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Abstract. We consider an infinite iterated function system {fi}∞i=1

on [0, 1] with a polynomially increasing contraction rate. We look
at subsets of such systems where we only allow iterates fi1 ◦ fi2 ◦
fi3 ◦· · · if in > Φ(in−1) for certain increasing functions Φ : N → N.
We compute both the Hausdorff and packing dimensions of such
sets. Our results generalise work of Ramharter which shows that
the set of continued fractions with strictly increasing digits has
Hausdorff dimension 1

2 .

1. Introduction

In this paper we consider certain subsets of the attractors of infinite
iterated function systems. For each n ∈ N we will let fn : [0, 1] → [0, 1]
be C1 maps such that

(1) There exists m ∈ N and 0 < A < 1 such that for all (a1, . . . , am) ∈
Nm and for all x ∈ [0, 1]

0 < |(fa1 ◦ · · · ◦ fam)′(x)| ≤ A < 1.

(2) For any i, j ∈ N fi((0, 1)) ∩ fj((0, 1)) = ∅.
(3) There exist d > 1 such that for any ε > 0 there exist C1(ε), C2(ε) >

0 such that for i ∈ N there exist constants λi, ξi such that for
all x ∈ [0, 1] ξi ≤ |f ′i(x)| ≤ λi and

C1

id+ε
≤ ξi ≤ λi ≤

C2

id−ε

We will call such a system a d-decaying system.
There will be a natural projection Π : NN → [0, 1] defined by

Π(a) = lim
n→∞

fa1 ◦ · · · ◦ fan(1).

We will denote Λ = Π(NN) as the attractor of the system. We will
let T : Λ → Λ be the expanding map defined by T (x) = f−1

i (x) if
x ∈ fi([0, 1]). If x = Π(a) then we will refer to {an}n∈N as the digits of
x (these are not necessarily unique). For brevity of notation for x ∈ Λ,
{ai(x)}i∈N will denote a sequence a ∈ NN such that Π(a) = x.
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We are interested in the set of x where the digits are increasing
monotonically. For an function Φ : N → R which satisfies that Φ(n) ≥
n we will denote

(1.1) XΦ = Π{a : an+1 > Φ(an) for all n ∈ N}.
We will be looking at what the dimension of these sets for various
different notions of dimension. We will be considering Hausdorff di-
mension, denoted dimH , packing dimension, denoted dimP and upper
box counting dimension denoted dimB. For the definitions of these no-
tions of dimension the reader is referred to [F1]. Our first result is the
following

Theorem 1.1. Let Φ : N → R satisfy that for some β ≥ 1 we have
n ≤ Φ(n) ≤ βn for all n ∈ N . We then have that

dimH XΦ =
1

d
.

Considering packing dimension instead of Hausdorff dimension we
obtain the following, stronger result:

Theorem 1.2. Let s0 = dimB({fi(0)}∞i=1) and Φ : N → R satisfy that
Φ(n) ≥ n then we have that

dimP XΦ = max

{
s0,

1

d

}
.

To look at dimH XΦ for functions Φ : N → R where the growth rate
is quicker than a linear rate we restrict ourselves to a certain class of
d-decaying systems. We will call an iterated function system, {fn}n∈N
Gauss like if

∪∞i=0fi([0, 1]) = [0, 1]

and if for all x ∈ [0, 1] we have that fi(x) < fj(x) implies i > j. We
then have that

Theorem 1.3. If {fi}∞i=1 is a Gauss like system, α > 1 and Φ(n) = nα

then

dimH XΦ =
1

1 + α(d− 1)
.

Previous work on this type of problem has been done in the case of
continued fractions. Here the maps fn : [0, 1] → [0, 1] can be defined
by fn(x) = 1

x+n
for each n ∈ N. In 1941 Good showed that the set

where limi→∞ ai = ∞ has dimension 1
2

([G]) and this was extended
by Ramharter, [R], to show that the set of x with strictly increasing
continued fraction exponents has dimension 1

2
. We will show that this

dimension is unchanged if we use the stronger condition ai+1 > βai for
β > 1 and for all i ∈ N. However on the other hand we will show that if
we have the condition ai+1(x) > (ai(x))α for all i ∈ N and α > 1 then
the dimension does drop below 1

2
. Subsequent to the work of Good
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several papers, e.g [L] and [WW], have added conditions on the rate of
convergence of the ai to infinity either along sequences or subsequences.
In particular [WW] calculate the Hausdorff dimension of the set where
ai(x) ≥ Φ(x) for infinitely many n for any function Φ.

