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Abstract. We investigate the dimension of intersections of the Sierpiński-like carpets with lines.
We show a sufficient condition that for a fixed rational slope the dimension of almost every
intersection w.r.t the natural measure is strictly greater than s− 1, and almost every intersection
w.r.t the Lebesgue measure is strictly less than s − 1, where s is the Hausdorff dimension of the
carpet. Moreover, we give partial multifractal spectra for the Hausdorff and packing dimension of
slices.
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1. Introduction and Statements

Let N ≥ 2 be an integer and let Ω be a subset of {0, . . . , N − 1}×{0, . . . , N − 1}. Suppose
that N + 1 ≤ ]Ω. Let

Fk,l(x, y) :=
1
N

(x, y) +
1
N

(k, l) for (k, l) ∈ Ω. (1.1)

The attractor Λ ⊂ R2 of the iterated function system Ψ = {Fω}ω∈Ω is called a Sierpiński-
like carpet. It is well known that Ψ satisfies the open set condition and dimH Λ = dimP Λ =
dimB Λ = log ]Ω

logN > 1, where dimH Λ denotes the Hausdorff dimension, dimP Λ denotes the
packing dimension and dimB Λ denotes the box (or Minkowski) dimension of the set Λ.
For the definition and basic properties of the box, packing and Hausdorff dimensions we
refer the reader to [2].

The main purpose of this paper is to investigate the dimension theory of the slices with
fixed slope. For an angle θ denote projθ the θ-angle projection onto the y-axis. That is,
projθ(x, y) = y − x tan θ. For a point a ∈ projθΛ let

Lθ,a :=
{

(x, y) ∈ R2 : a = y − x tan θ
}

and Eθ,a = Lθ,a ∩ Λ
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be the corresponding slice of the attractor. Without loss of generality, by applying rotation
and mirroring transformations on Λ, we may assume that θ ∈ [0, π/2).

The dimension theory of some special cases was examined before for example in [1,
9, 10, 15]. Liu, Xi and Zhao [9] proved for the usual Sierpński carpet (i.e. N = 3 and
Ω = {0, 1, 2} × {0, 1, 2} \ {(1, 1)}) that the box and Hausdorff dimension of a slice Eθ,a
for Lebesgue almost every point a are equal to a constant depending only on θ when
the slope tan θ is rational. Manning and Simon [10] showed that this constant is strictly
less than s − 1, where s is the dimension of the usual Sierpiński carpet. Later Bárány,
Ferguson and Simon [1] proved analogous result for the usual Sierpiński gasket (i.e. N = 2
and Ω = {0, 1} × {0, 1} \ {(1, 1)}). Moreover, they showed that the box and Hausdorff
dimension of a slice Eθ,a for almost every point a w.r.t the projection of the natural
measure are equal to a constant depending only on θ strictly greater than s − 1, when
the slope tan θ is rational , where s is the dimension of the gasket. Furthermore, Bárány,
Ferguson and Simon [1] gave a non-complete multifractal spectra for the dimension of the
slices. Our goal is to generalize the previous results.

Let ν be the unique self-similar measure satisfying

ν =
∑
ω∈Ω

1
]Ω
ν ◦ F−1

ω .

We call the measure ν the natural measure supported on Λ. One may show that this
measure is nothing else than the normalized s-dimensional Hausdorff measure restricted to
Λ, i.e. ν = Hs|Λ

Hs(Λ) , where s = log ]Ω
logN . We denote by νθ = ν ◦ proj−1

θ the projection of the
natural measure.

First, we mention a weak dimension conservation phenomena for the Sierpiński-like
carpets.

Proposition 1.1. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1}×{0, . . . , N − 1} then for
every fixed θ ∈ [0, π/2)

dimH Eθ,a = dimB Eθ,a =
log ]Ω
logN

− dimH νθ for νθ-a.e a.

In particular,

dimH Eθ,a = dimB Eθ,a >
log ]Ω
logN

− 1 for νθ-a.e a.⇔ dimH νθ < 1. (1.2)

This inequality makes sense when N + 1 ≤ ]Ω. In the case of rational slopes we prove that
the strict inequality is satisfied in (1.2) whenever N - ]Ω.

Theorem 1.2. Let N ≥ 2 be an integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1} such
that N + 1 ≤ ]Ω and N - ]Ω. Then for every fixed θ ∈ [0, π/2) such that tan θ ∈ Q there
exists a constant α(θ) depending only on θ such that

α(θ) = dimH Eθ,a = dimB Eθ,a >
log ]Ω
logN

− 1 for νθ-a.e a.
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A similar theorem can be formalized for Lebesgue-typical points of the projection.

Theorem 1.3. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1} such
that N + 1 ≤ ]Ω and N - ]Ω. For every fixed θ ∈ [0, π/2) such that tan θ ∈ Q and
projθΛ = [− tan θ, 1] there exists a constant β depending only on θ such that

β(θ) = dimH Eθ,a = dimB Eθ,a <
log ]Ω
logN

− 1 Leb.-a.e. a ∈ projθΛ.

The proof of Theorem 1.2 and Theorem 1.3 uses a method different to one used in
Manning, Simon [10] and Bárány, Ferguson, Simon [1]. In both of the papers the authors
construct a finite set of matrices. They prove that this set of matrices satisfies a very
strong irreducibility property (i.e. there exists a finite sequence of matrices such that the
product has strictly positive elements) and using this fact they prove that the Lebesgue
typical slice for a fixed rational slope has dimension strictly less than s− 1. The proof of
this special irreducibility property is ad hoc, depends very much on the structure of the
usual Sierpiński gasket and carpet and does not hold in general. We are going to modify
this method as follows. We will construct the same type of matrices as in [1], [9]. Using
the general properties of those matrices we will show that a νθ typical slice has dimension
strictly greater than s − 1 whenever tan θ ∈ Q. Applying this fact and the results of
Feng and Lau about nonnegative matrices [6] we will be able to prove the theorem about
Lebesgue typical slices. For further details see Section 4.

