Dimension of slices of Sierpinski-like carpets

Balazs Barany; Michal Rams**

Abstract. We investigate the dimension of intersections of the Sierpinski-like carpets with lines.
We show a sufficient condition that for a fixed rational slope the dimension of almost every
intersection w.r.t the natural measure is strictly greater than s — 1, and almost every intersection
w.r.t the Lebesgue measure is strictly less than s — 1, where s is the Hausdorff dimension of the
carpet. Moreover, we give partial multifractal spectra for the Hausdorff and packing dimension of
slices.
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1. Introduction and Statements

Let N > 2 be an integer and let Q be a subset of {0,..., N —1} x{0,..., N —1}. Suppose
that N + 1 < #Q. Let

Fii(z,y) = %(m,y) + %(k‘,l) for (k,1) € Q. (1.1)

The attractor A C R? of the iterated function system ¥ = {F,,} ., is called a Sierpinski-
like carpet. It is well known that W satisfies the open set condition and dimyg A = dimp A =
dimgp A = llf)gg ﬁ]f,) > 1, where dimy A denotes the Hausdorff dimension, dimp A denotes the
packing dimension and dimp A denotes the box (or Minkowski) dimension of the set A.
For the definition and basic properties of the box, packing and Hausdorff dimensions we
refer the reader to [2].

The main purpose of this paper is to investigate the dimension theory of the slices with
fixed slope. For an angle 6 denote proj, the 6-angle projection onto the y-axis. That is,

projg(z,y) =y — xtan . For a point a € projyA let

Ly, = {(z,y) eR?:a= y—ztan@} and Ep o, = Lg,NA
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be the corresponding slice of the attractor. Without loss of generality, by applying rotation
and mirroring transformations on A, we may assume that 6 € [0, 7/2).

The dimension theory of some special cases was examined before for example in [1,
9, 10, 15]. Liu, Xi and Zhao [9] proved for the usual Sierpriski carpet (i.e. N = 3 and
Q ={0,1,2} x {0,1,2}\ {(1,1)}) that the box and Hausdorff dimension of a slice Ey ,
for Lebesgue almost every point a are equal to a constant depending only on 6 when
the slope tan#@ is rational. Manning and Simon [10] showed that this constant is strictly
less than s — 1, where s is the dimension of the usual Sierpinski carpet. Later Barany,
Ferguson and Simon [1] proved analogous result for the usual Sierpinski gasket (i.e. N =2
and Q = {0,1} x {0,1}\ {(1,1)}). Moreover, they showed that the box and Hausdorff
dimension of a slice Ey, for almost every point ¢ w.r.t the projection of the natural
measure are equal to a constant depending only on 6 strictly greater than s — 1, when
the slope tan 6 is rational , where s is the dimension of the gasket. Furthermore, Bérany,
Ferguson and Simon [1] gave a non-complete multifractal spectra for the dimension of the
slices. Our goal is to generalize the previous results.

Let v be the unique self-similar measure satisfying

V:Zﬁ%VOFw_l-

weN

We call the measure v the natural measure supported on A. One may show that this
measure is nothing else than the normalized s-dimensional Hausdorff measure restricted to
. _ Ho|A _ logiQ
A ie v = AT where s = Tos NV -
natural measure.
First, we mention a weak dimension conservation phenomena for the Sierpinski-like

carpets.

Proposition 1.1. Let N > 2 be integer and Q C {0,...,N —1} x {0,..., N — 1} then for
every fized 6 € [0,7/2)

We denote by vy = v o proj;1 the projection of the

log #€2
dimg Ey , = dimp Ey , = o8 f —dimpy vy for vg-a.c a.
’ ’ log N
In particular,
log #9)
dimyg Fg o, = dimp Ep 4 > IOgﬁN — 1 for vg-a.e a. & dimg vy < 1. (1.2)
0g

This inequality makes sense when N +1 < Q. In the case of rational slopes we prove that
the strict inequality is satisfied in (1.2) whenever N { (2.

Theorem 1.2. Let N > 2 be an integer and Q@ C {0,...,N —1} x {0,...,N — 1} such
that N +1 < §Q and N t Q. Then for every fized 6 € [0,7/2) such that tanf € Q there
exists a constant «(0) depending only on 6 such that

log #$2
log N

a(f) = dimy Fp . = dimp Ey o > — 1 for vg-a.e a.
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A similar theorem can be formalized for Lebesgue-typical points of the projection.