In this setting of Continued fractions Theorem 1.1 and Theorem 1.3
have the following corollary:

Corollary 1.4. If we denote the continued fraction expansion of x by
a1(x), a2(x), a3(x), ... then we have that

(1) for any β ≥ 1 we have that:

dimH{x : ai+1(x) ≥ βai(x) for all i ∈ N} =
1

2
;

(2) for any α > 1 we have that

dimH{x : ai+1(x) ≥ (ai(x))α for all i ∈ N} =
1

1 + α
.

It should be noted that in part 1. of the Corollary the case where β =
1 was shown by Ramharter in [R]. The second part of this Corollary
relates to the work by  Luczak in [L]. Here for α, β > 1 the sets

Θ[α, β] = {x : an(x) ≥ βαn

for all n ∈ N}
are considered (where ai(x) denote the continued fraction digits of x).
It is shown that dim Θ[α, β] = 1

1+α
which corresponds with the dimen-

sion found in Part 2. of Corollary 1.4. This connection is no surprise
since if we have that ai+1 > aα

i for all i ∈ N then an(x) > a1(x)αn
.

Finally we can show that Theorem 1.3 does not hold if we consider
more general systems. In particular if there are gaps between the first
level cylinders then the situation can be significantly different as illus-
trated by the following theorem:

Theorem 1.5. For any d > 1 and any strictly increasing function
Φ : N → N there exists a d-decaying system, {fi}∞i=1 such that

dimH XΦ =
1

d
.

Throughout the paper if x ∈ Λ we will denote the nth level cylinder
containing x by

Cn(x) := fa1(x) ◦ · · · ◦ fan(x)([0, 1]).

The rest of the paper is laid out as follows. In section 2 we prove some
lemmas which are the key to the proofs of our main theorems. Theorem
1.1 and Theorem 1.2 are then proved in section 3. Finally section 4
and 5 are devoted to the proofs of Theorems 1.3 and 1.5 respectively.

We would like to thank Omri Sarig and Marc Kesseböhmer for sub-
sequent useful discussions. In the particular we would like to thank
Marc Kesseböhmer for informing us of the work of Remharter of which
we were previously unaware.
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2. Key Lemmas

In this section we prove a series of lemmas with will be used in the
following sections. We start with two lemmas needed to prove the
upper bound for Theorems 1.1 and 1.2. We fix d > 1 and a d-decaying
iterated function system {fi}∞i=1. For a positive integer k we will use
Λk to denote the attractor of the system {fi}∞i=k.

Lemma 2.1.

lim
k→∞

dimH Λk =
1

d

Proof. In the case of the Gauss map this result is contained in the work
of Good, [G] and the precise asymptotic for the rate of convergence is
given in [JK]. For more general systems it will follow from Bowen’s for-
mula for the Hausdorff dimension of infinite iterated function systems
given in [MU]. However some of the systems we are considering do not
satisfy the assumptions in [MU] and so we include a proof. First of all
we prove that dimH Λk ≥ 1

d
. We fix any s < 1

d
. We can then find m ∈ N

such that
∑m

i=k+1 ξs
i ≥ 1. If we consider the iterated function system

consisting of the maps fk, . . . , fm and let Λk, m ⊂ Λ be the attrac-
tor. By standard results for iterated function systems dimH Λm,k ≥ sm

where sm is the solution to
∑m

i=k+1 ξsm
i = 1 and we know by definition

that sm ≥ s. Since this holds for any s < 1
d

we know that dimH Λ ≥ 1
d
.

To obtain the upper bound we fix s > 1
d

and choose k such that∑∞
i=k λs

i ≤ 1. For convenience we will denote N(k) to be the set of
natural numbers greater than or equal to k. We get that∑

(a1,...,an)∈N(k)n

|a1, . . . , an|s ≤
∑

(a1,...,an)∈N(k)n

(λa1 · · ·λan)s

≤

(
∞∑

i=k

λs
i

)n

≤ 1.

