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Abstract. In this paper we study the radial and orthogonal pro-
jections and the distance sets of the random Cantor sets E ⊂ R2

which are called Mandelbrot percolation or percolation fractals.
We prove that the following assertion holds almost surely: if the
Hausdorff dimension of E is greater than 1 then the orthogonal
projection to every line, the radial projection with every center,
and distance set from every point contain intervals.

1. Introduction

The Sun at 2:12 p.m.

The Sun at noon

The Sun at 11:00 a.m.

EEE

The intervals in the shadow of the random dust EEE at different times

This picture shows what we prove: although the fractal percolation is a
Cantor dust, it throws a thick shadow at any time. Here thick means
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containing at least one non-trivial open interval (we will write simply
’containing intervals’). One does not need to rotate it to use it as an
umbrella.

In order to construct a model for turbulence Mandelbrot introduced
[12] a random set which is now called Mandelbrot percolation or fractal
percolations or canonical curdling. In the simplest case (we consider a
more general case in this paper), we are given a natural number M ≥ 2
and a probability p ∈ (0, 1). First we partition the unit square [0, 1]2

into M2 congruent squares and then we retain each of them with prob-
ability p and discard them with probability 1 − p independently. In
the squares which were retained we repeat this process independently
ad infinitum. The random set E ⊂ [0, 1]2 that results is the fractal
percolation or canonical curdling. In fact in this paper sometimes we
consider the more general setup where the M2 congruent squares, men-
tioned above, are chosen with not necessarily the same probabilities.

These random Cantor sets have attracted considerable attention. In
1978 Peyrière computed the almost sure Hausdorff dimension, condi-
tioned on non-extinction (this result was reproved many times). In
1988 Chayes, Chayes, Durett [2] proved that there is a critical proba-
bility pc such for every 0 < p < pc the random Cantor set E is totally
disconnected, but for every p > pc with positive probability E perco-
lates. This means that there is a connected component in E which
connects the left hand side wall to the right hand side wall of the unit
square [0, 1]2 with positive probability. Dekking and Meester [3] gave
a simplified proof for the previously mentioned result and defined sev-
eral phases such that as we increase p the process passes through all of
these phases. If the fractal is totally disconnected (p < pc) it still can
happen that some of its projections contain intervals.
The orthogonal projections of fractals on the plane were already studied
by Marstrand [13] in 1954. Marstrand’s Theorem says that for any set
A ⊂ R2 with dimHA > 1 the orthogonal projection of A to almost all
lines has positive Lebesgue measure; here dimH denotes the Hausdorff
dimension.
Existence of an interval in the orthogonal projections of some Cantor
sets in the plane was first studied in relation with the famous Palis
conjecture about the algebraic difference of Cantor sets. The algebraic
difference of the Cantor sets C1, C2 is the 45◦ projection of C1 × C2.
Palis conjectured that ”typically” C1 − C2 is either small in the sense
that it has Lebesgue measure zero or big in the sense that it contains
some intervals. See e.g. [15], [8], [16], [4].
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For percolation fractals Falconer and Grimmett [6] studied the exis-
tence of intervals in the vertical and horizontal projections. Our work
is a generalization of their result.

The most important conclusion of our result is that whenever the
probability p > 1/M then although the set E may be totally discon-
nected, almost surely conditioned on non-extinction, all projections in
various families (orthogonal, radial, co-radial projections) contain some
intervals. On the other hand, if p ≤ 1/M this cannot happen. Namely,
Falconer [5] proved that in this case the one dimensional Hausdorff
measure of E is almost surely zero.

The paper is organized as follows. In the second section we give
precise definitions of the objects we study, we also formulate our main
results. In the third section we explain the importance of statistical
self-similarity. The fourth section contains the proof of Theorem 2.
In the fifth section we add one more idea that lets us upgrade this
argument, yielding the proof of Theorem 3. Finally, in the sixth section
we formulate the most general form of our results, Theorem 14, and
Theorem 4 follows as a special case.

2. Notation and results

2.1. Mandelbrot percolation. First we provide a definition of the
random Cantor set E (we will call it the fractal percolation) which is
the object of interest of this paper. Given

M ≥ 2 and pi,j ∈ [0, 1] for every i, j ∈ {0, . . . ,M − 1} ,

we partition the unit square K = [0, 1]2 into M2 congruent squares of
side length 1/M .

K =
M−1⋃

i,j=0

Ki,j where Ki,j :=

[
i

M
,
i+ 1

M

]
×
[
j

M
,
j + 1

M

]
.

