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Abstract

This paper presents a simple method of calculating the Hausdorff
dimension for a class of non-conformal fractals.

1 Introduction

An iterated function scheme acting on a complete metric space X is a fi-
nite family of contracting maps F = {fk}n

k=1; fk : X → X. As noted by
Hutchinson [Hu], the related multimap

F (·) =
n⋃

k=1

fk(·)

(acting on the space B(X) of nonempty compact subsets of X, considered
with the Hausdorff metric) is also a contraction. Hutchinson proved that if
X is complete, so is B(X). Hence, by the Banach fixed point theorem, there
exists a unique nonempty compact set Λ satisfying

Λ = F (Λ) = lim
n→∞

F n(A).

The limit does not depend on the choice of A ∈ B(X). Λ is called the limit
set of the iterated function scheme F .
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By similar reasoning, if we have a finite number of iterated function
schemes {Fi}m

i=1 acting on X and apply them in any order, the pointwise
limit

Λω = lim
n→∞

Fω1 ◦ . . . ◦ Fωn(A)

exists for all ω ∈ Ω = {1, . . . , m}N and does not depend on A ∈ B(X).
The question we want to answer (motivated by [Lu], see also [N], [GL],

[GL2] and the incoming paper [Re]) is: when the iterated function schemes
Fi are of some special class (for which we can calculate the Hausdorff dimen-
sion of the limit set of any deterministic iterated function scheme from this
class) and the sequence ω is chosen, what will be the value of the Hausdorff
dimension of Λω?

We will present a simple method of dealing with this question, working
for Lalley-Gatzouras maps [LG], Barański maps [B] and higher dimensional
affine-invariant sets of Kenyon and Peres [KP]. The only assumption about
ω we need is that each symbol i has a limit frequency of appearance. For
simplicity, we will only present the proof for an example: a class of iterated
function schemes considered by Lalley and Gatzouras.

We refer the reader interested in other non-conformal random iterated
constructions to [F], [GL2] and references therein.

2 Lalley-Gatzouras schemes

The Lalley-Gatzouras scheme F is a self-affine IFS given by a family of maps
fi,j : R2 → R2, (i, j) ∈ A:

fi,j(x, y) = (aijx + cij, biy + di),

where the alphabet A of allowed symbols is 1 ≤ i ≤ m1, 1 ≤ j ≤ m2(i).
We will assume that for all (i, j) ∈ A, bi ≥ aij (that is, the contraction in
the horizontal direction is not weaker than the contraction in the vertical
direction for all maps).

We will also assume that for all (i, j) ∈ A, 0 < aij < 1 and 0 ≤ ci1 <
. . . < cim2(i) ≤ 1− aim2(i), cij+1 ≥ aij + cij and that 0 < bi < 1 and 0 ≤ d1 <
. . . < dm1 ≤ 1− bm1 , di+1 ≥ bi + di. We will say that the separation condition
holds if we actually have cij+1 > aij + cij and di+1 > bi + di.

The main result of [LG] is the formula for the Hausdorff dimension of the
limit set Λ:
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dimH(Λ) = max

{∑
i

∑
j pij log pij∑

i

∑
j pij log aij

+
∑

i

qi log qi

(
1∑

i qi log bi

− 1∑
i

∑
j pij log aij

)}
,

where {pij} is a probability distribution on A, qi =
∑

j pij and the maximum
is over all possible {pij}.

Consider now a family of Lalley-Gatzouras schemes {Fk}m
k=1 with alpha-

bets Ak and maps f
(k)
i,j . As mentioned above, we can apply them in any order

Fω1 ◦ Fω2 ◦ . . ., ω = ω1ω2 . . . ∈ Ω = {1, . . . , m}N and obtain some limit set
Λω. We will assume that the limits

Pk = lim
n→∞

1

n
]{1 ≤ l ≤ n; ωl = k} (2.1)

exist and are positive. We will ask what is the value of dimH(Λω).
Before formulating the answer, let us note that any finite product Fω1 ◦

. . .◦Fωn is again a Lalley-Gatzouras scheme. It follows that we can calculate
the Hausdorff dimension of Λω for any periodic sequence ω. Given a rational
probabilistic vector Q = (Q1, . . . , Qm), we can choose a periodic sequence
ω(Q) in which the frequency of symbol k is Qk. Let us write

ÃL(Q) = dimH Λω(Q).