Theorem 1.3. Let N > 2 be integer and Q@ C {0,...,N —1} x {0,...,N —1} such
that N +1 < #Q and N { #Q. For every fized 0 € [0,7/2) such that tanf € Q and
projgA = [—tan 6, 1] there exists a constant 3 depending only on 6 such that

log 2
log N

B8(0) = dimy Ey , = dimp Ey , < — 1 Leb.-a.e. a € projyA.

The proof of Theorem 1.2 and Theorem 1.3 uses a method different to one used in
Manning, Simon [10] and Béardny, Ferguson, Simon [1]. In both of the papers the authors
construct a finite set of matrices. They prove that this set of matrices satisfies a very
strong irreducibility property (i.e. there exists a finite sequence of matrices such that the
product has strictly positive elements) and using this fact they prove that the Lebesgue
typical slice for a fixed rational slope has dimension strictly less than s — 1. The proof of
this special irreducibility property is ad hoc, depends very much on the structure of the
usual Sierpiniski gasket and carpet and does not hold in general. We are going to modify
this method as follows. We will construct the same type of matrices as in [1], [9]. Using
the general properties of those matrices we will show that a vy typical slice has dimension
strictly greater than s — 1 whenever tanf € Q. Applying this fact and the results of
Feng and Lau about nonnegative matrices [6] we will be able to prove the theorem about
Lebesgue typical slices. For further details see Section 4.

Because of Theorem 1.2 and Theorem 1.3 one can claim that the dimension of the slices
has a non-trivial multifractal spectra for rational slopes. Bérany, Ferguson and Simon [1]
gave the incomplete spectrum of the dimension of the slices of the usual Sierpinski gasket.
Precisely, they calculated the function

0 — dimpy {a € projyA : dimy Ep, = 6}

for any 6 such that tand € Q and the values 6 > (), where () is the Lebesgue-typical
dimension. Our aim is to generalize the previous result for the Hausdorff and packing
dimension of the slices of the general Sierpinski-like carpets. Moreover, we will give the

full spectra for the packing dimension of the slices of the usual Sierpinski gasket.
Consider the projected IFS ¢ = {f,} of ¥ = {F,} .q, ie.

r —ktanf+1
Jra(z) = ~t— N for every (k,1) € Q. (1.3)

By straightforward calculations and [11, Theorem 2.7] we see that 1) satisfies the finite type
condition for tanf € Q and therefore, the weak separation property.

Let us divide the interval I = [—tan#,1] = proj,A into p + ¢ equal intervals, i.e.

I, = [%, k%p] for k = 1,...,p 4+ q. Moreover, let us divide I for every k into N

equal parts. That is, I,E = [k_(ll_p + Niq, k_;_p + %] for £ =0,...,N — 1. For every
£=0,...,N —1let us define a (p+ q) x (p + ¢) real matrix A¢ in the following way

(A),, =t {w €0 fu(I)) = If} . (1.4)
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By some simple calculations the matrices A,, n =0,..., N — 1 can be written in the form
(An);; =t{(k,) €Q:iN+n=kp+(N—-1-1)g+j+N—1}.

Denote by P(t) the pressure function which is defined as

N—-1
P(t) = i 1 TAg, - Ace) 1.
()= hm oglos D (€Ma - Ace) (15)
E1yenny £n=0
where e = (1,...,1)T € RP*9, and let us define
P(t P(t
bin =, lim ®) ind by = Jim %) (1.6)

Theorem 1.4. Let N > 2 be integer and Q C {0,...,N — 1} x {0,...,N — 1}. Then for
every fized 6 € [0,7/2) such that tan6 € Q and [—tan6, 1] = projsA we have

dimy {a € projyA : dimy Fg , =0} =
dimpy {a € projyA : dimp Ey , = 0} = P*(6) for every 6 € [3(0), bmax],

where P*(8) := inf; {—dt + P(t)}. Moreover, the function P*(§) is continuous, concave
and monotone decreasing on [3(0), bmax]-

Because of the special structure of the usual Sierpinski gasket (see Lemma 4.10), it is
possible to give complete spectrum for the packing dimension of the slices.

Proposition 1.5. Let A be the usual Sierpiriski gasket, i.e. N = 2 and Q = {0,1}*\ {(1,1)}.
Then for every fized 6 € [0,7/2) such that tanf € Q

dimy {a € projgA : dimp Eg , = 0} = P*(6) for every 6 € [bmin, bmax-

The organization of the paper is as follows, in Section 2 we prove Proposition 1.1.
In Section 3 we will construct our matrices according to the rational projection and using
their general properties we prove Theorem 1.2. In Section 4 we define the so-called pressure
function corresponding to our nonnegative matrices and using previous results of Feng and
Lau [3],[4],[6] we prove Theorem 1.3 and Theorem 1.4.