Because of Theorem 1.2 and Theorem 1.3 one can claim that the dimension of the slices
has a non-trivial multifractal spectra for rational slopes. Bárány, Ferguson and Simon [1]
gave the incomplete spectrum of the dimension of the slices of the usual Sierpiński gasket.
Precisely, they calculated the function

δ 7→ dimH {a ∈ projθΛ : dimH Eθ,a = δ}

for any θ such that tan θ ∈ Q and the values δ ≥ β(θ), where β(θ) is the Lebesgue-typical
dimension. Our aim is to generalize the previous result for the Hausdorff and packing
dimension of the slices of the general Sierpiński-like carpets. Moreover, we will give the
full spectra for the packing dimension of the slices of the usual Sierpiński gasket.

Consider the projected IFS ψ = {fω} of Ψ = {Fω}ω∈Ω, i.e.

fk,l(x) =
x

N
+
−k tan θ + l

N
, for every (k, l) ∈ Ω. (1.3)

By straightforward calculations and [11, Theorem 2.7] we see that ψ satisfies the finite type
condition for tan θ ∈ Q and therefore, the weak separation property.

Let us divide the interval I = [− tan θ, 1] = projθΛ into p + q equal intervals, i.e.
Ik = [k−1−p

q , k−pq ] for k = 1, . . . , p + q. Moreover, let us divide Ik for every k into N

equal parts. That is, Iξk = [k−1−p
q + ξ

Nq ,
k−1−p
q + ξ+1

Nq ] for ξ = 0, . . . , N − 1. For every
ξ = 0, . . . , N − 1 let us define a (p+ q)× (p+ q) real matrix Aξ in the following way

(Aξ)i,j := ]
{
ω ∈ Ω : fω(Ij) = Iξi

}
. (1.4)
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By some simple calculations the matrices An, n = 0, . . . , N − 1 can be written in the form

(An)i,j = ] {(k, l) ∈ Ω : iN + n = kp+ (N − 1− l)q + j +N − 1} .

Denote by P (t) the pressure function which is defined as

P (t) = lim
n→∞

1
n logN

log
N−1∑

ξ1,...,ξn=0

(
eTAξ1 · · ·Aξne

)t
, (1.5)

where e = (1, . . . , 1)T ∈ Rp+q, and let us define

bmin = lim
t→−∞

P (t)
t

and bmax = lim
t→∞

P (t)
t
. (1.6)

Theorem 1.4. Let N ≥ 2 be integer and Ω ⊆ {0, . . . , N − 1} × {0, . . . , N − 1}. Then for
every fixed θ ∈ [0, π/2) such that tan θ ∈ Q and [− tan θ, 1] = projθΛ we have

dimH {a ∈ projθΛ : dimH Eθ,a = δ} =
dimH {a ∈ projθΛ : dimP Eθ,a = δ} = P ∗(δ) for every δ ∈ [β(θ), bmax],

where P ∗(δ) := inft {−δt+ P (t)}. Moreover, the function P ∗(δ) is continuous, concave
and monotone decreasing on [β(θ), bmax].

Because of the special structure of the usual Sierpiński gasket (see Lemma 4.10), it is
possible to give complete spectrum for the packing dimension of the slices.
Proposition 1.5. Let Λ be the usual Sierpiński gasket, i.e. N = 2 and Ω = {0, 1}2 \ {(1, 1)}.
Then for every fixed θ ∈ [0, π/2) such that tan θ ∈ Q

dimH {a ∈ projθΛ : dimP Eθ,a = δ} = P ∗(δ) for every δ ∈ [bmin, bmax].

The organization of the paper is as follows, in Section 2 we prove Proposition 1.1.
In Section 3 we will construct our matrices according to the rational projection and using
their general properties we prove Theorem 1.2. In Section 4 we define the so-called pressure
function corresponding to our nonnegative matrices and using previous results of Feng and
Lau [3],[4],[6] we prove Theorem 1.3 and Theorem 1.4.

2. Proof of Proposition 1.1

Before we prove Proposition 1.1, we state a general dimension conservation phenomena
for self-similar measures of Sierpiński-like carpets. Let N ≥ 2 be integer and Ω ⊆
{0, . . . , N − 1} × {0, . . . , N − 1}. Then it is well known that for every positive probability
vector (pω)ω∈Ω there exists a unique probability measure µ satisfying

µ =
∑
ω∈Ω

pωµ ◦ F−1
ω ,

where the IFS Ψ = {Fω}ω∈Ω are defined in (1.1). Denote by Λ the attractor of {Fω}ω∈Ω.
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Proposition 2.1. For any θ ∈ [0, π/2)

dimH µθ + dimH µ
θ
a = dimH µ for µθ-a.e. a,

where µθ = µ ◦ proj−1
θ and

{
µθa
}
a∈projθΛ

denote the canonical system of conditional me-

asures with respect to the partition
{

proj−1
θ (a) : a ∈ projθΛ

}
. In particular, for the natural

measure ν = Hs|Λ
Hs(Λ) , where s = log ]Ω

logN (the measure corresponding to the probabilistic vector
pω = (1/]Ω, . . . , 1/]Ω)), we have

log ]Ω
logN

− dimH νθ ≤ dimH Eθ,a for νθ-a.e. x.

Proof. To prove the proposition we apply the results of Furstenberg [7] about ergodic
CP-chains.