Our main result is as follows.

Theorem 2.1. The function ÃL(Q) is well defined, does not depend on the
choice of ω(Q). We can extend it by continuity to the whole simplex of prob-
abilistic vectors (we will keep the notation ÃL(Q) for the extended function).
We have

dimH(Λω) = ÃL(P ).

3 Proof of Theorem 2.1

Let us start by presenting a more detailed description of Λω (compare [Hu]).
Let Aω = Aω1 × Aω2 × . . .. We define a projection πω : Aω → Λω by the
formula

πω((i1, j1), (i2, j2), . . .) = lim
n→∞

f
(ω1)
i1,j1

◦ . . . ◦ f
(ωn)
in,jn

(0, 0),

(ik, jk) ∈ Ak. We get
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Λω = πω(Aω).

Because of the nonconformality of the system, the most natural class
of subsets of Aω to study are not cylinders but rectangles (in particular,
approximate squares). The rectangle is defined as follows: given a sequence
(i, j) ∈ Aω and two natural numbers n1 ≤ n2 we define

Rn1,n2(i, j) = {(i′, j′) ∈ Aω; i′k = ik∀k ≤ n2, j
′
k = jk∀k ≤ n1}.

We will call

d1(Rn1,n2(i, j)) =

n1∏

k=1

a
(ωk)
ikjk

the width and

d2(Rn1,n2(i, j)) =

n2∏

k=1

b
(ωk)
ik

the height of the rectangle Rn1,n2(i, j). Indeed, the projection of a rectangle
under πω is the intersection of Λω with a geometric rectangle of the same
width and of the same height. The rectangle of approximately (up to a
constant) equal width and height is called an approximate square.

Our main step is the following proposition.

Proposition 3.1. For Q a rational probabilistic vector sufficiently close to
P and for any choice of ω(Q), there exists K > 0 and for every d > 0 there
exists ε > 0 with ε(d) → 0 as d → 0 such that we can construct a bijection

τ : Aω(Q) → Aω with the following properties. Let R = R
(ω(Q))
n1,n2 (i, j) be an

approximate square in Aω(Q) of width d. Then τ(R) contains an approximate
square in Aω of width at least d1+Kδ+ε and is contained in an approximate
square in Aω of width at most d1−Kδ−ε, where δ = max |Pk −Qk|.
Proof. We will need the following simple statement (a reformulation of (2.1)):

Lemma 3.2. For every n there exists ε(n) such that for each k the n-
th appearance of symbol k in the sequence ω takes place between positions
n/Pk(1 − ε(n/Pk)) and n/Pk(1 + ε(n/Pk)). Moreover, ε(n) goes monotoni-
cally to 0 as n goes to ∞.

Consider now the pair of sequences: ω, the sequence we work with, and
ω(Q), a periodic sequence with frequencies Q. We will assume that Q is
δ-close to P and that both probabilistic vectors are positive. Obviously, in
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the sequence ω(Q) the n-th appearance of symbol k is at position n/Qk, give
or take a constant.

We will define χω,ω(Q) as a permutation of N in the following way: if l1 is
the place of n-th appearance of symbol k in the sequence ω and l2 is the place
of n-th appearance of symbol k in the sequence ω(Q), we set χω,ω(Q)(l1) = l2.
We can then construct a bijection τ : Aω(Q) → Aω as

τ((i1, j1), (i2, j2), . . .) = (iχω,ω(Q)(1), jχω,ω(Q)(1)) . . .

Denote

D1 = χω,ω(Q)({1, . . . , n1})
and

D2 = χω,ω(Q)({n1 + 1, . . . , n2})
We remind that the rectangle R is defined as the set of sequences (i′, j′) ∈

Aω(Q) for which we fix the first n1 (i′k, j
′
k) and the following n2−n1 i′k. Hence,

the set τ(R) is the set of sequences (i′, j′) ∈ Aω for which we fix (i′k, j
′
k) for

k ∈ D1 and we fix i′k for k ∈ D2.
Denote

r1 = inf(N \D1)− 1,

r2 = inf(N \ (D1 ∪D2))− 1,

s1 = sup(D1),

s2 = sup(D1 ∪D2).