2. Proof of Proposition 1.1

Before we prove Proposition 1.1, we state a general dimension conservation phenomena
for self-similar measures of Sierpinski-like carpets. Let N > 2 be integer and 2 C
{0,...,N —1} x{0,..., N — 1}. Then it is well known that for every positive probability
vector (py),cq there exists a unique probability measure u satisfying

p=_ pupo
weN

where the IFS W = {F,} . are defined in (1.1). Denote by A the attractor of {F,}, cq-
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Proposition 2.1. For any 6 € [0,7/2)
dimyg pg + dimpg ui = dimg p for pg-a.e. a,

where g = p o projg1 and {uz}aepm A denote the canonical system of conditional me-

asures with respect to the partition {pI‘OJe (a):a € projeA} In particular, for the natural
measure vV = Hs(k\) , where s = llogm (the measure corresponding to the probabilistic vector

pw = (1/8Q,...,1/4Q)), we have

log #$2
log N

—dimpg vy < dimpy Ey o for vp-a.e. .

Proof. To prove the proposition we apply the results of Furstenberg [7] about ergodic
CP-chains.

We define a measurable map T : P([0,1]%) x [0, 1]? — P([0,1]?) x [0,1]?, where P(A)
denotes the probability measures of [0,1]2, as follows

1
T(Y,x) := <19(

k k41

[
kJr)

2\>

)

T L S
. ,Nz mod1],
%, 5)

where = € [§, %) X [%, ). Moreover, let us define a probability measure © on
P([0,1]?) x [0,1] that dO(Y,z) = d¥(z)ds,(9), where p is a given self-similar measure
of A. Then it is easy to see that the measure © is T-invariant and ergodic. The statement
of proposition follows from [7, Theorem 3.1]. O

27»

)

S

For an alternative proof we refer the reader to [5, Proposition 4.14, Remark 4.15].
For a finite length word w € Q" let F,, = F,,,0---0 F,, | and denote by G,(6,a) the
set of nth level cylinders intersecting the line Ly . That is,

Gn(0,a) :={we Q" : F,(A)N Ly, #0}. (2.1)

Standard calculation gives us
Lemma 2.2. For any 0 € [0,7/2)

log 4G, (0, - . log 4G, (0,
dimgFy , = linnligf W and dimpEy , = hrrln_)solip W.

Lemma 2.3. For any 0 € [0,7/2)

log 2

d,,(a) +dimpFEy, < i for every a € projyA.

Proof. First, let us observe that

vg(Bn-n(a)) > ﬁG;}(li’a).
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Hence,
8Gn (0,a)
.. Jdogvg(By-n(a)) .. . . log=aa=
o) = B0 Togn = A ey
logtQ) . log 4G, (0,a) logtQ ——
— lims = —d E
log N 1?_?;1? nlog N log N B 50,0,
where the last inequality follows form the previous lemma. O

Proof of Proposition 1.1. Since d,,(a) = dimpg vy for vp-almost every a € projyA, the
combination of Proposition 2.1 and Lemma 2.3 proves the statement. O

3. Proof of Theorem 1.2

Through this section we always assume that N t §Q and N + 1 < #Q. Moreover, let
0 €[0,7/2) and tanf = % be arbitrary but fixed. Let us recall the definition of projected
IFS (1.3) and the definition of matrices (1.4). The projected IFS ¢ = {f,} of ¥ = {F,}
according to projg is

weN

—k l
fra(z) = % + %, for every (k,1) € Q.
Divide the interval I = [—%, 1] into p + ¢ equal intervals, i.e. I = [@7 k;P] for

k=1,...,p+ q. Furthermore, divide I for every k = 1,...,p + ¢q into N equal parts.
That is, Iy = [F1=2 + &, =12 = Elp 4 S8 for ¢ =0,...,N — 1. For every { =0,...,N — 1
let us define a (p+¢q) x (p+ q) real matrix A¢ in the following way

(Ae),, =t {w e f(I;) = If} .

From the definition of the matrices (1.4) it is easy to see that

+

q N—

,_.

P
:ﬁQ for every j =1,...,p+q. (3.1)

I
-

% §=O

In general, for &;,...,&, € {0,...,N — 1} let Ifl """ % be the interval

: —1-p & J—1-p
I€17~~>£n — J + , + .
J [ q k f Nk Z an

By the definition, for the products of the matrices hold

(A - Ag,);; = t{weon: fu(r) = 185} (3.2)
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Because of (3.1) the matrix
] N-1
_ T
P = 10 Z An
n=0
defines a Markov-chain on = := {1,...,p + q}. Let us divide the set of states into two
parts. Let

= ={i € Z:v(;) >0}
E={ieZ: () =0}.