We define a measurable map T : P([0, 1]2) × [0, 1]2 7→ P([0, 1]2) × [0, 1]2, where P(Λ)
denotes the probability measures of [0, 1]2, as follows

T (ϑ, x) :=

(
ϑ|[ kN , k+1

N )×[ lN ,
l+1
N ) ◦ Fk,l

ϑ([ kN ,
k+1
N )× [ lN ,

l+1
N ))

, Nx mod 1

)
,

where x ∈ [ kN ,
k+1
N ) × [ lN ,

l+1
N ). Moreover, let us define a probability measure Θ on

P([0, 1]2) × [0, 1]2 that dΘ(ϑ, x) = dϑ(x)dδµ(ϑ), where µ is a given self-similar measure
of Λ. Then it is easy to see that the measure Θ is T -invariant and ergodic. The statement
of proposition follows from [7, Theorem 3.1].

For an alternative proof we refer the reader to [5, Proposition 4.14, Remark 4.15].
For a finite length word ω ∈ Ωn let Fω = Fω0 ◦ · · · ◦ Fωn−1 and denote by Gn(θ, a) the

set of nth level cylinders intersecting the line Lθ,a. That is,

Gn(θ, a) :=
{
ω ∈ Ωn : Fω(Λ) ∩ Lθ,a 6= ∅

}
. (2.1)

Standard calculation gives us

Lemma 2.2. For any θ ∈ [0, π/2)

dimBEθ,a = lim inf
n→∞

log ]Gn(θ, a)
n logN

and dimBEθ,a = lim sup
n→∞

log ]Gn(θ, a)
n logN

.

Lemma 2.3. For any θ ∈ [0, π/2)

dνθ (a) + dimBEθ,a ≤
log ]Ω
logN

for every a ∈ projθΛ.

Proof. First, let us observe that

νθ(BN−n(a)) ≥ ]Gn(θ, a)
]Ωn

.
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Hence,

dνθ (a) = lim inf
n→∞

log νθ(BN−n(a))
−n logN

≤ lim inf
n→∞

log ]Gn(θ,a)
]Ωn

−n logN
=

log ]Ω
logN

− lim sup
n→∞

log ]Gn(θ, a)
n logN

=
log ]Ω
logN

− dimBEθ,a,

where the last inequality follows form the previous lemma.

Proof of Proposition 1.1. Since dνθ (a) = dimH νθ for νθ-almost every a ∈ projθΛ, the
combination of Proposition 2.1 and Lemma 2.3 proves the statement.

3. Proof of Theorem 1.2

Through this section we always assume that N - ]Ω and N + 1 ≤ ]Ω. Moreover, let
θ ∈ [0, π/2) and tan θ = p

q be arbitrary but fixed. Let us recall the definition of projected
IFS (1.3) and the definition of matrices (1.4). The projected IFS ψ = {fω} of Ψ = {Fω}ω∈Ω

according to projθ is

fk,l(x) =
x

N
+
−kp+ lq

Nq
, for every (k, l) ∈ Ω.

Divide the interval I = [−pq , 1] into p + q equal intervals, i.e. Ik = [k−1−p
q , k−pq ] for

k = 1, . . . , p + q. Furthermore, divide Ik for every k = 1, . . . , p + q into N equal parts.
That is, Iξk = [k−1−p

q + ξ
Nq ,

k−1−p
q + ξ+1

Nq ] for ξ = 0, . . . , N − 1. For every ξ = 0, . . . , N − 1
let us define a (p+ q)× (p+ q) real matrix Aξ in the following way

(Aξ)i,j := ]
{
ω ∈ Ω : fω(Ij) = Iξi

}
.

From the definition of the matrices (1.4) it is easy to see that

p+q∑
i=1

N−1∑
ξ=0

(Aξ)i,j = ]Ω for every j = 1, . . . , p+ q. (3.1)

In general, for ξ1, . . . , ξn ∈ {0, . . . , N − 1} let Iξ1,...,ξnj be the interval

Iξ1,...,ξnj =

[
j − 1− p

q
+

1
q

n∑
k=1

ξk
Nk

,
j − 1− p

q
+

1
q

n∑
k=1

ξk
Nk

+
1

qNn

]
.

By the definition, for the products of the matrices hold

(Aξ1 · · ·Aξn)i,j = ]
{
ω ∈ Ωn : fω(Ij) = Iξ1,...,ξni

}
. (3.2)
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Because of (3.1) the matrix

P =
1
]Ω

N−1∑
n=0

ATn

defines a Markov-chain on Ξ := {1, . . . , p+ q}. Let us divide the set of states into two
parts. Let

Ξr = {i ∈ Ξ : νθ(Ii) > 0}
Ξt = {i ∈ Ξ : νθ(Ii) = 0} .

Lemma 3.1. The set Ξr is a recurrent class and Ξt is a transient class of the Markov-chain
defined by P . Moreover, Ξr is aperiodic.

Proof. First, we show that if i ∈ Ξr and Pi,j > 0 then j ∈ Ξr. Since Pi,j > 0 there exist
ω ∈ Ω and n ∈ {0, . . . , N − 1} such that fω(Ii) = Inj . Therefore 0 < νθ(fω(Ii)) = νθ(Inj ) ≤
νθ(Ij).

On the other hand, for every K > 0 sufficiently large and for every j ∈ Ξr there exists
a ω ∈ ΩK such that fω(I) ⊆ Ij . This implies that for every j ∈ Ξr and every i ∈ Ξ,
(PK)i,j > 0, which proves the statement.

We note that if projθΛ = [− tan θ, 1] then Ξr = Ξ and Ξt = ∅. It is well known from
the theory of Markov-chains that there exists a unique probability vector p such that p is
the stationary distribution of P , i.e. pTP = pT . In particular,N−1∑

ξ=0

Aξ

 p = ]Ω · p.

