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1. Introduction

One of the methods of studying systems arising in
biology is to replace all values that can be attained
by any given variable by just two values: below and
above some threshold (see e.g. [Glass & Pasternack,
1978; Glass & Siegelmann, 2010; Perkins et al.,
2010; Wilds & Glass, 2009]). Then the evolution
in time will be represented by a path on a corre-
sponding graph: each variable can switch from one
state to the other, depending on the values of all the
remaining variables. If there are k variables, since
generically only one variable can switch at any time,
the graph that we should consider is the 1-skeleton
of the k-dimensional hypercube. Since for each vari-
able, the values of all other variables determine how
this one will change, each edge of the graph has its
direction. This way we get a digraph.

The complexity of our system (how many paths
are possible?) can be measured by the entropy of the
graph. Wilds et al. [2008] asked the question: what
is the maximal entropy of the k-dimensional hyper-
cube over all possible assignments of directions of
edges? We learned about this question from Leon
Glass. In [Wilds et al., 2008] the authors conjecture,
based on numerical experiments, that this maximal
entropy is log k

2 if k is even and log
√

k2−1
2 if k is

odd. Here, we prove that indeed this is the case.
Note that if instead of a hypercube we consider

a complete graph, a similar question has been stud-
ied extensively, see [Brualdi, 2010] (the digraphs one
gets are called tournaments).

The entropy of a digraph is equal to the loga-
rithm of the spectral radius of the transition (adja-
cency) matrix of this graph (or 0 if this spectral
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radius is 1 or less). Thus, we need to estimate the
spectral radius of this matrix. This problem plays
an important role in several branches of mathemat-
ics; apart from Linear Algebra and Graph Theory,
we can list Dynamical Systems, Probability Theory
and applications of mathematics. There are many
different estimates, see, e.g. [Minc, 1988]. In partic-
ular, the following simple estimate is well known.
Let M be an n × n non-negative matrix with row
sums Ri, column sums Ci, and spectral radius λ.
Then

min{Ri : i = 1, . . . , n}
≤ λ ≤ max{Ri : i = 1, . . . , n},

min{Ci : i = 1, . . . , n}
≤ λ ≤ max{Ci : i = 1, . . . , n}.

(1)

However, there are cases when we would like to
get a better estimate, knowing the row and column
sums of M . Such an estimate,

λ ≤ max{
√
RiCi : i = 1, . . . , n}, (2)

has been obtained by Barankin [1945] and rediscov-
ered by Kwapisz [1996]. It has been strengthened by
Ostrowski [1951] to the following one:

λ ≤ max{Rp
iC

1−p
i : 1 ≤ i ≤ n} (3)

for every p ∈ (0, 1). Note that we get only upper
estimates; the lower ones similar to (1) do not
hold.

Inequalities (2) and (3) remain surprisingly
unknown. Usually they do not appear even in the
books with many different estimates of the spectral
radii of non-negative matrices. The survey article of
Brualdi [2010] mentions the result of Kwapisz, but
does not of [Barankin, 1945] or [Ostrowski, 1951].
However, it cites a paper of Kolotilina [2002], which
cites the paper of Ostrowski (and his result), which
cites the paper of Barankin. This way, after we
rediscovered (2) and (3), we learned that we were 66
and 60 years late.

Nevertheless, our proof of (3) ((2) is a spe-
cial case of (3) for p = 1/2) is quite different,
and simpler than the original proof of Ostrowski.
We present it here, as well as the explanation of
the ideas from Dynamical Systems that led to this
proof. We should note that Kwapisz’s proof also
uses ideas from Dynamical Systems, but different
to those used by us.

The paper is organized as follows. In Sec. 2, we
give a simple algebraic proof of (3). In Sec. 3, we
explain briefly how we got this proof using ideas
from Dynamical Systems. This section is purely
explanatory; it is not necessary to read it in order
to understand the rest of the paper. In Sec. 4, we
translate our results to the language of Graph The-
ory and derive some interesting consequences. In
Sec. 5, we apply the results of the preceding section
to the problem in Mathematical Biology that we
mentioned. Finally, in Sec. 6, we give two examples.
The first one shows that we cannot count on lower
estimates of the spectral radius using estimates sim-
ilar to (3). The second one shows that (3) is stronger
than (2).