In the first step, we retain the square Ki,j with probability pi,j and we

discard Ki,j with probability 1− pi,j for every (i, j) ∈ {0, . . . ,M − 1}2

independently. The union of squares retained is denoted E1. Within
each square Ki,j ⊂ E1 we repeat the process described above indepen-
dently. The squares of side length 1/M2 retained are called level two
squares and their union is called E2. Similarly, for every n we con-
struct the set En. The object of interest in this paper is the random
set E := ∩∞n=1En.
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More formally, let Tn be the partition of K into M -adic squares of level
n. For each square L ∈ Tn we can find two sequences {i1, . . . , in}, {j1, . . . , jn} ∈
{0, . . . ,M − 1}n such that

L =

[
n∑

l=1

il ·M−l,

n∑

l=1

il ·M−l +M−n

]
×
[

n∑

l=1

jl ·M−l,
n∑

l=1

jl ·M−l +M−n

]
.

We will denote such square by Kin,jn
, where

in := (i1, . . . , in), j
n

:= (j1, . . . , jn) ∈ {0, . . . ,M − 1}n .
Clearly, Kin+1,jn+1

⊂ Ki′n,j
′
n

if and only if

ik = i′k, jk = j′k for all k = 1, . . . , n.

We define E0 = T0 = (∅, ∅) and then we construct inductively a random
family {En}, En ⊂ Tn. That is, if (in; j

n
) /∈ En then (i1, . . . , in, i; j1, . . . , jn, j) /∈

En+1 for all i, j ∈ {0, . . . ,M−1} and if (in; j
n
) ∈ En then (i1, . . . , in, i; j1, . . . , jn, j) ∈

En+1 with probability pi,j. Those events are jointly independent.
We denote

En =
⋃

(in;j
n

)∈En

Kin,jn

and

E =
∞⋂

n=1

En.

The sequence {En} is a decreasing sequence of compact sets, hence E
is nonempty if and only if all En are nonempty. It follows easily from
the general theory of branching processes, see for example [1, Theorem
1], that

E 6= ∅ with positive probability if and only if
∑

0≤i,j≤M−1

pi,j > 1.

We will always assume
M−1∑

i,j=0

pi,j > M

and our results will be conditioned on E being nonempty. It was
proved by several authors: Peyrière [17], Hawkes, [10] Falconer [5] and
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Mauldin, Williams [14] and Graf [9] that

If E 6= ∅ then dimH(E) =

log

(
M−1∑
i,j=0

pi,j

)

logM
a.s.

In particular, under our assumptions dimH E > 1 (provided E is nonempty).
The proof of this statement involves proving the following:

Fact 1. The following assertion holds almost surely:
If E(ω) 6= ∅ then

lim
n→∞

1

n
log #En(ω)→ log

M−1∑

i,j=0

pij.

2.2. Projections. The object of our study is the existence of intervals
in different kinds of projections of E. The nature of projections of
angles 0 or π/2 is conspicuously different and these cases were already
treated by Falconer and Grimmett in [6]. So, mostly we restrict our
attention to the domain of angles

D := (0, π/2) ∪ (π/2, π) .

It will be convenient for us to use a special form of projections. Instead
of the ’usual’ orthogonal projection projα onto some line we will use
projection Πα, the codomain of which is one of diagonals of K. If
α ∈ (0, π/2) (i.e. if the projection is in upper left - lower right direction)
we will use the nonorthogonal projection in direction α onto the interval
([0, 0], [1, 1]). Otherwise, if α ∈ (π/2, π) and the projection is in the
upper right - lower left direction, we will project onto the interval
([0, 1], [1, 0]). Naturally, projα(E) contains an interval if and only if
Πα(E) does. See Figure 1.
We are going to consider nonlinear projections of E as well. Given
t ∈ R2, the radial projection with center t of set E is denoted by
Projt(E) and is defined as the set of angles under which points of
E \ {t} are visible from t. Given t ∈ R2, the co-radial projection with
center t of a set E is denoted by CProjt(E) and is defined as the set
of distances between t and points from E. Figure 1 explains why we
consider this object a projection.
Like in the case of orthogonal projections, we will consider auxiliary
formulations. If the point t is in ’diagonal’ direction from K (i.e. if
both X and Y coordinates of t are outside [0, 1]) then instead of Projt
with codomain S1 and CProjt with codomain R+ we can consider Rt

and R̃t, whose codomains are diagonals of K. For example, as shown in
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proj
α (E

)

proj
α (E

)

proj
α (E

)

Πα(E)Πα(E)Πα(E)

E

α

1

C

±E

Projt(E)Projt(E)Projt(E)

t

Rt(E)Rt(E)Rt(E)

CProjt(E)CProjt(E)CProjt(E)

E

t
CProjt(E)CProjt(E)CProjt(E)

E

t

R̃ t
(E

)

R̃ t
(E

)

R̃ t
(E

)

Figure 1. The orthogonal projα, radial Projt, co-radial
CProjt projections and the auxiliary projections Πα, Rt,
and R̃t.