It then follows that dimH Λk ≤ s. Thus for every s > 1
d

we can find k
such that dimH Λk ≤ s since dimH Λk is clearly monotonically decreas-
ing the result follows. �

We also need analogue of Lemma 2.1 in terms of upper box dimension
or equivalently packing dimension. We will let

s0 = dimB({fi(0)}∞i=1.

Note that instead of 0 we could take any other point of interval [0, 1]
and the value of s0 would not change.

Lemma 2.2.

lim
k→∞

dimP Λk ≤ max

{
1

d
, s0

}
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Proof. Let ε > 0, δ << ε and let K be sufficiently large such that∑∞
i=K(C2(δ))d−1+εi−(d−δ)(d−1+ε) ≤ 1. We will fix K−d < λ < 1. We can

find a constant N0 > 0 such that for any integer n ≥ 0 we can cover

{fj(v)}∞j=1 by N0λ
−n(s0+ε) intervals of size C1(δ)

C2(δ)
λ(1+2δ/d)n.

We let N(K)∗ denote all finite words formed from the alphabet N(K).
Let

An = {ω ∈ N(K)∗ : λn > |fω([0, 1])| ≥ λn+1}.
We have that #An ≤ λ−(n+1)(d−1+ε). We now fix integer N > 0 and
find a cover of ΛK with intervals of length λN . Let 0 < n ≤ N and let
ω ∈ An. We denote

D(ω) =
⋃
{fω ◦ fj([0, 1]); |fω ◦ fj([0, 1])| ≤ λN}

where j ∈ N. We have that

Λk ⊂ ∪N
n=0 ∪ω∈An D(ω).

We know that {fj(0)}∞j=1 can be covered by at most N0λ
−(N−n)(s0+ε)

intervals of size C1(δ)
C2(δ)

λ(1+2δ/d)(N−n) and so for ω ∈ An D(ω) can be

covered with N1λ
(n−N)(s0+ε) intervals of size λ−N for a constant 0 <

N1 ≤ 3N0. Therefore we have that ΛK can be covered by

N1

N∑
n=0

λ−(n+1)(d−1+ε)−(N−n)(s0+ε)

intervals of size λN . Thus

dimBΛK ≤ lim sup
n→∞

log
∑N

n=0 λ−n(d−1+ε)−(N−n)(s0+ε)

−N log λ
≤ max{d−1, s0}+ε.

Applying Theorem 3.1 in [MU] completes the proof. �

We now let Φ : N → R satisfy Φ(n) ≥ n for all n ∈ N and let the set
XΦ be as defined in (1.1). To prove the lower bounds in Theorems 1.1
and 1.2 we introduce certain subsets of XΦ which we will use in order
to define a measure supported on XΦ. For any natural n let l(n) be
the minimal natural number such that

(2.1)

l(n)∑
i=[Φ(n)]+1

ξ
1/d−ε
i ≥ 1

where [Φ(n)] denotes the integer part of Φ(n). We will then let K be
the smallest integer such that for any k ≥ K we have

k−d−ε ≤ ξk ≤ λk ≤ k−d+ε.
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We then define {ln}n∈N recursively by l1 = K and ln+1 = l(ln). Let
YΦ,ε be a subset of XΦ defined as

YΦ,ε = {x ∈ [0, 1]; Φ(ln) < an(x) ≤ ln+1}.

Lemma 2.3. There exist γ > 1 such that

ln+1

Φ(ln)
< γ

for all n.

Proof. By assumption we have that C1i
−d−ε ≤ ξi ≤ C2i

−d+ε. Thus we
have that if n is sufficiently large

2 ≥
l(n)∑

i=Φ(n)+1

ξ
1/d−ε
i ≥ C2

∫ l(n)

Φ(n)+1

s(−d+ε)(1/d−ε)ds.

Evaluating this integral and using the fact that 2(d + 1
d
− ε)ε < 1 gives

that

l(n)(d+ 1
d
−ε)ε ≤ 2Φ(n)(d+ 1

d
−ε)ε

and the result easily follows. �

The following lemma is the key to the lower bound for Theorems 1.1,
1.2 and 1.5.