Lemma 3.2. For every i ∈ {1, . . . , p+ q} and (ξ1, . . . , ξn) ∈ {0, . . . , N − 1}n

νθ(I
ξ1,...,ξn
i ) =

eiAξ1 · · ·Aξnp
]Ωn

,

where ei denotes the ith element of the natural basis of Rp+q.

Proof. First, let us observe that p
i

= νθ(Ii). That is,

νθ(Ii) =
N−1∑
ξ=0

νθ(I
ξ
i ) =

N−1∑
ξ=0

p+q∑
j=1

∑
ω∈Ω:fω(Ij)=I

ξ
i

νθ(Ij)
]Ω

=
p+q∑
j=1

νθ(Ij)
]Ω

N−1∑
ξ=0

(Aξ)i,j .

At the second equality we have used that νθ is a self-similar measure. Therefore the vector
(νθ(Ii))

p+q
i=1 is a probability right-eigenvector of

∑N−1
ξ=0 Aξ. Thus, in general,

νθ(I
ξ1,...,ξn
i ) =

p+q∑
j=1

∑
ω∈Ωn:fω(Ij)=I

ξ1,...,ξn
i

νθ(Ij)
]Ωn

=
p+q∑
j=1

νθ(Ij)
]Ωn

(Aξ1 · · ·Aξn)i,j .
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Denote Arξ the submatrix of Aξ by deleting the rows and columns of Ξt. If j ∈ Ξr and
i ∈ Ξt then (Aξ)i,j = 0 for every ξ = 0, . . . , N − 1. Hence,

∑
i∈Ξr

N−1∑
ξ=0

(
Arξ
)
i,j

= ]Ω for every j ∈ Ξr. (3.3)

Lemma 3.3. For any i, j ∈ Ξr and ξ1, . . . , ξn ∈ {0, . . . , N − 1}

(Aξ1 · · ·Aξn)i,j =
(
Arξ1 · · ·A

r
ξn

)
i,j
.

Proof. Let us prove by induction. For n = 2

(Aξ1Aξ2)i,j =
p+q∑
k=1

(Aξ1)i,k (Aξ2)k,j =
∑
k∈Ξr

(Aξ1)i,k (Aξ2)k,j =
(
Arξ1A

r
ξ2

)
i,j
.

We used in the second equation that (Aξ2)k,j = 0 whenever k ∈ Ξt. Then

(
Aξ1 · · ·AξnAξn+1

)
i,j

=
p+q∑
k=1

(Aξ1 · · ·Aξn)i,k
(
Aξn+1

)
k,j
.

Again,
(
Aξn+1

)
k,j

= 0 whenever k ∈ Ξt, so∑
k∈Ξr

(Aξ1 · · ·Aξn)i,k
(
Aξn+1

)
k,j

=
∑
k∈Ξr

(
Arξ1 · · ·A

r
ξn

)
i,k

(
Aξn+1

)
k,j

=
(
Arξ1 · · ·A

r
ξn+1

)
i,j
.

In particular, an important consequence of Lemma 3.3 is that for every ξ1, . . . , ξn ∈
{0, . . . , N − 1} and i ∈ Ξr

νθ(I
ξ1,...,ξn
i ) =

êTi A
r
ξ1
· · ·Arξn p̂
]Ωn

, (3.4)

where p̂ = (νθ(Ij))j∈Ξr and êi is the ith element of the natural basis of R]Ξr . Now,
we define a left-shift invariant measure η on the symbolic space Σ = {0, . . . , N − 1}N.
Endow Σ with the metric d(ξ, ζ) = N−n for ξ = (ξ1, ξ2, . . . ) and ζ = (ζ1, ζ2, . . . ), where
n is the largest integer such that ξi = ζi(1 ≤ i ≤ n). For a cylinder set [ξ1, . . . , ξn] =
{(ζ1, ζ2, . . . ) ∈ Σ : ζk = ξk, k = 1, . . . , n} let

η([ξ1, . . . , ξn]) :=
êTArξ1 · · ·A

r
ξn
p̂

]Ωn
, (3.5)

where ê =
∑
i∈Ξr

êi. By (3.3), η is a probability measure.
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Lemma 3.4. The probability measure η is σ-invariant and mixing and hence ergodic, where
σ denotes the left-shift operator on Σ.

Proof. First, we prove the invariance. It is enough to prove for the cylinder sets. Since the
vector ê is a left-eigenvector of

∑N−1
ξ=0 Arξ (3.3), then for a cylinder set [ξ1, . . . , ξn]

η(σ−1[ξ1, . . . , ξn]) =
N−1∑
ξ=0

η([ξ, ξ1, . . . , ξn]) =
N−1∑
ξ=0

êTAξA
r
ξ1
· · ·Arξn p̂

]Ωn+1
=

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
= η([ξ1, . . . , ξn]).

To prove the mixing property it is enough to show that for any cylinder sets [ξ1, . . . , ξk]
and [ζ1, . . . , ζl]

lim
n→∞

η([ξ1, . . . , ξk] ∩ σ−n[ζ1, . . . , ζl]) = η([ξ1, . . . , ξk])η([ζ1, . . . , ζl]).

By the definition of η (3.5), for sufficiently large n

η([ξ1, . . . , ξk] ∩ σ−n[ζ1, . . . , ζl]) =
N−1∑

i1,...,in−k=0

êTArξ1 · · ·A
r
ξk
Ari1 · · ·A

r
in−k

Arζ1 · · ·A
r
ζl
p̂

]Ωn+l
=

êTArξ1 · · ·A
r
ξk

(∑N−1
i=0 Ari

)n−k
Arζ1 · · ·A

r
ζl
p̂

]Ωn+l
.