Figure 1, if t is in lower left direction from K (both coordinates of t are
negative) then the codomain of Rt is ([0, 1], [1, 0]) and the codomain of
R̃t is ([0, 0], [1, 1]). Once again, Rt(E) contains an interval if and only
if Projt(E) does, and similarly for CProjt(E) and R̃t(E).
There is a more general notion of a family of almost linear projec-
tions we are going to use, but it is more complicated. The definition
will be given in the last section.

2.3. Results. Let us start from a direct generalization of [6]. Let
α ∈ D. In the fourth section we will define condition A(α) on the set
of probabilities {pi,j}, at the moment it is enough to know that if all
pi,j > M−1 then A(α) is satisfied for all α ∈ D.

Theorem 2. Let α ∈ D. If A(α) holds and E is nonempty then almost
surely projα(E) contains an interval.

Our next, stronger, result lets us consider projections in all directions
at once.
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Theorem 3. Assume that A(α) holds for all α ∈ D and that E 6= ∅.
To handle the horizontal and vertical projections, we also assume that

∀i, j ∈ {0, . . . ,M − 1},
M−1∑

l=0

pi,l > 1 and
M−1∑

k=0

pk,j > 1.

Then almost surely projα(E) contains an interval for all α ∈ S1.

Finally, let us consider nonlinear projections.

Theorem 4. Assume that A(α) holds for all α ∈ D and that E 6= ∅.
Then almost surely both Projt(E) and CProjt(E) contain an interval
for all t ∈ R2.

3. Statistical self-similarity

The goal of this section is to explain two simple ideas, explaining why
the statistical self-similarity of the construction of E simplifies our task.
Let ϕin,jn be the natural contraction sending K onto Kin,jn

. That is,

ϕin,jn(x, y) =
1

Mn
· (x, y) + tin,jn ,

where tin,jn is the lower left corner of Kin,jn
. Then by the statistical

self-similarity of E we mean the following fact: for any Kin,jn
∈ Tn

the conditional distribution of E ∩Kin,jn
conditioned on (in; j

n
) ∈ En

is the same as distribution of ϕin,jn(E).

The first idea, used already in [6], is as follows. Let E be a nonempty
realization of the fractal percolation. Almost surely, E has infinitely
many points, hence we can find an infinite sequence of numbers nk and
squares Kink

,j
nk

⊂ Enk such that any two squares Kink
,j
nk

are not con-

tained in each other. Fix α. The probability that projα(E ∩Kink
,j
nk

)

contains an interval is the same for each k (and the same as proba-
bility that projα(E) contains an interval) and those are independent
events. Hence, it is enough to prove that projα(E) contains an inter-
val with positive probability to know that it contains an interval with
probability 1 (conditioned on E being nonempty).
The second idea is quite similar. Let t ∈ R2 and consider the radial
projection with center t (for co-radial projection it works much the
same). Once again, if E is nonempty then we can almost surely find
a square Kil,jl

with nonempty intersection with E and which t does

not belong to and is in diagonal direction from (E almost surely is not
contained in a horizontal or vertical line). We can then construct the
family Kink

,j
nk

of subsets of Kil,jl
such that the size of each Kink

,j
nk

is
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very small compared to its distance from t (we just need to take them
sufficiently small). Note that not only t is in diagonal direction from
each Kink

,j
nk

, the direction is actually bounded away from horizontal

and vertical.
The probability that Projt(E ∩ Kink

,j
nk

) contains an interval is the

same as probability that Projϕ−1
ink

,j
nk

(t)(E) contains an interval. Hence,

to prove that Projt(E) almost surely contains an interval, it is enough
to prove that the probability that Projt′(E) contains an interval is uni-
formly bounded away from zero for t′ far away from K and in direction
bounded away from horizontal and vertical.
It is a natural observation that the radial/co-radial projections with
center sufficiently far away do not differ much from linear projections.
Indeed, this is how this idea will be used in the proof of Theorem 4 in
the last section.

4. Proof of Theorem 2

4.1. Ideas. As our main idea comes from paper of Falconer and Grim-
mett [6], let us start by recalling their proof. We will assume the
simplest case: all the probabilities are equal to p > M−1. We want
to prove that the probability that the vertical projection of the per-
colation fractal is the whole interval [0, 1] is positive. For any n > 0
let us divide [0, 1] into intervals of length M−n and let us code them
by the usual M -adic codes. Over each interval C(i1, . . . , in) there is
a whole column of Mn M -adic squares of level n, and C(i1, . . . , in) is
contained in the vertical projection of En if and only if at least one of
those squares belongs to En. Denoting by An(i1, . . . , in) the number of
squares above C(i1, . . . , in) contained in En, we need to prove that with
positive probability all An(i1, . . . , in) (for all possible sequences in) are
positive.
Note that

(4.1) E(An+1(i1, . . . , in, j)|An(i1, . . . , in) = a) = Mpa.

