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Abstract

We are interested in the set of normal sequences in the space {0, 1}N
with a given frequency of the pattern 11 in the positions k, 2k. The
topological entropy of such sets is determined.

1 Introduction and statement of results

Let Σ = {0, 1}N. In [K12, FLM12], the authors proposed to calculate the
topological entropy spectrum of level sets of multiple ergodic averages. Here,
the topological entropy means Bowen’s topological entropy (in the sense of
[B73]) which can be defined for any subset, not necessarily invariant. Among
other questions, they asked for the topological entropy of

Aα :=
{

(ωk)
∞
1 ∈ Σ : lim

n→∞

1

n

n∑
k=1

ωkω2k = α
}

(α ∈ [0, 1]).

As a first step to solve the question, they also suggested to study a subset
of A0:

A :=
{

(ωk)
∞
1 ∈ Σ : ωkω2k = 0 for all k ≥ 1

}
.

The topological entropy of A was later given by Kenyon, Peres and Solomyak
[KPS12].
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Theorem 1.1 (Kenyon-Peres-Solomyak). We have

htop(A) = − log(1− p) = 0.562399...,

where p ∈ [0, 1] is the unique solution of

p2 = (1− p)3.

Enlightened by the idea of [KPS12], the question about Aα was finally
answered by Peres and Solomyak [PS12], and then in higher generality by
Fan, Schmeling and Wu [FSW16].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any α ∈ [0, 1],
we have

htop(Aα) = − log(1− p)− α

2
log

q(1− p)
p(1− q)

,

where (p, q) ∈ [0, 1]2 is the unique solution of the system{
p2(1− q) = (1− p)3,
2pq = α(2 + p− q).

In particular, htop(A0) = htop(A).

Another, interesting, related set is

B :=
{

(ωk)
∞
1 ∈ Σ : ωk = ω2k for all k ≥ 1

}
.

The sequence x ∈ {0, 1}N is said to be simple normal if the frequency of
the digit 0 in the sequence is 1/2. It is said to be normal if for all n ∈ N,
each word in {0, 1}N of length n has frequency 1/2n. We denote the set of
normal sequences by N .

We are interested in the intersection of N with the set Aα of given fre-
quency of the pattern 11 in wkw2k. For the usual ergodic (Birkhoff) averages
the normal numbers all belong to one set in the multifractal decomposition
– the situation for multiple ergodic averages turns out to be very different.

Our results are as follows:

Theorem 1.3. For α ≤ 1/2 we have

htop(N ∩Aα) =
1

2
log 2 +

1

2
H(2α),

where H(x) = −x log x− (1− x) log(1− x). For α > 1/2 the set N ∩Aα is
empty.

Further,

htop(N ∩A) = htop(N ∩A0) =
1

2
log 2.

Moreover, N ∩B ⊂ A1/2 and

htop(N ∩B) = htop(N ∩A1/2) = htop(B) =
1

2
log 2.
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The last statement of Theorem 1.3 was recently proved, in higher gen-
erality, in [ABC].

Let us now define the set of sequences with prescribed frequency of 0’s
and 1’s:

Eθ := {x ∈ [0, 1] : lim
n→∞

ω1(x) + · · ·+ ωn(x)

n
= θ}.

In particular, E1/2 is the set of simple normal sequences.

Theorem 1.4. We have

htop(Eθ ∩Aα) = (1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

)

for α ≤ θ ≤ (2 + α)/3, otherwise Eθ ∩Aα = ∅. Further,

htop(Eθ ∩A) = htop(Eθ ∩A0) =
2− θ

2
H(

2θ

2− θ
).

Note that

htop(E1/2 ∩A) =
3

4
H(

2

3
) > htop(N ∩A).

Remark. Applying the results of [PS12] one can show that

htop(Eθ ∩Aα) = htop(Aα)

if and only if α, θ satisfy the relation

(2θ − α)2(θ − α)(2− θ) = θ(2− 3θ + α)3.

In particular, when

θ =
2

3

(
1 +

(
2

23

)2/3
3

√
3
√

69− 23−
(

2

23

)2/3
3

√
3
√

69 + 23

)
= 0.354...,

i.e., the unique real solution of the equation 4θ2(2− θ) = (2− 3θ)3,we have

dimH Eθ ∩A = dimH A.