Applying Lemma 3.1 and the basic properties of aperiodic, irreducible Markov chains, we
have

lim
n→∞

(∑N−1
i=0 Ari

)n−k
]Ωn−k

= p̂ êT ,

which implies the mixing property.

Lemma 3.5. Denote by hη the entropy of measure η. If N - ]Ω and N + 1 ≤ ]Ω then
hη < logN .

Proof. We argue by contradiction. Suppose that hη = logN . By [14, Theorem 4.10] and
[14, Theorem 4.18] we have that

hη = lim
n→∞

− 1
n

N−1∑
ξ1,...,ξn=0

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
log

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
,

and the right hand side decreases as n→∞. That is, hη = logN if and only if

êTArξ1 · · ·A
r
ξn
p̂

]Ωn
=

1
Nn

, for every n ≥ 1 and ξ1, . . . , ξn ∈ {0, . . . , N − 1}. (3.6)
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By Lemma 3.1 there exists a K > 0 such that
(∑N−1

ξ=0 Arξ

)K
> 0, i.e. each element of the

matrix is strictly positive. Without loss of generality, we may assume that K > (p+q)2 +1.

Then there exists a word (ζ1, . . . , ζK) of lengthK such that
(∑N−1

ξ=0 Arξ

)K
−Arζ1 · · ·A

r
ζK

> 0.

Let A := {0, . . . , N − 1}K \ {(ζ1, . . . , ζK)}. By Perron-Frobenius theorem there exists a
ρ > 0 and u, v vectors such that ρ is the largest eigenvalue of the matrix

∑
ξ∈AA

r
ξ and u, v

are the corresponding left and right eigenvectors. Moreover,

lim
n→∞

1
ρn

∑
ξ∈A

Arξ

n

= vuT . (3.7)

By our assumption (3.6)

1
n

log êT

∑
ξ∈A

Arξ

n

p̂ = log
]ΩK]A
NK

= log
]ΩK(NK − 1)

NK
.

On the other hand, by (3.7)

lim
n→∞

1
n

log êT

∑
ξ∈A

Arξ

n

p̂ = log ρ.

So ρ = ]ΩK − ]ΩK

NK
but this is a contradiction since ]ΩK − ]ΩK

NK
∈ Q\Z cannot be a root of

characteristic polynomial of
∑
ξ∈AA

r
ξ, which is a matrix of integer coefficients.

Proof of Theorem 1.2. Let Γ be the natural projection from Σ to interval [0, 1], that is,

Γ(ξ1, ξ2, . . . ) =
∞∑
n=1

ξn
Nn

. (3.8)

Denote hk the linear function, mapping Ik to [0, 1], that is, hk(x) = qx− (k − 1− p). The
measure

ν̃θ :=
∑
k∈Ξr

νθ|Ik ◦ h
−1
k = η ◦ Γ−1

is Nx mod 1 invariant and ergodic by (3.4) and Lemma 3.4. Moreover,

dimH ν̃θ = min
1≤k≤p+q

dimH νθ|Ik ◦ h
−1
k = dimH νθ. (3.9)

By the Volume Lemma [13, Theorem 10.4.1,Theorem 10.4.2] and Lemma 3.5, we have

dimH ν̃θ =
hη

logN
< 1. (3.10)

The statement of the theorem follows from (3.9), (3.10) and Proposition 1.1.
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4. Proof of Theorem 1.3 and Theorem 1.4

In the rest of the paper we assume that projθΛ = [− tan θ, 1]. In the previous section we
have shown that the matrices, constructed in (1.4) can be used for determine the dimension
of the projected natural measure. In this section we show that the matrices can be used
for determine the box dimension of the slices, with the additional assumption that the
projection is an interval.

We note that if projθΛ = [− tan θ, 1] then Ξr = Ξ and Ξt = ∅. In particular, Arξ = Aξ
for every ξ ∈ {0, . . . , N − 1}.

Lemma 4.1. Let Ω ⊆ {0, . . . , N − 1}2 and θ ∈ [0, π/2) such that tan θ = p
q and projθΛ =

[− tan θ, 1]. Then for a = k−1−p
q + 1

q

∑∞
n=1

ξn
Nn

dimBEθ,a = lim inf
n→∞

log ekAξ1 · · ·Aξne
n logN

, and dimBEθ,a = lim sup
n→∞

log ekAξ1 · · ·Aξne
n logN

,

where ek is the kth element of the natural basis of Rp+q.

Proof. Let a = k−1−p
q + 1

q

∑∞
n=1

ξn
Nn . Let us recall the definition (2.1) of Gn(θ, a), which

is the number of cylinder sets intersecting the line Lθ,a. Since projθΛ = [− tan θ, 1] let us
observe that for every n ≥ 1 and every ω ∈ Ωn

Fω([0, 1]2) ∩ Lθ,a 6= ∅ ⇔ Fω(Λ) ∩ Lθ,a 6= ∅.

Hence
]Gn(θ, a) = ]

{
ω ∈ Ωn : Fω([0, 1]2) ∩ Lθ,a 6= ∅

}
.

Since tan θ is rational,

Fω([0, 1]2) ∩ Lθ,a 6= ∅ ⇔ there exists a 1 ≤ j ≤ p+ q such that fω(Ij) = Iξ1,...,ξnk

Using (3.2) we have ekAξ1 · · ·Aξne = ]Gn(θ, a). The statement follows from Lemma 2.2.