Choose any γ ∈ (1,Mp) and let Gn(i1, . . . , in) be the event that

An+1(i1, . . . , in, j) > γAn(i1, . . . , in)

for all j = 0, 1, . . . ,M − 1. By large deviation estimations,

1− P (Gn(i1, . . . , in)) ≈ τAn(i1,...,in)

for some τ < 1. Hence, if all the events G1(i1), . . . , Gn−1(i1, . . . , in−1)
hold then An(i1, . . . , in) ≥ γn and so



FRACTAL PERCOLATIONS 9

P (Gn(i1, . . . , in)|G1(i1) ∧ . . . ∧Gn−1(i1, . . . , in−1)) > 1− cτ γn .

Hence, at level n we have to check exponentially big number of events
(precisely, Mn of them) but each of those events is superexponentially
certain to happen. It follows that with positive probability all those
events will happen.
Our goal in this section is a more complicated statement: for the same
kind of percolation fractal we fix a direction α (neither horizontal nor
vertical) and we want to check that the projection of the fractal in this
direction contains an interval with positive probability. Equation (4.1)
does not hold: even if a point belongs to a projection of some n-th level
square, it does not imply that the expected number of n + 1-st level
squares in the approximation of the percolation fractal such that their
projections contain the point is greater than 1. More precisely, if the
point belongs to the projection of the ’central’ part of the square then
everything might work, but not for the points very close to the ends of
the projection interval.
To go around this technical problem, we only count the number of
’central’ parts of projections of n-th level squares that a given point
belongs to. This lets us replace (4.1) by Condition A(α) as our main
working tool. Note that if we check that a sufficiently dense set of
points belongs to ’central’ parts of projections of some squares from
n-th approximation of the fractal, the whole projections will cover ev-
erything. We only need to take care that the number of points needed
at step n grows at most exponentially fast with n and then the Falconer
and Grimmett’s argument will go through.

4.2. Condition A. Time to give the details. We fix α ∈ D. We are
going to consider Πα instead of projα, i.e. we are projecting onto a
diagonal ∆α of K. For any (in, jn) the map Πα ◦ ϕin,jn : ∆α → ∆α

is a linear contraction of ratio M−n. We will use its inverse: a map
ψα,in,jn : Πα(Kin,jn

)→ ∆α. It is a linear expanding map (of ratio Mn)
and it is onto.
Consider the class of nonnegative real functions on ∆α, vanishing on
the endpoints. There is a natural random inverse Markov operator Gα

defined as

Gαf(x) =
∑

(i,j)∈E1;x∈Πα(Ki,j)

f ◦ ψα,i,j(x).
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The corresponding operator on the n-th level is

G(n)
α f(x) =

∑

(in,jn)∈En;x∈Πα(Kin,jn
)

f ◦ ψα,in,jn(x).

In particular for any H ⊂ ∆α we have

G(n)
α 1H(x) = #

{
(in, jn) ∈ En : x ∈ Πα

(
ϕin,jn(H)

)}
.

Although G
(n)
α should not be thought of as the n-th iterate of Gα, the

expected value of G
(n)
α is the n-th iterate of the expected value of Gα.

Namely, let
Fα = E [Gα] and F n

α = E [Gn
α]

We then have the formulas

Fαf(x) =
∑

i,j;x∈Πα(Ki,j)

pi,j · f ◦ ψα,i,j(x)

and

F n
α f(x) =

∑

(in,jn);x∈Πα(Kin,jn
)

pin,jn · f ◦ ψα,in,jn(x),

where

pin,jn =
n∏

k=1

pik,jk .

Hence, F n
α is indeed the n-th iteration of Fα (which explains why we

are allowed to use this notation).

Definition 5. We say the percolation model satisfies Condition A(α)
if there exist closed intervals Iα1 , I

α
2 ⊂ ∆α and a positive integer rα such

that

i) Iα1 ⊂ intIα2 , I
α
2 ⊂ int∆α,

ii) F rα
α 1Iα1

≥ 21Iα2 .

It will be convenient to use additional notation. For x ∈ ∆α, α ∈ D,
and I ⊂ ∆α we denote

Dn(x, I, α) = {(in, jn);x ∈ Πα ◦ ϕin,jn(I)}.
That is, if we write `α(x) for the line segment through x ∈ ∆α in
direction α, Dn(x, I, α) is the set (in, jn) for which `α(x) intersects

ϕin,jn(I).

The point ii) of Definition 5 can then be written as
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∀x∈Iα2
∑

(irα ,jrα
)∈Drα (x,Iα1 ,α)

pirα ,jrα
≥ 2.

