. We have
i) if p(n) =™ with v < 1/d,
dimyg Ey4(p) =1,

i) if o(n) = e with v > 1/d,

. 1
dimpy E4(p) = 7

i) if p(n) =€’ with vy > 1,

1
di E =—
mr Ba(p) y+d—1
The proofs (both from Section 3 and from [9, 10]) go through without significant
changes.
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