Proposition 4.2. Let Ω ⊆ {0, . . . , N − 1}2 and θ ∈ [0, π/2) such that tan θ = p
q and

projθΛ = [− tan θ, 1]. Then there exists a constant β = β(θ) depending only on θ such that

dimH Eθ,a = dimB Eθ,a = β(θ) for Leb.-a.e. a ∈ projθΛ.

For the proof of Proposition 4.2 we refer to [9, Section 7].
Now, let us recall the definition of the pressure function P (t), and bmax defined in (1.5),

(1.6), i.e.

P (t) = lim
n→∞

1
n logN

log
N−1∑

ξ1,...,ξn=0

(
eTAξ1 · · ·Aξne

)t
, and bmax = lim

t→∞

P (t)
t
.
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Lemma 4.3. The pressure function P (t) exists for every t ∈ R, and monotone increasing,
convex and continuous. Moreover, P (t) is continuously differentiable for every t > 0.

Proof. By Lemma 3.1, there exists a K > 0 such that
(∑N−1

ξ=0 Aξ

)K
> 0. Then the exi-

stence follows from [3, Lemma 2.2]. The differentiability follows from [6, Theorem 3.3], and
the monotonicity, convexity, and continuity property can be proven by standard argument.
The continuity of the derivative is not explicitely mentioned in [6, Theorem 3.3], but it
follows from convexity.

Theorem 4.4 ([3], Theorem 1.1). Let Aξ be non-negative matrices for ξ = 0, . . . , N − 1.

If there exists a K > 0 such that
∑K
n=0

(∑N−1
ξ=0 Aξ

)n
> 0 then

dimH

{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= α

}
= inf

t
{−αt+ P (t)} =: P ∗(α),

where dimH is defined according to the metric d(ξ, ζ) = N−n for ξ = (ξ1, ξ2, . . . ) and
ζ = (ζ1, ζ2, . . . ), where n is the largest integer such that ξi = ζi(1 ≤ i ≤ n).
Lemma 4.5. For every t > 0 there is a unique ergodic, left-shift invariant Gibbs measure
µt on Σ such that there exists a C > 0 that for any (ξ1, . . . , ξn) ∈ {0, . . . , N − 1}∗

C−1 ≤ µt([ξ1, . . . , ξn])
(eTAξ1 · · ·Aξne)

t
N−nP (t)

≤ C.

Moreover,
dimH µt = −tP ′(t) + P (t)

and

lim
n→∞

log eTAξ1 · · ·Aξne
n logN

= P ′(t) for µt-a.a. (ξ1, ξ2, . . . ) ∈ Σ.

The proof of the lemma follows from [6, Theorem 3.2] and [6, Proof of Theorem 1.3].
Lemma 4.6. For every t > 0

P ′(t) = lim
n→∞

1
n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne =

inf
n≥1

1
n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne,

where µt is the Gibbs measure defined in Lemma 4.5.
The proof of the lemma follows from [4, Theorem 1.2] and [4, Lemma 2.2(ii)].

Lemma 4.7. For any δ > 0

dimH

{
ξ ∈ Σ : lim sup

n→∞

log eTAξ1 · · ·Aξne
n logN

≥ δ
}
≤ inf
t>0
{−δt+ P (t)}
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Proof. We will prove the upper bound with the method of Olsen and Winter [12].
Let ε > 0 be arbitrary but fixed. Let us define the following set of cylinders:

An(ε) :=
{

[ξ1, . . . , ξk] : k ≥ n, δ − ε ≤ log eTAξ1 · · ·Aξke
k logN

}
.

It is easy to see that the set ⋃
[ξ1,··· ,ξk]∈An(ε)

[ξ1, . . . , ξk]

covers the set Gδ :=
{
ξ ∈ Σ : lim supn→∞

log eTAξ1 ···Aξne
n logN ≥ δ

}
. Let Bn(ε) be the set of

disjoint cylinders in An(ε) such that⋃
[ξ1,··· ,ξk]∈Bn(ε)

[ξ1, . . . , ξk] =
⋃

[ξ1,··· ,ξk]∈An(ε)

[ξ1, . . . , ξk].

Then for every t > 0

H−δt+P (t)+2ε
N−n (Gδ) ≤

∑
[ξ1,...,ξk]∈Bn(ε)

N−k(−δt+P (t)+2ε) ≤

N−nε
∑

[ξ1,...,ξk]∈Bn(ε)

N−kP (t)
(
eTAξ1 · · ·Aξke

)t
.

By Lemma 4.5

H−δt+P (t)+2ε
N−n (Gδ) ≤ N−nε

∑
[ξ1,...,ξk]∈Bn(ε)

µt([ξ1, . . . , ξk]) ≤ N−nε.

Since ε > 0 and t > 0 were arbitrary,

dimH Gδ ≤ inf
t>0
{−δt+ P (t)} .

Before we prove our main theorems let us introduce p + q projecting maps from Σ to
Ik. That is,

Γk(ξ) :=
k − 1− p

q
+

1
q

∞∑
k=1

ξk
Nk

.

Denote Eθ,Γ(ξ) the union of slices corresponding to Γk(ξ), i.e.

Eθ,Γ(ξ) :=
p+q⋃
k=1

Eθ,Γk(ξ).
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Proof of Theorem 1.3. By Proposition 4.2, it is enough to show that

dimH {a ∈ projθΛ : dimH Eθ,a = dimB Eθ,a = s− 1} < 1 (4.1)

(we remind that s = log ]Ω/ logN is the Hausdorff dimension of the carpet). However,

dimH {a ∈ projθΛ : dimH Eθ,a = dimB Eθ,a = s− 1} ≤

dimH {a ∈ projθΛ : dimB Eθ,a = s− 1} = dimH

p+q⋃
k=1

{a ∈ Ik : dimB Eθ,a = s− 1} =

dimH

p+q⋃
k=1

{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = s− 1

}
≤ dimH

{
ξ ∈ Σ : dimB Eθ,Γ(ξ) ≥ s− 1

}
.