Lemma 2.4. We can define a probability measure ν supported on YΦ,ε

such that

(1) ν(Cn(x)) < |Cn(x)|1/d−ε for all x ∈ YΦ,ε.
(2) For ν almost all x ∈ YΦ,ε

lim sup
r→0

log(ν(B(x, r)))

log r
≥ 1

d
− ε.

Proof. We start by fixing a positive integer n considering the set of
integers I(n) := {Φ(ln) + 1, . . . , ln+1}. We will then refine this set
by removing the integers which refer to the left most and right most
intervals. To be precise let

I ′(n) = {i ∈ I(n) : ∃j, k ∈ I(n) with fj([0, 1]) ≤ fi([0, 1]) ≤ fk([0, 1])}
(where J1 ≤ J2 is to be understood as: interval J1 is to the left of the
interval J2). We denote by sn the value such that∑

i∈I′(n)

ξsn
i = 1

and note that each sn ≥ 1
d
− ε. For each n we will define a finite

measure µn supported on the finite sigma-algebra given by the sets
{fi([0, 1])}i∈I′(n) and satisfying that µn(Cωi

) = ξsn
i . We can then let
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νn = ⊗n−1
k=0µk ◦ T and note that the extension ν of these measures

(Kolmogorov) will be supported on a subset of Yβ,ε.
Note that for any cylinder Cω1...ωn we have that

ν(Cω1...ωn) = ξs1
ω1
· · · ξsn

ωn

and we can immediately deduce 1.
For 2 let x ∈ supp(µ) and fix an n. We can then deduce that

an+1(x) ∈ I ′(n). Now consider the set of cylinders

Zn = {Π([a1(x), . . . , an(x), j]}j∈I(n)

and let Rn = minj∈I(n) ξa1(x) · · · ξan(x)ξj. We know that x ∈ [a1(x), . . . , an(x), j]
for some j ∈ I ′(n) therefore B(x, Rn) ⊂ Cn(x) and B(x, Rn) will inter-
sect at most two members of Zn. Therefore we have that

µ(B(x, Rn) ≤ 2C
sn+1

2 ξs1

a1(x) · · · ξ
sn

an(x)(Φ(ln) + 1)sn+1(−d+ε)

≤ 2γ−sn+1(−d−ε)l2ε
n+1C

sn+1

2 (ξa1(x) · · · ξan(x))
1/d−ε(ln+1)

sn+1(−d−ε).

Thus if we take logarithms we have that

log µ(B(x, Rn)) ≤ (1/d− ε) log Rn + 2ε log ln+1 + o(− log Rn)

and to complete the proof we notice that − log ln+1/ log Rn is uniformly
bounded. �

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We fix d > 1, a d-decaying system {fi}∞i=1

and a function Φ : N → R satisfying n ≤ Φ(n) ≤ βn for all n ∈ N and
some β ≥ 1. To prove the upper bound we note that for any k ∈ N

XΦ ⊂
⋃
l≤k

⋃
a1<...<al≤k

fal
◦ . . . ◦ fa1(Λk).

Since the maps fi are bi-Lipschitz, it then follows by Lemma 2.1 that
dimH XΦ ≤ 1

d
.

To compute the lower bound for any x ∈ XΦ and n ∈ N we let
rn(x) := |Cn(x)|. We can freely assume that β is strictly greater than
1 (If Ψ ≥ Φ then XΨ ⊂ XΦ). We then have the following result

Lemma 3.1. For any δ > 0 there exist l > 0 and N > 0 such that for
any x, y ∈ YΦ,ε and n > N we have

rn(x) > (rn+l(y))1+δ .

Proof. By applying Lemma 2.3 we can calculate that for any l ∈ N
rn(x)

(rn+l(y))1+δ
=

rn(x)

(rn(y))1+δ
·
(

rn(y)

rn+l(y)

)1+δ

≥
(

C1(δ/2d)

(C2(δ/2d)γ)1+δ

)n

· 1

(C1(δ/2d))l(1+δ)
βndl(1+δ).
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Thus if we choose l large enough such that

βld(1+δ) >
1

(C1(δ/2d))l(1+δ)

(
C1(δ/2d)

(C2(δ/2d)γ)1+δ

)
then the proof is complete. �

Hence, for any x ∈ YΦ,ε, n > N , and (rn+l+1(x))1+δ ≤ r ≤ (rn+l(x))1+δ,
the set Br(x)∩YΦ,ε will be contained in Cn(x)∪Cn(y) for some y ∈ YΦ,ε.

