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Abstract

We are interested in the set of normal sequences in the space {0, 1}
with a given frequency of the pattern 11 in the positions k,2k. The
topological entropy of such sets is determined.

1 Introduction and statement of results

Let ¥ = {0,1}N. In [K12, FLM12], the authors proposed to calculate the
topological entropy spectrum of level sets of multiple ergodic averages. Here,
the topological entropy means Bowen’s topological entropy (in the sense of
[B73]) which can be defined for any subset, not necessarily invariant. Among
other questions, they asked for the topological entropy of

R
Ay = {(wk)To ex: nh_}ngo . ;wkwgk = oz} (e € ]0,1]).
As a first step to solve the question, they also suggested to study a subset
of Ap:

A= {(wk)‘fo €Y :wpwo =0 forall k> 1}.

The topological entropy of A was later given by Kenyon, Peres and Solomyak
[KPS12].
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Theorem 1.1 (Kenyon-Peres-Solomyak). We have
hiop(A) = —log(1l — p) = 0.562399...,
where p € [0, 1] is the unique solution of
p*=(1-p).

Enlightened by the idea of [KPS12], the question about A, was finally
answered by Peres and Solomyak [PS12], and then in higher generality by
Fan, Schmeling and Wu [FSW16].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any a € [0,1],
we have a1 )
o g\l —p

hiop(Aa) = —log(l — p) — 5 log ———,

where (p,q) € [0,1]% is the unique solution of the system
{ p*(1—q) = (1-p)*,
2pq = (2 +p —q).

In particular, hiop(Ao) = hiop(A).

log

Another, interesting, related set is
B = {(wk)fo €% :wy =wy forall k> 1}.

The sequence = € {0,1}" is said to be simple normal if the frequency of
the digit 0 in the sequence is 1/2. It is said to be normal if for all n € N,
each word in {0, 1}" of length n has frequency 1/2". We denote the set of
normal sequences by N.

We are interested in the intersection of N with the set A, of given fre-
quency of the pattern 11 in wxwsy. For the usual ergodic (Birkhoff) averages
the normal numbers all belong to one set in the multifractal decomposition
— the situation for multiple ergodic averages turns out to be very different.

Our results are as follows:

Theorem 1.3. For a < 1/2 we have
1 1
hitop(N N Ay) = 5 log 2 + 5H(2a),
where H(x) = —xlogx — (1 — z)log(1 — x). For a > 1/2 the set N N A, is

empty.
Further,

1
htop(./\/’ﬂ A) = htop(/\/ﬂ AO) = 5 log 2.
Moreover, NN B C Ay 5 and

1
htop(Nﬁ B) = htop(./\/’ﬂ Al/?) = htop(B) = 510g 2.
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The last statement of Theorem 1.3 was recently proved, in higher gen-
erality, in [ABC].
Let us now define the set of sequences with prescribed frequency of 0’s
and 1’s:
Ep:={z €[0,1]: lim i) + -+ + wn(2) =0}.

n—00 n

In particular, F; is the set of simple normal sequences.

Theorem 1.4. We have

0 20 — o 0 60—«
heop(Bg 1 Aa) = (1= (G —3) + S H("—)

-0
for a <0 < (2+ «)/3, otherwise Eg N A, = 0. Further,

2—106 20
htOP(EQ N A) = htop(Ee N Ao) = TH(m)

Note that

3. .2
htop(E1/2 ﬂ A) — ZH<§) > htop(Nm A)

Remark. Applying the results of [PS12] one can show that
hiop(Eo N Aa) = hiop(Aa)
if and only if «, 6 satisfy the relation
(20 — )2 (0 — a)(2 — 0) = 0(2 — 30 + )®.

In particular, when

2 2\ , 2\ ,
9_3(1+(23> \/3\/@—23—<23> \/3v/69 + 23 | =0.354...,

i.e., the unique real solution of the equation 462(2 — 0) = (2 — 36)3,we have
dimyg Fg N A = dimpg A.

We omit the details.



2 Proof of Theorem 1.3

Given « € [0,1], let u, be a probability measure on ¥ given by
— if k is odd then wy = 1 with probability 1/2,
— if k is even and wy,/3 = 1 then wy = 1 with probability 2,
— if k is even and wy/ = 0 then wy = 1 with probability 1 — 2a,

with the events {wy = 1} and {wy, = 1} independent except when k// is a
power of 2. Precisely, let (pg,p1) := (1/2,1/2) and let

<1000 p01) _: ( 200 1— 2a>
po pii) \1—-2a 2a )°
Let Cy (w1, - - ,wy) be the set of sequences beginning with the word wy - - - w, €
{0,1}"™. Such sets are called cylinders of order n. The measure p,, of a cylin-
der is given by
[r/2] [n/2] 1 [n/2]
:u‘Oé([wl te wn]) = H pw2k71 : H pwkwgk = W : H pwkwgk-
k=1 k=1 k=1

where [-], || denote the ceiling function and the integer part function cor-
respondingly.
We will prove that the measure p, is suppored on the set N' N A,.