∆ α

`
α (x) α

ϕin,jn(Iα2 )
x

Kin,jn

ϕ̃
in+k ,̃jn+k

(Iα1 )

Figure 2. Condition A(α)

The heuristic explanation of Condition A(α) is as follows: If (in, jn) ∈
En ∩Dn(x, Iα2 , α) then the expected number of (̃in+r, j̃n+r

) such that

Kĩn+r ,̃jn+r
⊂ Kin,jn

and (̃in+r, j̃n+r
) ∈ En+r ∩ Dn+r(x, I

α
1 , α) is at least

2. See Figure 2.

4.3. Robustness. In this subsection we will explain a very simple geo-
metric idea we will use constantly in the last three sections.
Consider two parallel lines l1, l2. On l1 we have an interval I. Let
J be the image of I under linear projection onto l2 in direction θ.
Let I ′ be a greater interval on l1, containing I together with some
neighbourhood. Then not only the projection of I ′ onto l2 in direction θ
will contain J , but also if we perturb θ sufficiently slightly, the resulting
projection of I ′ will still contain J . Applying to our situation, whenever
(in, jn) ∈ Dn(x, Iα1 , α) we will have (in, jn) ∈ Dn(y, Iα2 , β) for all y
sufficiently close to x and β sufficiently close to α.
First application: robustness of Condition A(α).

Proposition 6. If condition A(α) holds for some α ∈ D for some
Iα1 , I

α
2 and rα then it will also hold in some neighbourhood J 3 α.

Moreover, for all θ ∈ J we can choose Iθ1 = I ′1, I
θ
2 = I2, rθ = rα not

depending on θ.
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∆ α

`
β (y)

`
α (x)

β
α

ϕin,jn(Iα2 )

ϕin,jn(Iα1 )

yx

Kin,jn

Figure 3. Robustness of Condition A(α)

Proof. Let δ be the Hausdorff distance between Iα1 and Iα2 , i.e. the
greatest number for which δ-neighbourhood of Iα1 is still contained in
Iα2 . Let I1 be δ/2-neighbourhood of Iα1 .
A simple geometric observation of robustness type is that if |α − θ| <
δM r/3 then

Πα ◦ ϕir,jr(I
α
1 ) ⊂ Πθ ◦ ϕir,jr(I1).

Hence, Condition A(α) holds for all θ ∈ [α − δM r/3, α + δM r/3] for
intervals I1, I2 and positive integer r. �

A natural corollary is that the whole range D can be presented as a
countable union of closed intervals Ji = [α−i , α

+
i ] such that Condition

A(α) holds for all α ∈ Ji with the same I i1, I
i
2, ri. To prove Theorem

3 we only need to prove that for almost all E and for any i, almost
surely all the sets Πα(E), α ∈ Ji contain intervals (the horizontal and
vertical directions follow from Falconer and Grimmett [6]).

4.4. The proof. We assume in this section that Condition A(α) holds
with given I1, I2 and r (α is fixed, so we suppress index α). We will
prove that there is a positive probability that Πα(E) ⊃ I1.
For any x ∈ ∆α, let us define a sequence of random variables

Vn(x) = ]{(inr, jnr) ∈ Enr ∩Dnr(x, I1, α)}.
For any n, let us define a finite set Xn ⊂ I1 with the following proper-
ties:

i) Xn contains the endpoints of I1,
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ii) when we number the points of Xn in increasing direction as
x0, . . . , xN (with x0, xN being the endpoints of I1) then when-
ever (inr, jnr) ∈ Dnr(xi, I1, α), it will follow that for all y ∈
[xi−1, xi+1], (inr, jnr) ∈ Dnr(y, I2, α),

iii) ]Xn ≤ cMnr.

To have property ii) satisfied, it is enough to choose Xn as points in
regular distances δM−nr from each other, where δ is sufficiently small
that δ-neighbourhood of I1 is still contained in I2. So constructed Xn

will satisfy iii) as well.
We will prove that there is a positive probability that for all n ∈ N,
for all x ∈ Xn we have Vn(x) ≥ (3

2
)n. Note that that will imply the

assertion: when all the points from Xn will be contained in some Πα ◦
ϕinr,jnr(I1), (inr, jnr) ∈ Enr, ii) will imply that whole I1 will be contained

in the union of corresponding Πα ◦ ϕinr,jnr(I2) and in particular in the
union of corresponding Πα ◦Kinr,jnr

.
For n = 0 the statement holds with probability 1. Assume that up
to time n it holds with probability Pn and let us estimate the condi-
tional probability with which it holds at time n+1, conditioned on the
assumption it holds at time n. Let x ∈ Xn+1.
1. The point x does not need to belong to Xn. However, even if
it does not, it is contained in some [xi, xi+1] for xi, xi+1 ∈ Xn. As
we assume that Vn(xi) ≥ (3/2)n, we know that the number of pairs
(inr, jnr) ∈ Enr∩Dnr(xi, I1, α) is at least (3/2)n. By part ii) of definition

of Xn, all those (inr, jnr) belong to Enr ∩Dnr(x, I2, α) as well.