We also have r ≥ (rn+l+1(x))1+δ > (rn+2l+1(y))(1+δ)2 . Thus we will have

lim inf
r→0

log ν(Br(x))

log r
≥ lim inf

n→∞
inf

y∈Yβ,ε

(1/d− ε) log rn(y) + log 2

(1 + δ)2 log rn+2l+1(y)
.

The only thing missing in the proof of Theorem 1.1 is a comparison of
sizes of rn(x) and rn+1(x).

Lemma 3.2. There exists a sequence vn → 1 such that for every x ∈
Yβ,ε,

log rn+1(x)

log rn(x)
< vn

Proof. We have that

rn+1(x) ≥ ξan+1(x)rn(x).

Thus it suffices to show that
log ξan+1(x)

log rn(x)
tends to 0 uniformly in x. For

ε > 0 we have that for all x

rn(x) ≤
n∏

i=1

C2

id−ε
≤ Cn

2

(n!)d−ε
.

On the other hand by Lemma and the definition of Φ

ln+1 ≤ γΦ(ln) ≤ βγln.

Thus an+1(x) ≤ βγn and so ξan+1(x) ≥ (βγ)−n(d+ε) and the result fol-
lows. �

Proof of Theorem 1.2. We fix d > 1, a d-decaying system {fi}∞i=1

and a function Φ : N → R such that Φ(n) ≥ n. We will let s0 =
dimB({fi(0)}∞i=1). To show that dimP XΦ ≤ min{1/d, s0} we simply
replicate the upper bound in the proof of Theorem 1.1 with Lemma
2.2 replacing Lemma 2.1. The fact that dimP XΦ ≥ 1

d
can immediately

be deduced from Lemma 2.4.
We now turn to the case where s0 ≥ 1

d
. First we need to show that

the upper box counting dimension and the packing dimension of XΦ

are the same.

Lemma 3.3. We have that for any function Φ : N → N with Φ(n) ≥ n

dimP XΦ = dimBXΦ.
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Proof. It can easily be seen that the proof of Theorem 3.1 in [MU] can
be applied in this situation. �

We let J denote the closure of XΦ and note that by Lemma 3.3 we can
deduce that dimP XΦ = dimBJ . We will let v be some accumulation
point of {fi(1)}. We then have that J ⊃ {fi(v)}∞i=1 and so dimBJ ≥ s0

and the result immediately follows by Lemma 3.3.

4. Proof of Theorem 1.3

We fix d > 1, a Gauss like d-decaying system {fi}∞i=1, α > 1 and a
function Φ : N → R such that Φ(n) = nα. Denote s = 1/(1+α(d−1)).
It is enough to prove that for every K > 1

dimH XΦ,K =
1

1 + α(d− 1)
,

where
XΦ,K = {x ∈ XΦ; a1(x) = K}.

Indeed, we have

XΦ,K ⊂ XΦ = {x0} ∪
∞⋃

n=0

∞⋃
K=2

fn
1 XΦ,K ,

where x0 is the fixed point of f1. We fix K > 1, δ > 0 and denote
C1 = C1(δ), C2 = C2(δ).

Given x ∈ XΦ we define

∆n(x) =
⋃
{Cn+1(y); y ∈ Cn(x) ∩XΦ}.

Obviously, it is the union of all (n + 1)-st level subcylinders of Cn(x),
where the (n + 1)-st coordinate is at least an(x)α. We have

Cn
1

n∏
i=1

ai(x)−d−δ ≤ |Cn(x)| ≤ Cn
2

n∏
i=1

ai(x)−d+δ

and
(4.1)

Cn+1
1 C−1

4 an(x)−(d+δ−1)α

n∏
i=1

ai(x)−d−δ ≤ |∆n(x)| ≤ Cn+1
2 C4an(x)−(d−δ−1)α

n∏
i=1

ai(x)−d+δ.