[1]

Lemma 3.1. The set 2, is a recurrent class and
defined by P. Moreover, E, is aperiodic.

+ 15 a transient class of the Markov-chain

Proof. First, we show that if ¢ € Z, and P;; > 0 then j € E,. Since P;; > 0 there exist
we Qand n € {0,...,N — 1} such that f,(I;) = I}'. Therefore 0 < vy(fo(1;)) = vo(I}) <
Vg(]j).

On the other hand, for every K > 0 sufficiently large and for every j € =, there exists
aw € QF such that f,(I) C I;. This implies that for every j € Z, and every i € E,
(PK)W» > 0, which proves the statement. O

We note that if projyA = [—tan,1] then =, = Z and E; = . It is well known from
the theory of Markov-chains that there exists a unique probability vector p such that p is
the stationary distribution of P, i.e. BTP = BT. In particular,

N-1
> Ac|p=1-p.
£=0

Lemma 3.2. For everyi € {1,...,p+q} and (&1,...,&,) €{0,...,N —1}"
QZAfl A&nB

(agen) = S0 Aol

where e; denotes the ith element of the natural basis of RP1Y.

Proof. First, let us observe that p, = vg(I;). That is,

N—-1 " N—-1p+q VG(I‘) p+q VG(I‘) N—-1
— — J _ J
ve(l;) = vp(I§) = ZZ 3 roRD DT> > (Ao,
£=0 £=0 j=1 wégifw(lj)zlf Jj=1 £=0

At the second equality we have used that vy is a self-similar measure. Therefore the vector
(vo (IZ))filq is a probability right-eigenvector of Z?;Ol Ag¢. Thus, in general,

VI

ptq p+q
1yesbn Vg I' Vy I‘
vp(If1 o) = > ) _ ﬁé,f) (Ag, -+ Ag,)
j 1

Jj=
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Denote Af the submatrix of A¢ by deleting the rows and columns of Z;. If j € E, and

1 € Z4 then (Af)z‘j =0 for every £ =0,..., N — 1. Hence,

N-1
> (4), ; =0 for every j € E,. (3.3)
i€8, £=0
Lemma 3.3. For anyi,j € E, and &,...,§, €{0,...,N —1}
(Ag, - Aﬁn)i,j = (A21 o Azn)i,j :

Proof. Let us prove by induction. For n = 2

ptaq
(A&Afz)i,j - Z (Aél)l"k (A§2)k’j = Z (A&)i,k (Afz)k’j = (AglAEQ)iJ— .
k=1 keE,

We used in the second equation that (Ae,), ; = 0 whenever k € Z;. Then

p+q

(A§1 U AﬁvbAg'rLJrl)i,j = Z <A£1 e Afn>i,k: (A£7L+1)k7j :
k=1

Again, (A&L“)k,j = 0 whenever k € =, so

Z (Ae, "'Afn)i,k (Afnﬂ)k,j = Z ( & "'Agn)m (Afnﬂ)k,j = (Ag1 "'AE,LH)” :

ke=, kEE, ’

O
In particular, an important consequence of Lemma 3.3 is that for every &;,...,§, €
{0,...,N—1}and i€ =,
~T D
e: AT ... AT D
vp(If1 8y = S 00 Tl (3.4)

g ’

where p = (vp(I;))jez, and ¢; is the ith element of the natural basis of R*". Now,

we define a left-shift invariant measure n on the symbolic space ¥ = {0,...,N — 1}N.
Endow ¥ with the metric d(§,{) = N~ for £ = (£1,&2,...) and ¢ = ((1,(2,...), where
n is the largest integer such that & = (;(1 < i < n). For a cylinder set [£1,...,&,] =
{(¢1,8,...)€X =&, k=1,...,n} let

~T ~
€ Ag o ALD

7]([517,§n]) = ﬂQ"’ 5 (35)

wheree =)’ €;. By (3.3), n is a probability measure.

i€EE, &;
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Lemma 3.4. The probability measure n is o-invariant and mixing and hence ergodic, where
o denotes the left-shift operator on X.