We have

R(ω)
s1,s2

(τ(i, j)) ⊂ τ(R) ⊂ R(ω)
r1,r2

(τ(i, j)).

Assume δ is much smaller than any Pk. By Lemma 3.2,

r1 ≥ n1(1−K0ε(n1)−K0δ),

r2 ≥ n2(1−K0ε(n2)−K0δ),

s1 ≤ n1(1 + K0ε(n1) + K0δ),

s2 ≤ n2(1 + K0ε(n2) + K0δ)

for some K0 > 0 depending only on the iterated schemes.
Consider the width of R

(ω)
r1,r2(τ(i, j)) versus the width of R. The latter

is a product of n1 numbers a
(k)
ij , the former it the subproduct of r1 of those

numbers. As all a
(k)
ij are uniformly bounded away from 0 and 1,
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d1(R
(ω)
r1,r2

(τ(i, j))) ≤ d1−Kε(n1)−Kδ

for some uniformly chosen K, depending only on the iterated schemes. Sim-
ilar reasoning proves

d2(R
(ω)
r1,r2

(τ(i, j))) ≤ d1−Kε(n2)−Kδ.

Consider now the width of R
(ω)
s1,s2(τ(i, j)) versus the width of R. The

former a product of s1 numbers a
(k)
ij , the latter is the subproduct of n1 of

those numbers, the same reasoning as before gives us

d1(R
(ω)
s1,s2

(τ(i, j))) ≥ d1+Kε(n1)+Kδ,

d2(R
(ω)
s1,s2

(τ(i, j))) ≥ d1+Kε(n2)+Kδ.

The rectangles R
(ω)
r1,r2(τ(i, j)) and R

(ω)
s1,s2(τ(i, j)) are not necessarily approxi-

mate squares, but we can easily replace the former by some slightly larger
rectangle which is an approximate square and we can replace the latter by
some slightly smaller rectangle which is an approximate square. We are
done.

Remark. We can introduce a metric on Aω, defining the distance between two
points as the sum of width and height of the smallest rectangle containing
them both. This metric is natural because if the maps satisfy the separation
condition, πω is bi-Lipschitz (without separation condition it will only be a
Lipschitz projection). In this metric, the maps τ , τ−1 are Hölder continuous
with every exponent smaller than 1 (if δ = 0) or with exponent 1−Kδ (if δ
is positive but small).

This proposition basically ends the proof of Theorem 2.1. By Proposition
3.3 and Lemma 5.2 in [LG], for any Lalley-Gatzouras scheme there exists a
probabilistic measure µ supported on AN such that

i) for a µ-typical point (i, j) and the decreasing sequence of all approxi-
mate squares Rk = Rn1(k),n2(k)(i, j),

log µ(Rk)

log d1(Rk)
→ dim(Λ),

ii) for every point x ∈ AN there exists a decreasing sequence of approxi-
mate squares Rk = Rn1(k),n2(k)(i, j) for which
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log µ(Rk)

log d1(Rk)
→ dim(Λ).

We can define such measure µQ supported on Aω(Q) for any rational Q
(because this is again a Lalley-Gatzouras scheme). We can then transport
this measure to Aω by the map τ . We obtain a measure νQ such that

i) for a νQ-typical point (i, j) and the decreasing sequence of all approxi-
mate squares Rk = Rn1(k),n2(k)(i, j),

lim inf
log νQ(Rk)

log d1(Rk)
≥ ÃL(Q)(1−Kδ),

ii) for every point x ∈ Aω there exists a decreasing sequence of approxi-
mate squares Rk = Rn1(k),n2(k)(i, j) for which

lim sup
log νQ(Rk)

log d1(Rk)
≤ ÃL(Q)(1 + Kδ).

It implies that

ÃL(Q)(1−Kδ) ≤ dimH Λω ≤ ÃL(Q)(1 + Kδ),

the proof is as in [LG].
This result has immediate applications for random systems, obtained by

choosing ω randomly with respect to some Bernoulli measure on Ω.
On the other hand, this method is not going to work for stochastically-

selfsimilar systems considered in [F] or [GaL]. For such systems we would
not have a single sequence ω but instead ω would depend on the point in
the fractal. While we would still be able to define τ almost everywhere, the
sequences ω(x) at different points x ∈ Λ would not all satisfy Lemma 3.2,
and hence τ would not everywhere have nice Hölder properties.
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