Lemma 2.1. We have

,U/oc(Nonc) =1

Proof. Denote
2 n
mn(w)zﬁ Z W
k=n/2+1

For a po-typical w, the Law of Large Numbers implies

Don (W) = % + x”é‘”)za 41z 9;”(“’) (1 - 2a) + o(1).

Noting that [2%-1] < 1, we have as k — oo,

kan(w> —

N | =

By [PS12, Lemma 5], this implies that p,-almost surely

lim 2 (w) = % (2.1)

n—oo



Then, for p,-a.e. w,

Thus pa(As) = 1.

Now, we show p(N) = 1. We can divide the set of natural numbers into
infinitely many subsets of the form Ay = {2k — 1,4k —2,...,2¢(2k —1),...}
(k > 1). Let By be the o-field generated by events {wye(g_1y = 1}, £ € N.
Observe that for the measure p the o-fields By are independent.

Observe further that pi(wye(ap—1) = 1) = 1/2 for every k, . Indeed, for
¢ = 0 it follows from the definition of u, and then it is proved by induction:

M(Wﬂ(zk—l) =1)
=p(wor(ap—1) = 1 Awae-1(95_1y = 1) + pu(war(ap—1) = 1 A wge-1(94—-1) = 0)
=20 -1/2+ (1 —2a)-1/2 = 1/2.

Consider now, for any n, the sequence wp, 41, -..,Wmin. 1f m > n then
positions m+1, ..., m+n come all from different Ay’s, thus wy,+1, - - ., Wm+n
are independent and each of them takes values 0,1 with probability 1/2
respectively. That is, the measure p restricted to such subset of positions is
(%, %)—Bernoulli, and for any word n € {0,1}" with n < m, the probability
that we have wy,4+; =n; for i = 1,...,n equals 27". Thus, for a given word
n € {0,1}" we can divide N into intervals [2/ + 1,27"1], inside all except
initial finitely many of them (with j < logyn) for any u-generic sequence
w the frequency of appearance of n equals 27" + O(Q_j/ 2jlogj), and this
means that the p-generic sequence w is normal.

Next, we will calculate the local dimension of the measure . with the
help of Mass Distribution Principle, [?, 7]. We denote for = € [0, 1]

H(z) = —xlogz — (1 — x)log(1 — z)
with convention H(0) = H(1) = 0.
Lemma 2.2. We have
hy, = %log2 + H(2a).
Proof. For w € 3 denote
Cr(w) =41 € E;m; = wi Vk < n}.

Let

hn(w) := log Na(CQn(w)) — log Na(cn(w))’



By the Law of Large Numbers, for u,-typical w and for big enough n we
have
2
—hp(w) =—1log2 + (1 — zp(w))(2alog(2a) + (1 — 2a) log(2a))
n
+ zp(w)((1 — 2a) log(1 — 2a0)) + (2a) log(2cx)) + o(1).

Thus,

. 1 1 1

lim ——hy,(w) = B log2 + - H(2a) fo — Q...

n—oo n 2

Note that for all k,n € N

n—1
1 1
—1 o n = — i
1 108 1 (Cran(w)) Ton ; hy
Then for all kK € N

1 1 1
lim ———log pa(Cran(w)) = 3 log2 + 5H(2a) fo — G.€..

n—oo k21

Hence, by [PS12, Lemma 5],
h,, = liminf L C = 11 2 1H 2
po = LI _ﬁﬂa( n(w)) = 5198 + 5 (20) Ho — a@-C..

Applying the Mass Distribution Principle ends the proof. O

To finish the proof of the lower bound we note that A C Ay but the
measure (i is actually supported on A, that the measure iy, is supported
on B, and that the relation N'N B C A, follows from

1 1 1
fjj{n—i-lSj§2n:wj:ngzl}z—ﬂ{n+1§j§2n:w]~:1}—>§
n n

being satisfied for every w € N' N B.
For the upper bound, let us first observe that

1 — 1 &
— § Wiwop < — E W
n n

k=1 k=1

and the right hand side converges to 1/2 for every normal sequence w. Thus,
the set N'N A, is empty for all a > 1/2.
We will now need the following lemma

Lemma 2.3. Let w be a normal sequence and let (n = {1 + kl3) be an
arithmetic subsequence of N. Then w restricted to the positions (ny) is
normal.