Proof. First, we prove the invariance. It is enough to prove for the cylinder sets. Since the
vector € is a left-eigenvector of Z?:_Ol Af (3.3), then for a cylinder set [¢1,. .., &)

N—1 N-14T ~
B el AcAL - AL D
77(0— 1[617"’76774]): Zn([g»gh»gn]): Z ﬂ517L+1 &Li:
£=0 £=0
~T ~
e AT ... AT p
- fl §n7 —
ﬁQn 77([61""76”})'
To prove the mixing property it is enough to show that for any cylinder sets [£1, .. ., &)

and [C1,..., ]
nlljgoﬁ([ﬁl» s 7&6] n Jin[gla .- '7@]) = 77([517 s 7§k])77([<17 .- wClD'

By the definition of 1 (3.5), for sufficiently large n

N-1 ETAEJ"A&AZ”'AT T AT

_ . n— C T C—
0, &l N o™, Gl = =
01,0y in—k=0
—k
~T N-1 ~
€ Agl T Agk (E’:O AI) AZI o AZLB
ﬁanLl :
Applying Lemma 3.1 and the basic properties of aperiodic, irreducible Markov chains, we
have .
N—1 n—k
(A
i e e
which implies the mixing property. O

Lemma 3.5. Denote by h, the entropy of measure n. If N 1 Q and N +1 < #Q then
hy <logN.

Proof. We argue by contradiction. Suppose that h, = log N. By [14, Theorem 4.10] and
[14, Theorem 4.18] we have that

N—1 T ~ ~T ~
1 L e AL App eAL - ALD

hy = Jim — T T T
€15--,6n=0

and the right hand side decreases as n — oo. That is, h, = log N if and only if

AL LD 1
W:m, for everynZ 1 and 61,---,6’(}. 6{0,,]\771} (36)
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By Lemma 3.1 there exists a i > 0 such that (ZN ! AT)K > 0, i.e. each element of the
matrix is strictly positive. Without loss of generality, we may assume that K > (p+q)2+1.
Then there exists a word (1, ..., (k) of length K such that (ZN ! A’”)K—AZ1 AL > 0.
Let A :={0,...,N — 1} \{(¢1,...,¢x)}. By Perron-Frobenius theorem there exists a
p > 0 and u, v vectors such that p is the largest eigenvalue of the matrix deA Ag and u, v
are the corresponding left and right eigenvectors. Moreover,

n

lim — | Af T (3.7)
n—o0 p 56,4

I
‘@
<

By our assumption (3.6)

n

1. i Q< 8A QR (NE 1)
Elogg ;E;Ag p = log VK = log NE .

On the other hand, by (3.7)

n

lim — 1og € Z AT p = logp.

So p = 0K — £27 but this is a contradiction since $QF — 227 € Q\Z cannot be a root of
characteristic polynomlal of de A Ag, which is a matrix of mteger coefficients. O

Proof of Theorem 1.2. Let I" be the natural projection from ¥ to interval [0, 1], that is,

I',é,...)= (3.8)
Denote hy, the linear function, mapping I, to [0, ] that is, hy(z) = gz — (k —1 —p). The
measure
Vg = Z 1/9|1k oh,;1 =nol™!
kEE,

is Nz mod 1 invariant and ergodic by (3.4) and Lemma 3.4. Moreover,

dimg 7y = min dimg V9|I oh;~ =dimg v. (3.9)
1<k<p+q

By the Volume Lemma [13, Theorem 10.4.1,Theorem 10.4.2] and Lemma 3.5, we have

- h
dimpy vy = ] gnN < 1. (3.10)
The statement of the theorem follows from (3.9), (3.10) and Proposition 1.1. O
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4. Proof of Theorem 1.3 and Theorem 1.4

In the rest of the paper we assume that projyA = [—tan6,1]. In the previous section we
have shown that the matrices, constructed in (1.4) can be used for determine the dimension
of the projected natural measure. In this section we show that the matrices can be used
for determine the box dimension of the slices, with the additional assumption that the
projection is an interval.

We note that if projyA = [—tan6,1] then Z, = = and Z; = (). In particular, A} = A¢
for every £ € {0,...,N —1}.

Lemma 4.1. Let Q C {0,...,N —1}* and 0 € [0,7/2) such that tand = 2 and proj,A =

q
[~ tan®,1]. Then for a = ki# + %Zzozl %

log e, Ag, - Ag, e loge, Ag, -+ Ag, e

dimgpFyg, = linniigf log N , and HBE97G = hflsolip nlog N

)

where ey, is the kth element of the natural basis of RPTY.

Proof. Let a = % + %fo:l £o Let us recall the definition (2.1) of G,,(0,a), which

is the number of cylinder sets intersecting the line Ly 4. Since proj,A = [—tan§, 1] let us
observe that for every n > 1 and every w € Q"

F([0,1])NLoq #0 < F(A)N Lo # 0.