We omit the details.
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2 Proof of Theorem 1.3

Given α ∈ [0, 1], let µα be a probability measure on Σ given by

– if k is odd then ωk = 1 with probability 1/2,

– if k is even and ωk/2 = 1 then ωk = 1 with probability 2α,

– if k is even and ωk/2 = 0 then ωk = 1 with probability 1− 2α,

with the events {ωk = 1} and {ω` = 1} independent except when k/` is a
power of 2. Precisely, let (p0, p1) := (1/2, 1/2) and let(

p00 p01
p10 p11

)
:=

(
2α 1− 2α

1− 2α 2α

)
.

Let Cn(ω1, · · · , ωn) be the set of sequences beginning with the word ω1 · · ·ωn ∈
{0, 1}n. Such sets are called cylinders of order n. The measure µα of a cylin-
der is given by

µα([ω1 · · ·ωn]) =

dn/2e∏
k=1

pω2k−1
·
bn/2c∏
k=1

pωkω2k
=

1

2dn/2e
·
bn/2c∏
k=1

pωkω2k
.

where d·e, b·c denote the ceiling function and the integer part function cor-
respondingly.

We will prove that the measure µα is suppored on the set N ∩Aα.

Lemma 2.1. We have
µα(N ∩Aα) = 1.

Proof. Denote

xn(ω) =
2

n

n∑
k=n/2+1

ωk.

For a µα-typical ω, the Law of Large Numbers implies

x2n(ω) =
1

4
+
xn(ω)

2
2α+

1− xn(ω)

2
(1− 2α) + o(1).

Noting that |4α−12 | < 1, we have as k →∞,

x2kn(ω)→ 1

2
.

By [PS12, Lemma 5], this implies that µα-almost surely

lim
n→∞

xn(ω) =
1

2
. (2.1)
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Then, for µα-a.e. ω,

2

n

n∑
k=n/2+1

ωkω2k = xn(ω)(2α+ o(1))→ α.

Thus µα(Aα) = 1.
Now, we show µ(N ) = 1. We can divide the set of natural numbers into

infinitely many subsets of the form Ak = {2k− 1, 4k− 2, . . . , 2`(2k− 1), . . .}
(k ≥ 1). Let Bk be the σ-field generated by events {ω2`(2k−1) = 1}, ` ∈ N.
Observe that for the measure µ the σ-fields Bk are independent.

Observe further that µ(ω2`(2k−1) = 1) = 1/2 for every k, `. Indeed, for
` = 0 it follows from the definition of µ, and then it is proved by induction:

µ(ω2`(2k−1) = 1)

=µ(ω2`(2k−1) = 1 ∧ ω2`−1(2k−1) = 1) + µ(ω2`(2k−1) = 1 ∧ ω2`−1(2k−1) = 0)

=2α · 1/2 + (1− 2α) · 1/2 = 1/2.

Consider now, for any n, the sequence ωm+1, . . . , ωm+n. If m ≥ n then
positions m+1, . . . ,m+n come all from different Ak’s, thus ωm+1, . . . , ωm+n

are independent and each of them takes values 0, 1 with probability 1/2
respectively. That is, the measure µ restricted to such subset of positions is
(12 ,

1
2)-Bernoulli, and for any word η ∈ {0, 1}n with n ≤ m, the probability

that we have ωm+i = ηi for i = 1, . . . , n equals 2−n. Thus, for a given word
η ∈ {0, 1}n we can divide N into intervals [2j + 1, 2j+1], inside all except
initial finitely many of them (with j < log2 n) for any µ-generic sequence
ω the frequency of appearance of η equals 2−n + O(2−j/2j log j), and this
means that the µ-generic sequence ω is normal.

Next, we will calculate the local dimension of the measure µα with the
help of Mass Distribution Principle, [?, ?]. We denote for x ∈ [0, 1]

H(x) = −x log x− (1− x) log(1− x)

with convention H(0) = H(1) = 0.

Lemma 2.2. We have

hµα =
1

2
log 2 +H(2α).

Proof. For ω ∈ Σ denote

Cn(ω) = {τ ∈ Σ; τk = ωk ∀k ≤ n}.