We will distribute on XΦ,K a probabilistic measure µ, satisfying µ(a1(x) =
K) = 1 and

(4.2) µ(an+1(x) = j|an(x) = i) =

{
0 if j < iα,

cii
α(d−1)sj−(d+α(d−1))s if j ≥ iα,

where

ci =
1∑

j≥iα iα(d−1)sj−(d+α(d−1))s
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is a normalising constant. It is easy to check that for some C3 > 1 we
have

C−1
3 ≤ ci ≤ C3

for all i (in fact, ci → (d + α(d− 1))s + 1 as i →∞).
The reason we have chosen the measure µ in this way is that for all

x ∈ XΦ,K we have for each n

C−n
3

n∏
i=2

ai(x)−ds · a1(x)α(d−1)san(x)−α(d−1)s ≤ µ(∆n(x)) = µ(Cn(x))

≤ Cn
3

n∏
i=2

ai(x)−ds · a1(x)α(d−1)san(x)−α(d−1)s

Comparing this with (4.1) we have that for all x ∈ XΦ,K

(4.3) C−1
6 C−n

5 |∆n(x)|(1+cδ)s ≤ µ(∆n(x)) ≤ C6C
n
5 |∆n(x)|(1−cδ)s.

Note that

(4.4) |∆n(x)| < |Cn(x)| ≤
n∏

i=1

C2K
−(d−δ)αi−1

= Cn
2 K−(d−δ)(αn−1)/(α−1).

Hence for x ∈ XΦ,K we can calculate

log µ(B|∆n(x)|(x))

log |∆n(x)|
≤ log µ(∆N(x))

log |∆n(x)|

≤ s(1 + cδ) +
o(− log |∆n(x)|)

log |∆n(x)|
.

Thus we can conclude that

dimH XΦ,K ≤ s(1 + cδ).

For the lower bound on the Hausdorff dimension we will use Frostman
Lemma, again. Denote

rn(x) = |∆n(x)|, Rn(x) = |Cn(x)|.
We already know that

lim
n→∞

log µ(∆n(x))

log |∆n(x)|
≥ s(1− cδ).

Brn(x)(x) contains ∆n(x) and might intersect at most one other ∆n(y).
Moreover, this ∆n(y) must be a neighbouring one, which means that
ai(x) = ai(y) for i < n and |an(x) − an(y)| = 1. Hence, by (4.3) we
have that

µ(Brn(x)(x)) ≤ (2 + ε)C6C
n
5 rn(x)(1−cδ)s.

We then have that

log µ(Brn(x)(x)) ≤ (1− cδ)s log rn + o(− log rn).
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We need to use this estimate to find log µ(Br(x))
log r

for rn(x) < r < Rn(x)

and Rn+1(x) < r < rn(x). The first of these ranges is easy: each
Cn(x) \∆n(x) has length comparable to |Cn(x)|. Hence, the ball Br(x)
for rn(x) < r < Rn(x) will be much bigger than Brn(x)(x) but will still
intersect at most ∆n(x) plus one more ∆n(y). So, in this range

log µ(Br(x))

log r
≥ (1− cδ)s− o(1).

In the range Rn+1(x) < r < rn(x) the ball Br(x) will actually inter-
sect several Cn+1(y), y ∈ XΦ,K . Let us define

Dr(x) =
⋃
{Cn+1(y); y ∈ XΦ,K ∩Br(x)}.

Note that µ(Dr(x)) ≥ µ(Br(x)) but |Dr(x)| ≤ 2Cn+1
2 /Cn+1

1 r1−δ. Hence,
we can use Dr(x) instead of Br(x) to estimate the local dimension of
µ at x and the estimation will change at most by a factor (1± δ).

The set D = Dr(x) is an union of consecutive n+ 1-st level cylinders
Cn+1(y) with ai(y) = ai(x) for i ≤ n and l1 ≤ an+1(y) ≤ l2, where

l1 ≥ an(x)α and l2 ≤ ∞. We have Cn(x) =
⋃l2

i=l1
Cn+1(yi) (where yi is a

point from Cn(x)∩XΦ,K with n+1-st symbol in the symbolic expansion
equal to i. We have

|Cn+1(yi)| ≥ i−d|Cn(x)|1+cδ,

hence

|D| ≥ |Cn(x)|1+cδ

l2∑
i=l1

i−d ≈ (l
−(d−1)
1 − l

−(d−1)
2 )|Cn(x)|1+cδ.