2. For each square Kinr,jnr
, (inr, jnr) ∈ Enr ∩ Dnr(x, I2, α) we want to

calculate the number of its subsquares Ki(n+1)r,j(n+1)r
, (i(n+1)r, j(n+1)r

) ∈
E(n+1)r ∩Dnr(x, I1, α). This random number is given by

G(r)
α 1I1(ψinr,jnr(x)).

We do not know exactly the distribution of this random variable (it
depends on x). But the possible values are obviously between 0 and
2M r and the expected value is not smaller than

F r
α1I1(ψinr,jnr(x)) ≥ 2

(by Condition A(α) and using the fact that ψi(n+1)r,j(n+1)r
(x) ∈ I2).

3. Events that happen in different squares Kinr,jnr
are jointly indepen-

dent.
4. Hence, Vn+1(x) is bounded from below by a sum of at least (3/2)n

independent random variables, each with average 2 and each bounded
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above and below by uniform constants. Hence, by Azuma-Hoeffding in-
equality [11] probability that this sum is strictly smaller than (3/2)n+1

is not greater than γ(3/2)n for some fixed γ ∈ (0, 1).
What we said implies that

P
(
∀x∈Xn+1Vn+1(x) ≥ (3/2)n+1|∀y∈XnVn(y) ≥ (3/2)n

)
≥
(
1− γ(3/2)n

)cM(n+1)r

.

As the infinite sum
∑

n cM
(n+1)rγ(3/2)n is convergent, we get

P (∀n∀x∈XnVn(x) ≥ (3/2)n) > 0.

We are done.

4.5. Examples. Condition A(α) looks artificial, hence we should show
some examples. The main goal of this subsection is to show that if all
probabilities pi,j = p > M−1 then A(α) holds for all α ∈ D (Proposition
10), but we also mention some examples with different probabilities.
Our main tool will be the following.

Definition 7. We say that the fractal percolation model satisfies Con-
dition B(α) if there exists a nonnegative continuous function f :
∆α → R such that f is strictly positive except at the endpoints of
∆α and that

(4.2) Fαf ≥ (1 + ε)f

for some ε > 0.

First we prove

Lemma 8. Assume that Condition B(α) holds for some f and ε > 0.
Then we can choose nonempty closed intervals

I1 ⊂ intI2 and I2 ⊂ int∆,

such that for
g1 = f |I1 , g2 = f |I2

we have

(4.3) Fαg1(x) ≥
(

1 +
ε

2

)
· g2(x) for x ∈ I2.

Proof. For a set H ⊂ ∆α, put Br(H) for the radius r open neighbor-
hood of H in ∆α.

Br(H) := {y ∈ ∆α : ∃h ∈ H, |h− y| < r} .
Let W ⊂ ∆α be the Πα-projection of the mesh 1/M grid points in K:

W =

{
x ∈ ∆ : ∃0 ≤ i, j ≤M, x = Πα

(
i

M
,
j

M

)}
.
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We partition W into the two endpoints of ∆ (to be denoted W0) and
W1 := W \W0. Fix η > 0 which satisfies

ε

2
· min
x∈Bη/M (W1)

f(x) > (M + 1)2 sup
x

{
f(x) : x ∈ Bη/M(W0)

}
.

and define two subintervals of ∆α

I1 := ∆α \Bη(W0) and I2 := ∆α \Bη/M(W0).

Let
B = Bη/M(W ) and Bi = Bη/M(Wi), i = 0, 1.

Fix an arbitrary x ∈ I2. We divide the proof of (4.3) into two cases
among which the first is obvious:

x ∈∆ \B: Using the definition of Fα and then (4.2) we obtain

Fαg1(x) = Fαf(x) ≥ (1 + ε)f(x) ≥
(

1 +
ε

2

)
· g2(x).

x ∈ B1: By the definition of Fα:

Fαg1(x) ≥ Fαf − (M + 1)2‖f − g̃1‖∞, ∀x ∈ ∆.

From this and from (4.2), we obtain

Fαg1(x) ≥
(

1 +
ε

2

)
f(x) +

(ε
2
f(x)− (M + 1)2‖f − g̃1‖∞

)

The definition of η yields that the expression in the second bracket is
positive. This implies that

Fαg1(x) >
(

1 +
ε

2

)
g2(x) for x ∈ ∆2.

�

Proposition 9. B(α) implies A(α).

Proof. Using the notation of Lemma 8 we define r as the smallest in-
teger satisfying

(
1 +

ε

2

)r
≥ 2 ·

max
x∈I1

g1(x)

min
x∈I2

g2(x)

Then clearly,
F r
α1I1(x) ≥ 2 · 1I2(x) for all x ∈ I2.