Let

hn(ω) := logµα(C2n(ω))− logµα(Cn(ω)).
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By the Law of Large Numbers, for µα-typical ω and for big enough n we
have

2

n
hn(ω) =− log 2 + (1− xn(ω))(2α log(2α) + (1− 2α) log(2α))

+ xn(ω)((1− 2α) log(1− 2α)) + (2α) log(2α)) + o(1).

Thus,

lim
n→∞

− 1

n
hn(ω) =

1

2
log 2 +

1

2
H(2α) µα − a.e..

Note that for all k, n ∈ N

1

k2n
logµα(Ck2n(ω)) =

1

k2n

n−1∑
i=1

h2i .

Then for all k ∈ N

lim
n→∞

− 1

k2n
logµα(Ck2n(ω)) =

1

2
log 2 +

1

2
H(2α) µα − a.e..

Hence, by [PS12, Lemma 5],

hµα = lim inf
n→∞

− 1

n
µα(Cn(ω)) =

1

2
log 2 +

1

2
H(2α) µα − a.e..

Applying the Mass Distribution Principle ends the proof.

To finish the proof of the lower bound we note that A ⊂ A0 but the
measure µ0 is actually supported on A, that the measure µ1/2 is supported
on B, and that the relation N ∩B ⊂ A1/2 follows from

1

n
]{n+ 1 ≤ j ≤ 2n : ωj = ω2j = 1} =

1

n
]{n+ 1 ≤ j ≤ 2n : ωj = 1} → 1

2

being satisfied for every ω ∈ N ∩B.

For the upper bound, let us first observe that

1

n

n∑
k=1

ωkω2k ≤
1

n

n∑
k=1

ωk

and the right hand side converges to 1/2 for every normal sequence ω. Thus,
the set N ∩Aα is empty for all α > 1/2.

We will now need the following lemma

Lemma 2.3. Let ω be a normal sequence and let (nk = `1 + k`2) be an
arithmetic subsequence of N. Then ω restricted to the positions (nk) is
normal.

Proof. This is a well-known result of Kamae [K73].

6



Let us fix some m > 0. For N > m and i = 0, 1, . . . ,m denote by
R(N, i) the set {2i(2k − 1), k ≤ 2N−i−1} (for example, R(N, 0) is the set
of odd numbers smaller than 2N ). Further, let R(N, i, I) = R(N − 2, i),
R(N, i, II) = R(N − 1, i) \R(N − 2, i), and R(N, i, III) = R(N, i) \R(N −
1, i). Note here obvious relations

2R(N, i, I) = R(N, i+ 1, I) ∪R(N, i+ 1, II),

2R(N, i, II) = R(N, i+ 1, III),

2R(N, i, III) ∩R(N, i+ 1) = ∅.

We denote by N (N,m, ε) the set of sequences ω such that for all n ≥ N
in each R(n, i, ∗), i = 0, . . . ,m, ∗ ∈ {I, II, III} the frequency of 1’s is
between 1/2− ε and 1/2 + ε. By Lemma 2.3,

N ⊂
⋂
ε>0

∞⋂
m=1

∞⋃
N=m+1

N (N,m, ε).

Similarly, let us denote by A(α,N, ε) the set of sequences ω such that
for all n ≥ N we have

α− ε < 2−n+1
2n−1∑
j=1

ωjω2j < α+ ε.

We have

Aα =
⋂
ε>0

∞⋃
N=1

A(α,N, ε).

To obtain the upper bound, we will estimate from above the number of
cylinders [ω1, . . . , ω2N ] needed to cover the set N (N,m, ε) ∩A(α,N, ε). Let
us fix N,m, ε. For i = 1, . . . ,m, k1, k2 ∈ {0, 1}, and ∗ ∈ {I, II} we denote

Xi
k1k2,∗(ω) = ]{n ∈ R(N, i− 1, ∗);ωn = k1, ω2n = k2}.

For example, X1
01,I(ω) denotes the number of odd positions smaller than

2N−2 such that ωn = 0, ω2n = 1. Similarly, let

Xi
k1,∗(ω) = ]{n ∈ R(N, i, ∗);ωn = k1}.