Proof. This is a well-known result of Kamae [K73]. O



Let us fix some m > 0. For N > m and ¢« = 0,1,...,m denote by
R(N,i) the set {2/(2k — 1),k < 2VY=1} (for example, R(N,0) is the set
of odd numbers smaller than 2V). Further, let R(N,i,I) = R(N — 2,i),
R(N,i, 1) = R(N — 1,i) \ R(N — 2,), and R(N,i,IIT) = R(N,i)\ R(N —
1,7). Note here obvious relations

9R(N,i,I) = R(N,i+1,I)UR(N,i + 1,1I),
9R(N,i,II) = R(N,i+1,III),
OR(N,i,IIT) N R(N,i+ 1) = 0.

We denote by N (N, m,e) the set of sequences w such that for all n > N
in each R(n,i,%), i = 0,...,m, « € {I,II,III} the frequency of 1’s is
between 1/2 — ¢ and 1/2 + . By Lemma 2.3,

N C ﬂ ﬂ U N(N,m,e).
e>0m=1 N=m+1

Similarly, let us denote by A(a, N,e) the set of sequences w such that
for all n > N we have

27171

a—e<2 ™Y wiwy < ate
i=1

We have

Ay = ﬂ [j A(a, N, e).

e>0N=1

To obtain the upper bound, we will estimate from above the number of
cylinders [wy, ..., wyn] needed to cover the set N (N, m,e) N A(a, N, ). Let
us fix Nym,e. Fori=1,...,m, ki,ky € {0,1}, and * € {I, I} we denote

X,ilkz,*(w) =t{n € R(N,i—1,%);w, = ky1,way, = ka}.

For example, X&L ;(w) denotes the number of odd positions smaller than
2V=2 such that wy, = 0,ws,, = 1. Similarly, let

X,ih*(w) =t{n € R(N,i,*);w, = k1 }.
We have obvious relations: for any ¢
Xfo,] + Xh,[ = ijl
Xbos+ X1 = Xé,_ll

i i yiel
Xior + X111 = X 11
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. . -
Xoo,rr + Xov,rr = Xo 11
Xopr+ X =Xi 1+ X101
Xoo.r + Xior = Xo1+ X011
Xov,r + X1, = Xt 101
Xoo,rr + Xto,rr = X111
Note that for a sequence w € N(N,m,¢) the right hand sides in all those
relations is in range 2V—37%. (1 —&,14¢). In particular,

|X%1,1 - X80,1| <e- 2N

We can now start the counting. The values of {wy;n € R(N,0)} can
be chosen in no more than 22" ' ways. After we have chosen {wp;n €
R(N,i— 1)}, we can choose {wy;n € R(N,7)} in no more than

i—1 i—1 i—1 i—1
(Xi,f ) | (Xé,f ) | (X) | <X8,H)
Xiur Xoo,1 X X6o,11
ways. Finally, after we have chosen {w,;n € R(N,i)} for all i < m, we will

still have 2V="=1 positions left, which we can cover in no more than 92~

ways. Thus, for any choice of (XéO,I’ XﬁJ, X(%O,H’X%l,ll)i the logarithm of
total number of cylinders needed Z is not larger than
log Z((Xéo,la Xﬁ,IaXéo,HvaLu)i)
§(2N71 + 2N7m71) log 2

m oN—3—i oN—3—i )
+) | 2log ( : > +2log ( : > + 2873710 e)
i—1 X11,I Xll,H

and there are no more than []", 24 (N=i=3) < 94mN « 92" guch choices.
We estimate

log <Z> zn(—klogk—n_klogn_k> :nH(k)

n n n n n

and observe that H is a concave function, thus we can apply Jensen inequal-
ity. We get

log Z((X6o.1> X111 Xbo.11> X11.11)4)

m m ) 7
A 1 XL+ X
N—i—1 N—i—2°"11,1 11,17
+ E oN—i—1 [ (Em SN . E QN N3 )
i=1 i=1

i=1
+ Z 2VTI3 L 0 e).
i=1



Hence,
log Z((Xéo,zvXfl,IaXéo,H,Xﬁ,H)i)
m
<oN=1log2 4+ 2N 1H (2—N+1 > (X X{LH)> +2V . (0O(e+27™)).
i=1

On the other hand, for all w € A(a, N, ¢),

m
2~ Nt Z(Xfl,f + X1 11) — 20| <e.