Hence
1Gn(0,0) =t {w e Q" : F,([0,1]*) N Lo # 0}

Since tan 6 is rational,
F,([0,1]*) N Ly, # 0 < there exists a 1 < j < p+ g such that f,(I;) = Iﬁl""’f’”

Using (3.2) we have e, Ag, -+ A¢, e = G (0, a). The statement follows from Lemma 2.2.
O

Proposition 4.2. Let Q C {0,...,N — 1} and 6 € [0,7/2) such that tan = L and
projoA = [—tan@,1]. Then there exists a constant § = 3(0) depending only on 0 such that

dimpy Ep , = dimp Ey . = 3(0) for Leb.-a.e. a € projyA.

For the proof of Proposition 4.2 we refer to [9, Section 7].
Now, let us recall the definition of the pressure function P(t), and byax defined in (1.5),
(1.6), i.e.

N-1
IOg Z (QTAfl T Afn,g)t ) and byax = thm @

— 00 t
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Lemma 4.3. The pressure function P(t) exists for every t € R, and monotone increasing,
convex and continuous. Moreover, P(t) is continuously differentiable for everyt > 0.

K
Proof. By Lemma 3.1, there exists a K > 0 such that (Z?;Ol A,g) > 0. Then the exi-

stence follows from [3, Lemma 2.2]. The differentiability follows from [6, Theorem 3.3], and
the monotonicity, convexity, and continuity property can be proven by standard argument.
The continuity of the derivative is not explicitely mentioned in [6, Theorem 3.3], but it
follows from convexity. O

Theorem 4.4 ([3], Theorem 1.1). Let A¢ be non-negative matrices for € =0,...,N — 1.
If there exists a K > 0 such that fo:o (Zév:_ol Ag) > 0 then
logel Ag, -+ Ag e

dim g {E eX: nan;O nlog N = = a} = utlf{fat + P(t)} =: P*(«),

where dimp is defined according to the metric d(§,() = N™" for & = (£1,&2,...) and
¢ =1(¢,C,...), where n is the largest integer such that & = (;(1 <1i <mn).

Lemma 4.5. For every t > 0 there is a unique ergodic, left-shift invariant Gibbs measure
pe on Y such that there exists a C > 0 that for any (&1,...,&,) € {0,...,N —1}"

C—l < /”'t([ghagn])
= (gTA51 "'Agnﬁ)t N-nP(t) —

Moreover,

dimg puy = —tP'(t) + P(t)

and

. logeTAg Ag [&
1 = ! n= = p/ -a.a. 2.
ningo nlogN (t) fO’f’ He-a.a (517527 ) €

The proof of the lemma follows from [6, Theorem 3.2] and [6, Proof of Theorem 1.3].
Lemma 4.6. For everyt >0

N—-1
, 1
Pl(t)= lim ———0 Y pul[En o &) loge Ag, - Ag e =
& ISR £n=0

N-1

. T

o Tl E; e, G loge" A, - Ag.e
15--58n=

where g is the Gibbs measure defined in Lemma 4.5.
The proof of the lemma follows from [4, Theorem 1.2] and [4, Lemma 2.2(ii)].
Lemma 4.7. For any § >0

IOgQTAgl e Afng

di Yl
impg {5 IS 17ILILSOI<1Jp nlog N

zd}sgﬁ—&+Pw}



Dimension of slices of Sierpiriski-like carpets 13

Proof. We will prove the upper bound with the method of Olsen and Winter [12].
Let € > 0 be arbitrary but fixed. Let us define the following set of cylinders:

IOgQTA& - Age
klog N '

A,e) = {[51,...,&}:16271, 0—e<

It is easy to see that the set

U (€155 k]

(€1, €x]EAR(E)

T e
covers the set G5 = {§ € X :limsup,,_, W > 5}. Let B, (¢) be the set of

disjoint cylinders in A, (¢) such that

U  &al= U Gl

[€1, ,&k]EBR () (€1, ] €A (E)
Then for every t > 0
H;{(itjP(t)‘FQe(Gé) < Z N-R-dPO26)
[1,.€k]€BR ()

N—ne Z N—kP(t) (QTA§1 o Agkﬁ)t .
[61,..,€k]E€BR ()

By Lemma 4.5

MG NSl @) SN
[€1,..,6x]E€EBR(€)

Since € > 0 and t > 0 were arbitrary,
dimy G5 < %n(f) {=0t+P(t)}.
>
O

Before we prove our main theorems let us introduce p 4+ ¢ projecting maps from X to

Ik. That iS,
— &k
D NE

k=1

k—1—-p 1

g =242
q q

Denote Ey () the union of slices corresponding to I'x(§), i.e.

p+q

Eore = | Boruo-
k=1
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Proof of Theorem 1.3. By Proposition 4.2, it is enough to show that
dimy {a € projgA : dimy Eg , =dimp Eg, =s—1} <1 (4.1)
(we remind that s = log #Q/log N is the Hausdorff dimension of the carpet). However,

dimg {a € projgA : dimy Eg , =dimp Ep o =s— 1} <

pt+q
dimy {a € projyA : dimp Ep o = s — 1} = dimpy U {a€l;:dimpFEp,=5—1}=
k=1
p+q
dimpg U {§ €Y :dimp Eg’r‘k(é) =5— 1} < dimgy {§ €Y :dimp Egyp(é) > s — 1} .
k=1

By Lemma 4.1 and Lemma 4.7
dimpg {§ €X:dimp Epre) =5 — 1} < 2I>1(f){—(s —t+P(t)}.