We have obvious relations: for any i

Xi
10,I +Xi

11,I = Xi−1
1,I

Xi
00,I +Xi

01,I = Xi−1
0,I

Xi
10,II +Xi

11,II = Xi−1
1,II
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Xi
00,II +Xi

01,II = Xi−1
0,II

Xi
01,I +Xi

11,I = Xi
1,I +Xi

1,II

Xi
00,I +Xi

10,I = Xi
0,I +Xi

0,II

Xi
01,II +Xi

11,II = Xi
1,III

Xi
00,II +Xi

10,II = Xi
0,III .

Note that for a sequence ω ∈ N(N,m, ε) the right hand sides in all those
relations is in range 2N−3−i · (1− ε, 1 + ε). In particular,

|Xi
11,I −Xi

00,I | ≤ ε · 2N−2−i.

We can now start the counting. The values of {ωn;n ∈ R(N, 0)} can

be chosen in no more than 22
N−1

ways. After we have chosen {ωn;n ∈
R(N, i− 1)}, we can choose {ωn;n ∈ R(N, i)} in no more than(

Xi−1
1,I

Xi
11,I

)
·
(
Xi−1

0,I

Xi
00,I

)
·
(
Xi−1

1,II

Xi
11,II

)
·
(
Xi−1

0,II

Xi
00,II

)
ways. Finally, after we have chosen {ωn;n ∈ R(N, i)} for all i ≤ m, we will

still have 2N−m−1 positions left, which we can cover in no more than 22
N−m−1

ways. Thus, for any choice of (Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)i the logarithm of

total number of cylinders needed Z is not larger than

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)i)

≤(2N−1 + 2N−m−1) log 2

+
m∑
i=1

(
2 log

(
2N−3−i

Xi
11,I

)
+ 2 log

(
2N−3−i

Xi
11,II

)
+ 2N−3−iO(ε)

)

and there are no more than
∏m
i=1 24(N−i−3) < 24mN � 22

N
such choices.

We estimate

log

(
n

k

)
≈ n

(
−k
n

log
k

n
− n− k

n
log

n− k
n

)
= nH

(k
n

)
and observe that H is a concave function, thus we can apply Jensen inequal-
ity. We get

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)i)

≤(2N−1 + 2N−m−1) log 2

+
m∑
i=1

2N−i−1 ·H

(
1∑m

i=1 2N−i−1
·
m∑
i=1

2N−i−2
Xi

11,I +Xi
11,II

2N−i−3

)

+
m∑
i=1

2N−i−3 ·O(ε).
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Hence,

logZ((Xi
00,I , X

i
11,I , X

i
00,II , X

i
11,II)i)

≤2N−1 log 2 + 2N−1H

(
2−N+1

m∑
i=1

(Xi
11,I +Xi

11,II)

)
+ 2N · (O(ε+ 2−m)).

On the other hand, for all ω ∈ A(α,N, ε),∣∣∣∣∣2−N+1
m∑
i=1

(Xi
11,I +Xi

11,II)− 2α

∣∣∣∣∣ < ε.

Passing with m,N to infinity and with ε to 0, we finish the proof of the
upper bound.

3 Proof of Theorem 1.4

Given p, q ∈ [0, 1], let µp,q be a probability measure on S given by

– if k is odd then ωk = 1 with probability p,

– if k is even and ωk/2 = 0 then ωk = 1 with probability p,

– if k is even and ωk/2 = 1 then ωk = 1 with probability q,

with events (ωk = 1) and (ω` = 1) independent except when k/` is a power
of 2. Precisely, let (p0, p1) := (1− p, p) and let(

p00 p01
p10 p11

)
:=

(
1− p p
1− q q

)
.

Then the measure µp,q of a cylinder is given by

µp,q([ω1 · · ·ωn]) =

dn/2e∏
k=1

pω2k−1
·
bn/2c∏
k=1

pωkω2k
.

where d·e, b·c denote the ceiling function and the integer part function cor-
respondingly.

For positive integers m < n, write ωnm for the word ωmωm+1 · · ·ωn. For
i, j ∈ {0, 1} and ω ∈ Σ, denote

Ni(ω
n
m) = ]{m ≤ k ≤ n : ωk = i},

and
Nij(ω

n
m) = ]{m ≤ k ≤ n : ωkω2k = ij}.