We also have

|∆n+1(yi)| ≤ |Cn(x)|1−cδi−d−α(d−1),

hence by (4.3)

µ(D) =

l2∑
i=l1

µ(∆n+1(yi)) ≤ C6C
n+1
5 |Cn(x)|(1−2cδ)s

l2∑
i=l1

i−(d+α(d−1))s(1−cδ).

Note that

l2∑
i=l1

i−(d+α(d−1))s(1−cδ) ≤ l
(d+α(d−1))scδ
2 ·

l2∑
i=l1

i−(d+α(d−1))s ≤ |D|−cαδ·
l2∑

i=l1

i−(d+α(d−1))s.

Thus we have that
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log µ(D) ≤ log

(
|Cn(x)|(1−2cδ)s

l2∑
i=l1

i−(d+α(d−1))s

)
− cαδ log |D|+ o(− log(|D|))

≈ log((l
−(d+α(d−1))s+1
1 − l

−(d+α(d−1))s+1
2 )|Cn(x)|(1−2cδ)s)− cαδ log |D|+ o(− log(|D|))

= log((l
−(d−1)s
1 − l

−(d−1)s
2 )|Cn(x)|s) + o(− log(|D|))

where we use that

(d + α(d− 1))s− 1 = (d− 1)s.

By the concavity of function x → xs for s < 1, we have that

a = bs ∧ c = ds =⇒ (a− c) ≤ (b− d)s.

Hence we can conclude that

log(µ(D)) ≤ s(1− (3 + α)cδ) log |D|+ o(− log |D|)
and the proof is complete. �

5. Proof of Theorem 1.5

We start by fixing an increasing function Φ : N → N and d > 1. We
need to find a d-decaying system {fi}∞i=1 such that

dimH XΦ =
1

d
.

We will fix ε > 0. As in section 3, we define by l(n) the smallest
number for which

l(n)∑
i=Φ(n)+1

C1/d−εi−1+dε ≥ 1.

We define l1 = 1 and ln+1 = l(ln). As in Lemma 2.3, we have that

ln+1 < γΦ(ln)

for some γ > 1.
The system will be piecewise linear of the form Ti(x) = C

id
x + ai. We

will have that

C =
1∑∞

i=1 i−d +
∑∞

n=1 n−2l−1
n+1(ln+1 − Φ(ln))

.

We define the constants ai recursively by letting a1 = 1− ci−d and let

an =

{
an−1 − Cn−d if n /∈ (Φ(ln), ln+1) for any n ∈ N
an−1 − Cn−d − Cj−2l−1

j+1 if n ∈ (Φ(lj), lj+1) for some j ∈ N .

As in section 3 and Lemma 2.4 we can define

(5.1) X̃Φ = {x : Φ(ln−1) + 1 ≤ an(x) ≤ ln(x)}



and distribute on X̃Φ a measure ν such that

ν(Cn(x)) ≤ |Cn(x)|(1/d−ε)

for all x ∈ X̃Φ. For x ∈ X̃Φ let Zn(x) denote the minimal interval
containing Cn(x) ∩ X̃Φ. We can calculate

|Zn(x)| ≈ |Cn(x)|

Cn−2l−1
n+1(ln+1 − Φ(ln)) +

ln+1∑
i=Φ(ln)

i−d


≈ n−2|Cn(x)|

We can calculate that for any cylinder Cn(x), i 6= j ∈ (Φ(ln), ln + 1]
that the cylinders Cn+1(yi) and Cn+1(yj) will be separated by a gap of
length at least Cn−2l−1

n+1.
Hence, for rn+1 < r ≤ rn

µ(Br(x)) ≤ gn(r) =

(
1 + cr

n2(ln+1 − Φ(ln))

rn

)
r
1/d−ε
n+1

(where rn = |Cn(x)|). Note that

gn(r) ≤ cr1/d−ε

for r = rn and for r = rn+1, and gn(r) is a linear function in-between.
As x → x1/d is a concave function, we have

gn(r) < cr1/d−ε

for rn+1 < r < rn. Hence,

lim inf
r→0

log µ(Br(x))

log r
≥ 1

d
− ε

and the proof is complete. �
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