=1

Passing with m, IV to infinity and with € to 0, we finish the proof of the
upper bound. O

3 Proof of Theorem 1.4

Given p,q € [0, 1], let p1, 4 be a probability measure on S given by
— if k£ is odd then wy = 1 with probability p,
— if k is even and wy, /5 = 0 then wy = 1 with probability p,
— if k is even and wy, /5 = 1 then wy = 1 with probability g,

with events (wy = 1) and (w; = 1) independent except when k/¢ is a power
of 2. Precisely, let (pg,p1) := (1 — p,p) and let

(Poo p01> — (1 —-p p)
P10 P11 l—q ¢
Then the measure p, , of a cylinder is given by

[n/2] [n/2]
vaq([wl cwn]) = H Puwgg 1 - H Dupwoy -
k=1 k=1

where [-], || denote the ceiling function and the integer part function cor-
respondingly.

For positive integers m < n, write w)’ for the word wpwym+1 - - wy. For
i,7 €{0,1} and w € X, denote

Ni(wp) =#{m <k <n:wp =1},

and
Nij(wy,) = #H{m <k <n:wpway, =5}

We also denote

Njoaa(@h) = t{m <k <n:k odd, wy = i}.



Then we have

Mp,q(cn(w)) — (1 _p)No,odde1,odd(1 _ p)NOOpN01(1 _ q)N1oqN11’

with N oaq = Nioaa(w}), and Ny = Ni;(w!?). Thus

_IOg/‘p,q(Cn(w))_ 1 / No,odd N1 0dd
- = ( /2 log(1 —p) + g 8P

/2 > log(1—p) + /2 ~logp (3.1)
/2 10g(1—q)+ /2 logq)
Lemma 3.1. Ifp= (20 —«)/(2 —0) and ¢ = «/0, then

tpg(Eo N Ag) =

Proof. Denote
Nl(wn 2 1) 2 n
wn(u))z#zﬁ E: Wy

TL/2 k=n/2+1

By the Law of Large Numbers, for p, ,-almost all w

Ty (w 1—2,(w
a:2n(w)=g+ é )Q+ 2( )p+0(1)=p+7

Note that |%52| < 1. Then, as k — oo,

2p

: -
Do) =
By [PS12, Lemma 5], it implies that p, ,-almost surely

2
lim z,(w) = P

— =9 3.2
lim = (3.2)

where the last equality comes from the choices of p and g. Thus py, 4(Eg) = 1.
On the other hand, by applying the Law of Large Numbers again, for

fpg-a.e. W,

Z wiwak = Tn(w)(g +0(1)) — b = o
k n/2+1

By [PS12, Lemma 5], we conclude p, 4(Aq) = 1.

Lemma 3.2. Forp= (20 —«a)/(2—0) and ¢ = /0, we have

0 20 — « 0 00—«

= (1= DH(G— )+ sH().

h
2 2

Hp,q
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Proof. By (3.1), we have for i, , almost all w € ¥,

— lim — 10g pp,q(Cn(w))

h
Hp.,q =00 n

= %<( p)log(1—p) +plogp+ (1 —6)(1 — p)log(l —p)
(1-—

+ 0)plogp + 0(1 — q) log(1 —q)+9qlogq)

=5 (@~ 0Hp) + 67 ()

Y [ N )

O]

Lemma 3.3. If 0 ¢ [, (2 + «)/3] we have Ey N Ay = 0, otherwise for
= (20— «a)/(2—0) and g = «/0, we have for all x € Ey N A,,

. —logppg(Cn(w) o 0, 20—a 00—«
A n = (= DHG =)+ 5 =),

Proof. Observe that for any x € Ey N Ay, for any small € > 0, for n large

enough, we have

Pa-e), 2o

Ni(w?™) € [n(1 —¢),0n(1 +¢)]
Nu(@i") € [5(1—2), (1 +e)l.

=
—~
&
S 3
\
[N}
N—
m

The obvious inequalities Nqj(w2") < Nl(wZ/Q) and Np(w2") — Ny (w2?) <
n/2+ No(wgm) =n— Nl(wz/Q) imply 6 € [a, (2 + «)/3]. Furthermore, we

have

10gupq(c2n( w)) —1og fip,q(Cr(w))
=Ny (w;") log g + (Nl( Wi o) = N (wy")) log(1 — q)

+ (N1 (wp") = Nua(wi)) log p
+ (1 = Ni(wy o) = Ni(wp") + Nii(wy")) log(1 = p)

—n ((1 B e gH(e 5 Yte. 0(1)) .

2 2—40
Hence by the same argument of the proof of Lemma 2.2, we have for all
T € EyN Ag,
—1 C 0 260 — 0 60—

n—oo
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