By the definition of pressure function P(t) we have P(0) = 1, P(1) = s. Moreover, by
Lemma 4.3 and Lemma 4.5, we have P’(1) = s —dimpg n > s— 1, where 7 is the probability
measure defined in (3.5). Then there exists a t' € [0, 1], such that P(¢') < 1+ (s — 1)t'.
Hence

igg {—(s—1t+Pt)} < —(s—1t' + P(t') <1,

which implies (4.1) and completes the proof. O

Before we prove Theorem 1.4, we need two technical lemmas.

Lemma 4.8. Let yi; be the measure defined in Lemma 4.5. Then for pi-a.e. £ € X
dimH E9,F(§) = dimp E9,F(§) = dimB E@,F(ﬁ)-

Proof. Let H : (x,y) — (z,pr —qy mod 1) be a map of S x St into itself. Then H(A) C
S1 x 8! compact, T x Tn-invariant. Since p is left-shift invariant then p; o T™! is
Tn-invariant. Using [8, Proposition 2.6] we have for p; o I'"l-a.e. =

dimpg 7~ ' (2) = dimp ' () = dimp 7~ (),

where m: H(A) — S is the projection to the first coordinate.

Let J : 2 — —gx mod 1 be the mapping projyA into S*. Then for every k,l € = and
& e, JTk(&) = J(Ty(&) = T(&), where T : ¥ — [0,1] is defined in (3.8). Observe
that 7= *(T(£)) = H(Eyr(e)). The proof is completed by the fact that dim H(Ey () =
dim Ejy p(¢), where dim denotes packing, Hausdorff and box dimension simultaneously. [l

Lemma 4.9. For every ¢ € (6(0), bmax) there exists a 0 <t =ts such that

P'(ts) = 6.
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Proof. By Lemma 4.3, the function P’(t) is monotone increasing and continuous for ¢ > 0,
hence it is enough to show that 5(6) = lim;_,o+ P’(t).
First, we prove that

loge"Ag, - Ag, e

ldimH{SGE: lim

nooo  nlog N ﬂ<9>}i§f{ﬂ(9)t+P(t)}. (4.2)

The second equality follows from Theorem 4.4. Using Theorem 1.3, we have that for every
ke=
. 1

where £ denotes the Lebesgue measure on the real line. Let A be the uniform Bernoulli
measure on Y. Using that ¢ * £|1k =\o 1";1, we have

1= g+ £({a € I dimp By, = 8(0)}) = M({€ € B dimp By r, ¢ = BO) )

Hence,
p+q
1= )\(ﬂ {§ € X :dimp Epr, ) = 5(9)}) <
k=1

logel Ag, -+ A¢ e

L _ 5(9)}» (4.3)

A Y1
({5 < o nlog N
Since dimgy A = 1, we get the first equation in (4.2).

The other consequence of (4.3) combined with the sub-additive ergodic theorem [14, p.
231] is that

N-1
. 1 T

Moreover, it follows from the definition of Gibbs measures {j},., defined in Lemma 4.5,
that u; — A weakly as ¢ — 04. Therefore, by Lemma 4.6,

N-1
. / . T —
Jim P < lm e > pl(6n Gl log e Ag - Age =
51 11111 En:O
1 N-1
—1 A A
nlog N, Zg_:foNn 0BE Lo Aent

Since it holds for every n > 1, we have lim; o4 P'(t) < 5(6).

On the other hand, it follows from Theorem 4.4 that for every ¢t > 0, 1 < —3(0)t +
P(t). Since P(0) = 0 and P(t) is continuously differentiable for ¢ > 0, we have 3(0) <
limt*)OJr P/(t) O



16 Balédzs Barany, Michal Rams

Proof of Theorem 1.4. Denote by dim either the Hausdorff or packing dimension and let
0 € [B(0), bmax) then

p+q

dimpy {a € projgA : dim Ep , = 6} = dimpy U {a €I :dimEy, =d}.
k=1
Then using the properties of I'y, : ¥ +— [, we get
p+q
dimy | J {a € I : dim By, = 6} = dimp {g €%:3k€E, dimEyp, e = 5} .
k=1

By simple property of dimension, we get

dimy {g €X:3k€E, dimEyp, e = 5} >
dim g {§ € ¥ :dimg E‘97F(§) = dimp EG,F(Q = dimp E97F(§) = (5} .