By Lemma 4.1 and Lemma 4.7

dimH

{
ξ ∈ Σ : dimB Eθ,Γ(ξ) ≥ s− 1

}
≤ inf
t>0
{−(s− 1)t+ P (t)} .

By the definition of pressure function P (t) we have P (0) = 1, P (1) = s. Moreover, by
Lemma 4.3 and Lemma 4.5, we have P ′(1) = s−dimH η > s−1, where η is the probability
measure defined in (3.5). Then there exists a t′ ∈ [0, 1], such that P (t′) < 1 + (s − 1)t′.
Hence

inf
t>0
{−(s− 1)t+ P (t)} ≤ −(s− 1)t′ + P (t′) < 1,

which implies (4.1) and completes the proof.

Before we prove Theorem 1.4, we need two technical lemmas.

Lemma 4.8. Let µt be the measure defined in Lemma 4.5. Then for µt-a.e. ξ ∈ Σ

dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ).

Proof. Let H : (x, y) 7→ (x, px− qy mod 1) be a map of S1×S1 into itself. Then H(Λ) ⊆
S1 × S1 compact, TN × TN -invariant. Since µt is left-shift invariant then µt ◦ Γ−1 is
TN -invariant. Using [8, Proposition 2.6] we have for µt ◦ Γ−1-a.e. x

dimH π
−1(x) = dimP π

−1(x) = dimB π
−1(x),

where π : H(Λ) 7→ S1 is the projection to the first coordinate.
Let J : x 7→ −qx mod 1 be the mapping projθΛ into S1. Then for every k, l ∈ Ξ and

ξ ∈ Σ, J(Γk(ξ)) = J(Γl(ξ)) = Γ(ξ), where Γ : Σ 7→ [0, 1] is defined in (3.8). Observe
that π−1(Γ(ξ)) = H(Eθ,Γ(ξ)). The proof is completed by the fact that dimH(Eθ,Γ(ξ)) =
dimEθ,Γ(ξ), where dim denotes packing, Hausdorff and box dimension simultaneously.

Lemma 4.9. For every δ ∈ (β(θ), bmax) there exists a 0 < t = tδ such that

P ′(tδ) = δ.
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Proof. By Lemma 4.3, the function P ′(t) is monotone increasing and continuous for t > 0,
hence it is enough to show that β(θ) = limt→0+ P

′(t).
First, we prove that

1 = dimH

{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= β(θ)
}

= inf
t
{−β(θ)t+ P (t)} . (4.2)

The second equality follows from Theorem 4.4. Using Theorem 1.3, we have that for every
k ∈ Ξ

L({a ∈ Ik : dimB Eθ,a = β(θ)}) = L(Ik) =
1
q
,

where L denotes the Lebesgue measure on the real line. Let λ be the uniform Bernoulli
measure on Σ. Using that q ∗ L|Ik = λ ◦ Γ−1

k , we have

1 = q ∗ L({a ∈ Ik : dimB Eθ,a = β(θ)}) = λ(
{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = β(θ)

}
)

Hence,

1 = λ(
p+q⋂
k=1

{
ξ ∈ Σ : dimB Eθ,Γk(ξ) = β(θ)

}
) ≤

λ(
{
ξ ∈ Σ : lim

n→∞

log eTAξ1 · · ·Aξne
n logN

= β(θ)
}

). (4.3)

Since dimH λ = 1, we get the first equation in (4.2).
The other consequence of (4.3) combined with the sub-additive ergodic theorem [14, p.

231] is that

β(θ) = lim
n→∞

1
n logN

N−1∑
ξ1,...,ξn=0

1
Nn

log eTAξ1 · · ·Aξne.

Moreover, it follows from the definition of Gibbs measures {µt}t>0, defined in Lemma 4.5,
that µt → λ weakly as t→ 0+. Therefore, by Lemma 4.6,

lim
t→0+

P ′(t) ≤ lim
t→0+

1
n logN

N−1∑
ξ1,...,ξn=0

µt([ξ1, . . . , ξn]) log eTAξ1 · · ·Aξne =

1
n logN

N−1∑
ξ1,...,ξn=0

1
Nn

log eTAξ1 · · ·Aξne.

Since it holds for every n ≥ 1, we have limt→0+ P
′(t) ≤ β(θ).

On the other hand, it follows from Theorem 4.4 that for every t > 0, 1 ≤ −β(θ)t +
P (t). Since P (0) = 0 and P (t) is continuously differentiable for t > 0, we have β(θ) ≤
limt→0+ P

′(t).
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Proof of Theorem 1.4. Denote by dim either the Hausdorff or packing dimension and let
δ ∈ [β(θ), bmax) then

dimH {a ∈ projθΛ : dimEθ,a = δ} = dimH

p+q⋃
k=1

{a ∈ Ik : dimEθ,a = δ} .

Then using the properties of Γk : Σ 7→ Ik, we get

dimH

p+q⋃
k=1

{a ∈ Ik : dimEθ,a = δ} = dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
.

By simple property of dimension, we get

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
≥

dimH

{
ξ ∈ Σ : dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ) = δ

}
.