�

Proposition 10. If

∀i, j pij = p >
1

M

then Condition A(α) is satisfied for all α ∈ D.
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Proof. We will actually prove B(α). Fix α ∈ D. For an arbitrary
x ∈ ∆α we define fα(x) := |`α(x) ∩K| . It is straightforward that fα
satisfies (4.2) with ε = M · p− 1 > 0. �

Let us now give some examples of percolations with not all probabilities
equal and still satisfying Condition A(α). There is a large class of trivial
examples given by the following lemma.

Lemma 11. If the percolation {pi,j} satisfies Condition (α) and p′i,j ≥
pi,j for all i, j then the percolation {p′i,j} satisfies Condition (α) as well.

So, nontrivial examples should have at least some pi,j ≤ M−1. A
natural class of examples is motivated by the work of Dekking and
Meester [3] and by the question of the anonymous referee.

Lemma 12. Let M = 3. Let p1,1 = p0 and let all the other pi,j = p.
Then if

p > max

(
1

3
,
1− p0

2

)

then Condition A(α) is satisfied for all α ∈ D.

Proof. One can check that the Condition B(α) is satisfied for the same
function fα as in the proof of Proposition 10. �

In the case p0 = 0 we get the random Sierpiński carpet and the Con-
dition (A) is satisfied if p > 1/2. Note that the bounds in Lemma 12
are sharp: for p0 ≤ 1/3 and p ≤ (1− p0)/2 the horizontal and vertical
projections of E almost surely contain no intervals, by Falconer and
Grimmett [6].

5. Projections in many directions, proof of Theorem 3

We restrict ourself to one such range J = [α−, α+]. Let I1, I2 and r are
such that Condition A(α) holds for all α ∈ J . Let δ be the Hausdorff
distance between I1 and I2.
Another simple robustness-related geometric observation: assume x, y ∈
∆α and the distance between them is at most δM−nr/3. Assume
α, β ∈ J and |α−β| ≤ δM−nr/3. Assume that (inr, jnr) ∈ Dnr(x, I1, α).

Then (inr, jnr) ∈ Dnr(y, I2, β). We can write this as

(5.1) G
(r)
β 1I2(ψinr,jnr(y)) ≥ G(r)

α 1I1(ψinr,jnr(x)).

We are now starting the proof. Compare the proof of Theorem 2.
Given n, let Xn be a δM−nr/3-dense finite subset of I1 and let Yn be a
δM−nr/3-dense finite subset of J . We choose them in such a way that
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](Xn × Yn) ≤ cM2nr.

For any (x, θ) ∈ I1 × J , let us define a sequence of random variables

Vn(x, θ) = ]{(inr, jnr) ∈ Enr ∩Dnr(x, I1, θ)}.
We will prove that with positive probability Vn(x, θ) ≥ (3/2)n for all
n, x, θ, estimating inductively the probability that this event holds up
to time (n + 1) conditioned on the assumption that it holds at time
n. For n = 0 this event holds with probability 1. Let us start the
inductive step.
1. Given (y, κ) ∈ Xn+1 × Yn+1, let Z(y, κ) be the set of points from
I1×J such that x is δM−(n+1)r/3-close to y and θ is δM−(n+1)r/3-close
to κ. The sets Z(y, κ) cover I1 × J .
By the inductive assumption, Vn(y, κ) ≥ (3/2)n. Hence, we know that
there are at least (3/2)n pairs (inr, jnr) ∈ Enr ∩Dnr(y, I2, κ).

2. For each square Kinr,jnr
such that (inr, jnr) ∈ Enr ∩Dnr(x, I1, θ), we

want to calculate the number of its subsquares Ki(n+1)r,j(n+1)r
such that

(i(n+1)r, j(n+1)r
) ∈ E(n+1)r ∩ D(n+1)r(x, I2, θ). This random number is

given by G
(r)
θ 1I2(ψinr,jnr(x)) and by (5.1)

(5.2) G
(r)
θ 1I2(ψinr,jnr(x)) ≥ G(r)

κ 1I1(ψinr,jnr(y)).

Like before, this random variable is bounded (independently of n) and
its expected value is at least 2. Moreover, those random variables
coming from different (i(n+1)r, j(n+1)r

) are independent.

3. An important note: the bound in equation (5.2) works for all (x, θ) ∈
Z(y, κ). That means that we only need to check the behaviour of this
random variable for finitely many pairs (y, κ) to prove the inductive
step at all (x, θ).
4. By Azuma-Hoeffding inequality the conditional probability that

∑

inr,jnr∈Enr∩Dnr(y,I2,κ)

G(r)
κ 1I1(ψinr,jnr(y)) < (3/2)n+1

conditioned on Vn(y, κ) ≥ (3/2)n is not greater than γ(3/2)n for some
fixed γ ∈ (0, 1). As the number of possible pairs (y, κ) is at most
cM2nr, which is increasing only exponentially fast, we are done.