There are two possibilities, if § = ((0) than we consider the uniform measure A and
dimg A = P*(8(0)) = 1. Otherwise, by Lemma 4.9, there exists a t5 > 0 such that
P'(ts) = 6. Lemma 4.5 implies that dimpgy ps; = —tsP'(t5) + P(ts) = P*(6). Using
Lemma 4.8

dimy {a € projgA : dim Ep , = 6} >
dimg {g € £ : dimy Epr(e) = dimp By re) = dimp Eg p(e) = 5} > dimy g, = P*(5),
which proves the lower bound. For the upper bound, using Lemma 4.7
dimp {€ € 21 3k €2, dim B, =6} < dimpy {¢ € : dmp By > 6} <
tlI>1(f) {—0t+ P(t)}.
The function P(t) is convex (Lemma 4.3), hence t — —dt + P(t) is convex as well.

So either § = (6) then lim; o4 P'(t) = 6 = B(0) or 6 > () then the convexity of the
function implies that

irtlf{—ét +P(t)} = gg {—6t+ P(t)} & there exists a t > 0 that P'(t) = .
Therefore,
dimpy {a € projgA : dim Ep , = 6} < ggg{—& + P(t)} = P*(9),

which completes the proof. O

Now we will turn to the special case of Sierpinski gasket.
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Lemma 4.10. Suppose that A is the Sierpiriski gasket (i.e. N =2 and Q = {0,1}*\ {(1,1)})
then for any 6 € [0,7/2) such that tan € Q the set

o0

M= | ak{(§1,§2,...) €%:Vn>13i,j €5, (Ag - Ae, ), :0}

k=—oc0
has Hausdorff dimension 0. Moreover, for every § € ¥\N
dimBE97pk(§) = dimBEGI@ = dimBE&p(c@ foreveryk=1,...,p+q.

Proof. The first part of the lemma follows from [1, Proposition 3.2].
To prove the rest of the statement, let us observe dimp Ep r, (¢) < dimpFEy p(¢) for every

£ € ¥ and k € . Moreover, since QTA§ <#Q-eT and

loge” A, - Ae, e

n

dimpEy p(e) = 11}318;13 Tlog N

)

we have diimBEg,p@ < diimBEg)F(Ué).
If £ ¢ M then there exists a K = K(£) such that

AE1"'A£K > 0.

Therefore, for every n > K +1, el A¢, -+ Ag, e > QTA&(+1 < Ag eforany k=1,...,p+q.
This implies that dim g Fy 1, (¢) > dimp Ep p(,x¢). Hence,

MBEQ,F(UKé) > ﬁBEe,r(ag) > MBEe,F@ > EBEG,Q@ > MBEG,F(GKQ'

Proposition 4.11. If A is the Sierpiriski gasket then for every £ ¢ M and k € 2
dimpEy r, () = dimp oy (g)-

Proof. Let £ ¢ M and k € Z. Moreover, let {A;} be an arbitrary countable decomposition
of Fyr,)- Since the set Eyr, (¢ is compact, there exists a j such that A; contains a
non-empty interior in Fyr, ¢). That is, there exists an € > 0 and z € Fyr, (¢) such that
Be(z) N Egr,) € Aj. In particular, there exists an n > 1 and (wo,...,wn-1) € Q"
such that Fi,, . ., ,(A) N Egr, ) € Aj. It is easy to see that Fi, . w, ,(A) N Egp, ) =
Flog,ohon1(Bor;(ong)) forani € {1,...,p+q}.

Using Lemma 4.10 and the fact that M is ¢ invariant, we get

dimpA; > dimpF,, . w, ,(Eor,(one) = dimpEyr,one) = dimpEyr, (o)

The statement follows from the definition of packing dimension. O
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Proof of Proposition 1.5. Let § € [bmin, bmax| arbitrary, then
dimpy {a € projyA : dimp Eg , = 6} = dimy {§ €X: 3k € Edimp Egr, (¢) = 6} )

Using Proposition 4.11 and Lemma 4.10

dimp {€ € 1 3k €2, dimp Eor, ) =0} =
dimpy {€ €23k € Z, dmpEor, =0} = dimy {¢ € T : dmpEyrg) =0}

The statement follows from Lemma 4.1 and Theorem 4.4. O
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