There are two possibilities, if δ = β(θ) than we consider the uniform measure λ and
dimH λ = P ∗(β(θ)) = 1. Otherwise, by Lemma 4.9, there exists a tδ ≥ 0 such that
P ′(tδ) = δ. Lemma 4.5 implies that dimH µtδ = −tδP ′(tδ) + P (tδ) = P ∗(δ). Using
Lemma 4.8

dimH {a ∈ projθΛ : dimEθ,a = δ} ≥

dimH

{
ξ ∈ Σ : dimH Eθ,Γ(ξ) = dimP Eθ,Γ(ξ) = dimB Eθ,Γ(ξ) = δ

}
≥ dimH µtδ = P ∗(δ),

which proves the lower bound. For the upper bound, using Lemma 4.7

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimEθ,Γk(ξ) = δ

}
≤ dimH

{
ξ ∈ Σ : dimBEθ,Γ(ξ) ≥ δ

}
≤

inf
t>0
{−δt+ P (t)} .

The function P (t) is convex (Lemma 4.3), hence t 7→ −δt + P (t) is convex as well.
So either δ = β(θ) then limt→0+ P

′(t) = δ = β(θ) or δ > β(θ) then the convexity of the
function implies that

inf
t
{−δt+ P (t)} = inf

t>0
{−δt+ P (t)} ⇔ there exists a t > 0 that P ′(t) = δ.

Therefore,

dimH {a ∈ projθΛ : dimEθ,a = δ} ≤ inf
t>0
{−δt+ P (t)} = P ∗(δ),

which completes the proof.

Now we will turn to the special case of Sierpiński gasket.
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Lemma 4.10. Suppose that Λ is the Sierpiński gasket (i.e. N = 2 and Ω = {0, 1}2 \ {(1, 1)})
then for any θ ∈ [0, π/2) such that tan θ ∈ Q the set

M :=
∞⋃

k=−∞

σk
{

(ξ1, ξ2, . . . ) ∈ Σ : ∀n ≥ 1∃i, j ∈ Ξ, (Aξ1 · · ·Aξn)i,j = 0
}

has Hausdorff dimension 0. Moreover, for every ξ ∈ Σ\N

dimBEθ,Γk(ξ) = dimBEθ,Γ(ξ) = dimBEθ,Γ(σξ) for every k = 1, . . . , p+ q.

Proof. The first part of the lemma follows from [1, Proposition 3.2].
To prove the rest of the statement, let us observe dimBEθ,Γk(ξ) ≤ dimBEθ,Γ(ξ) for every

ξ ∈ Σ and k ∈ Ξ. Moreover, since eTAξ ≤ ]Ω · eT and

dimBEθ,Γ(ξ) = lim sup
n→∞

log eTAξ1 · · ·Aξne
n logN

,

we have dimBEθ,Γ(ξ) ≤ dimBEθ,Γ(σξ).
If ξ /∈M then there exists a K = K(ξ) such that

Aξ1 · · ·AξK > 0.

Therefore, for every n ≥ K+1, eTkAξ1 · · ·Aξne ≥ eTAξK+1 · · ·Aξne for any k = 1, . . . , p+q.
This implies that dimBEθ,Γk(ξ) ≥ dimBEθ,Γ(σKξ). Hence,

dimBEθ,Γ(σKξ) ≥ dimBEθ,Γ(σξ) ≥ dimBEθ,Γ(ξ) ≥ dimBEθ,Γk(ξ) ≥ dimBEθ,Γ(σKξ).

Proposition 4.11. If Λ is the Sierpiński gasket then for every ξ /∈M and k ∈ Ξ

dimBEθ,Γk(ξ) = dimP Eθ,Γk(ξ).

Proof. Let ξ /∈M and k ∈ Ξ. Moreover, let {Ai} be an arbitrary countable decomposition
of Eθ,Γk(ξ). Since the set Eθ,Γk(ξ) is compact, there exists a j such that Aj contains a
non-empty interior in Eθ,Γk(ξ). That is, there exists an ε > 0 and x ∈ Eθ,Γk(ξ) such that
Bε(x) ∩ Eθ,Γk(ξ) ⊆ Aj . In particular, there exists an n ≥ 1 and (ω0, . . . , ωn−1) ∈ Ωn

such that Fω0,...,ωn−1(Λ) ∩ Eθ,Γk(ξ) ⊆ Aj . It is easy to see that Fω0,...,ωn−1(Λ) ∩ Eθ,Γk(ξ) =
Fω0,...,ωn−1(Eθ,Γi(σnξ)) for an i ∈ {1, . . . , p+ q}.

Using Lemma 4.10 and the fact that M is σ invariant, we get

dimBAj ≥ dimBFω0,...,ωn−1(Eθ,Γi(σnξ)) = dimBEθ,Γi(σnξ) = dimBEθ,Γk(ξ).

The statement follows from the definition of packing dimension.
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Proof of Proposition 1.5. Let δ ∈ [bmin, bmax] arbitrary, then

dimH {a ∈ projθΛ : dimP Eθ,a = δ} = dimH

{
ξ ∈ Σ : ∃k ∈ Ξ dimP Eθ,Γk(ξ) = δ

}
.

Using Proposition 4.11 and Lemma 4.10

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimP Eθ,Γk(ξ) = δ

}
=

dimH

{
ξ ∈ Σ : ∃k ∈ Ξ, dimBEθ,Γk(ξ) = δ

}
= dimH

{
ξ ∈ Σ : dimBEθ,Γ(ξ) = δ

}
.

The statement follows from Lemma 4.1 and Theorem 4.4.
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with lines of rational slopes, Proc. Edinb. Math. Soc. 50 (2007), No. 2, 411-427.

[10] A. Manning and K. Simon, Dimension of slices through the Sierpiński carpet, Trans. Amer.
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Balázs Bárány, Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-
956 Warszawa, Poland;
Budapest University of Technology and Economics, MTA-BME Stochastics Research Group,
P.O.Box 91, 1521 Budapest, Hungary

E-mail: balubsheep@gmail.com

Micha l Rams, Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956
Warszawa, Poland

E-mail: M.Rams@impan.gov.pl