6. Nonlinear projections, proof of Theorem 4

6.1. Almost linear projections. Let us consider carefully what are
the real assumptions of the proof of Theorem 3. Consider a family of
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projections St : K → ∆ parametrized by t ∈ T . A convenient way will
be to write

(6.1) St(x) = Παt(x)(x)

for all x ∈ K. What assumptions about αt we would need for the proof
from previous section to work?
We want to use Condition A. So, our first necessary assumption is that
for some range J in which Condition A holds (for some fixed I1, I2, r),
αt(x) ∈ J for all t, x. Let δ be, like before, the Hausdorff distance
between I1 and I2.
We want also the following robustness property. For any n we want to
be able to divide I1×T into a finite family of subsets {Xi×Zj} and in
each Xi × Zj we want to choose a special pair (xi, tj) ∈ Xi × Zj such
that for any (x, t) ∈ Xi × Zj and for any inr, jnr,

xi ∈ Stj ◦ ϕinr,jnr(I1) =⇒ x ∈ Παt(Xinr,jnr
) ◦ ϕinr,jnr(I2),

where Xinr,jnr
is the center of Kinr,jnr

. This will let us proceed with
the inductive part of the argument.
Finally, we need the size of the family {Zi} to grow only exponentially
fast with n, so that we can apply the large deviation argument and the
resulting infinite product is convergent.

Definition 13. We say that a family {St}t∈T : K → ∆ is an almost
linear family of projections if the following properties are satisfied.
We use notation from (6.1). We set J ⊂ D as the range of angles for
which Condition A(α) is satisfied with the same I1, I2, r. We denote by
δ the Hausdorff distance between I1 and I2.

i) αt(x) ∈ J for all t ∈ T and x ∈ K. In particular, αt(x) is
contained in one of two components of D.

ii) αt(x) is a Lipschitz function of x, with the Lipschitz constant
not greater than δ/3. This guarantees in particular that St(Kin,jn

)
is an interval.

iii) For any n we can divide T into subsets Z
(n)
i such that whenever

t, s ∈ Z(n)
i and x, y ∈ Kin,jn

, we have

|αt(x)− αs(y)| ≤ δM−n/3.

Moreover, we can do that in such a way that ]{Z(n)
i } grows only

exponentially fast with n.

Then the proof of Theorem 3 easily yields the following.
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Theorem 14. Let {St}t∈T be an almost linear family of projections.
Then for almost all nonempty realizations E of the percolation fractal,
St(E) contains an interval for all t ∈ T .

Proof. We denote by Vn(x, t) the number of pairs (inr, jnr) ∈ Enr for

which x ∈ St ◦ ϕinr,jnr(I2). We want to prove inductively that (with

positive probability) Vn(x, t) ≥ (3/2)n for all x ∈ I1, t ∈ T . The
statement is obvious for n = 0. The inductive step is as follows.
1. We choose in I1 a δM−(n+1)r/3-dense finite subset Xn+1. We can

cover I1 × T with sets BδM−(n+1)r/3(xi) × Z
((n+1)r)
j , xi ∈ Xn+1. The

inductive assumption says that for any (y, s) there are at least (3/2)n

pairs (inr, jnr) ∈ Enr such that y ∈ Ss ◦ ϕinr,jnr(I2).

2. For each Kinr,jnr
, (inr, jnr) as above, we want to estimate from be-

low the number of its subsquares Ki(n+1)r,j(n+1)r
such that y ∈ Ss ◦

ϕi(n+1)r,j(n+1)r
(I2). For all (y, s) ∈ BδM−(n+1)r/3(xi) × Z((n+1)r)

j this ran-

dom variable can be uniformly estimated from below by

G
(r)
αt(Xinr,jnr

)1I1(ψinr,jnr(xi),

where t ∈ Z((n+1)r)
j is arbitrary.

3. As we approximate the almost linear projection by a linear one, we
can apply Condition A(αt(Xinr,jnr

)).

4. As the number of sets BδM−(n+1)r/3(xi) × Z
((n+1)r)
j grows only ex-

ponentially fast with n, we finish the proof using Azuma-Hoeffding
inequality, like before. �

6.2. Radial and co-radial projections. Families of radial and co-
radial projections are not in general almost linear families of projec-
tions. However, as explained in section 3, we only need to consider
radial/co-radial projections with center in uniformly nonhorizontal,
nonvertical direction and arbitrarily big distance from K. If we fix
any nonhorizontal and nonvertical direction and consider only centers
in sufficiently large distance, the resulting family of radial projections
and family of co-radial projections will satisfy conditions ii), iii) of Def-
inition 13. To have the condition i) satisfied as well, we only need to
subdivide the family. Hence, Theorem 4 follows from Theorem 14.
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