We also denote

Ni,odd(ωnm) = ]{m ≤ k ≤ n : k odd, ωk = i}.
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Then we have

µp,q(Cn(ω)) = (1− p)N0,oddpN1,odd(1− p)N00pN01(1− q)N10qN11 ,

with Ni,odd = Ni,odd(ωn1 ), and Nij = Nij(ω
n/2
1 ). Thus

− logµp,q(Cn(ω))

n
=− 1

2

(N0,odd

n/2
log(1− p) +

N1,odd

n/2
log p

+
N00

n/2
log(1− p) +

N01

n/2
log p

+
N10

n/2
log(1− q) +

N11

n/2
log q

)
.

(3.1)

Lemma 3.1. If p = (2θ − α)/(2− θ) and q = α/θ, then

µp,q(Eθ ∩Aα) = 1.

Proof. Denote

xn(ω) =
N1(ω

n
n/2+1)

n/2
=

2

n

n∑
k=n/2+1

ωk.

By the Law of Large Numbers, for µp,q-almost all ω

x2n(ω) =
p

2
+
xn(ω)

2
q +

1− xn(ω)

2
p+ o(1) = p+

xn(ω)

2
· q − p

2
+ o(1).

Note that | q−p2 | < 1. Then, as k →∞,

x2kn(ω)→ 2p

2 + p− q
.

By [PS12, Lemma 5], it implies that µp,q-almost surely

lim
n→∞

xn(ω) =
2p

2 + p− q
= θ, (3.2)

where the last equality comes from the choices of p and q. Thus µp,q(Eθ) = 1.
On the other hand, by applying the Law of Large Numbers again, for

µp,q-a.e. ω,

2

n

n∑
k=n/2+1

ωkω2k = xn(ω)(q + o(1))→ qθ = α.

By [PS12, Lemma 5], we conclude µp,q(Aα) = 1.

Lemma 3.2. For p = (2θ − α)/(2− θ) and q = α/θ, we have

hµp,q = (1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

).
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Proof. By (3.1), we have for µp,q almost all w ∈ Σ,

hµp,q = lim
n→∞

− logµp,q(Cn(ω))

n

=− 1

2

(
(1− p) log(1− p) + p log p+ (1− θ)(1− p) log(1− p)

+ (1− θ)p log p+ θ(1− q) log(1− q) + θq log q
)

=
1

2

(
(2− θ)H(p) + θH(q)

)
=(1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

).

Lemma 3.3. If θ /∈ [α, (2 + α)/3] we have Eθ ∩ Aα = ∅, otherwise for
p = (2θ − α)/(2− θ) and q = α/θ, we have for all x ∈ Eθ ∩Aα,

lim
n→∞

− logµp,q(Cn(ω))

n
= (1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

).

Proof. Observe that for any x ∈ Eθ ∩ Aα, for any small ε > 0, for n large
enough, we have

N1(ω
n
n/2) ∈ [

θn

2
(1− ε), θn

2
(1 + ε)]

N1(ω
2n
n ) ∈ [θn(1− ε), θn(1 + ε)]

N11(ω
2n
n ) ∈ [

αn

2
(1− ε), αn

2
(1 + ε)].

The obvious inequalities N11(ω
2n
n ) ≤ N1(ω

n
n/2) and N1(ω

2n
n ) − N11(ω

2n
n ) ≤

n/2 + N0(ω
n
n/2) = n −N1(ω

n
n/2) imply θ ∈ [α, (2 + α)/3]. Furthermore, we

have

logµp,q(C2n(ω))− logµp,q(Cn(ω))

=N11(ω
2n
n ) log q +

(
N1(ω

n
n/2)−N11(ω

2n
n )
)

log(1− q)

+
(
N1(ω

2n
n )−N11(ω

2n
n )) log p

+
(
n−N1(ω

n
n/2)−N1(ω

2n
n ) +N11(ω

2n
n )
)

log(1− p)

=n

(
(1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

) + ε ·O(1)

)
.

Hence by the same argument of the proof of Lemma 2.2, we have for all
x ∈ Eθ ∩Aα,

lim
n→∞

− logµp,q(Cn(ω))

n
= (1− θ

2
)H(

2θ − α
2− θ

) +
θ

2
H(

θ − α
θ

).
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