2. Spectral Radius Estimate

In this section we give a simple proof of the theorem
of Ostrowski.

Theorem 1. Let M be an n×n non-negative matrix
with row sums Ri, column sums Ci, and spectral
radius λ. Then for every p ∈ (0, 1)

λ ≤ max{Rp
iC

1−p
i : 1 ≤ i ≤ n}. (4)

Proof. Let M = (mij) and assume first that M is
positive. There are positive eigenvectors of M corre-
sponding to the eigenvalue λ: left one (�i) and right
one (ri). That is,

n∑
i=1

�imij = λ�j ,
n∑

j=1

mijrj = λri. (5)

We choose those eigenvectors in such a way that

n∑
i=1

�iri = 1. (6)

By (5) and (6), we get

n∑
i,j=1

�imijrj
λ

log
λri
rj

=
n∑

i,j=1

�imijrj
λ

log λ+
n∑

i,j=1

�imijrj
λ

log ri

−
n∑

i,j=1

�imijrj
λ

log rj
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=
n∑

j=1

�jrj log λ+
n∑

i=1

�iri log ri

−
n∑

j=1

�jrj log rj

= log λ. (7)

By (5), for each i we have
n∑

j=1

mijrj
λri

= 1.

Thus, since the logarithmic function is concave, we
get by Jensen’s inequality

n∑
j=1

mijrj
λri

log
λri
rj

≤ log
n∑

j=1

mijrj
λri

· λri
rj

= logRi. (8)

Now, from (7) and (8), we get

log λ =
n∑

i=1

�iri

n∑
j=1

mijrj
λri

log
λri
rj

≤
n∑

i=1

�iri logRi.

(9)

When we replace the matrix M by its trans-
pose, �i’s and ri’s will switch and Ri’s will become
Ci’s. Thus,

log λ ≤
n∑

i=1

�iri logCi. (10)

By (9) and (10), we get for every p ∈ (0, 1)

log λ ≤ p
n∑

i=1

�iri logRi + (1 − p)
n∑

i=1

�iri logCi

=
n∑

i=1

�iri(p logRi + (1 − p) logCi). (11)

In view of (6), this gives us

log λ ≤ max{p logRi + (1 − p) logCi : 1 ≤ i ≤ n},
(12)

so (4) follows.
Now, if M is just non-negative instead of posi-

tive, for every ε > 0, we consider a positive matrix
Mε = (mij + ε) with row sums Rε,i, column sums

Cε,i and spectral radius λε. By what we proved, we
have

λε ≤ max{Rp
ε,iC

1−p
ε,i : 1 ≤ i ≤ n}. (13)

Clearly, λ ≤ λε. Moreover, for every i

lim
ε→0

Rp
ε,iC

1−p
ε,i = Rp

iC
1−p
i .

Thus, we get (4) by taking the limit as ε → 0
in (13). �

3. Ideas From Dynamical Systems

Now we explain the source of the proof from the
preceding section. This is not essential for the proof,
so we will omit definitions. The reader who needs
them can find them in many textbooks in Dynami-
cal Systems (a standard one is [Walters, 1982]).

For a positive n × n non-negative matrix with
row sums Ri, column sums Ci, and spectral radius
λ, we consider the two-sided full shift on n symbols
σ : Σ → Σ. Denote the ith 1-cylinder by [i] and the
(i, j)th 2-cylinder by [ij]. Let f : Σ → R be the func-
tion constant on 2-cylinders that takes value mij

on [ij]. Then the topological pressure P (σ, log f) is
equal to log λ and there is a probability measure
µ on Σ, invariant for σ, which is the equilibrium
state for (σ, log f). Moreover, the system (Σ, σ, µ)
is a stationary Markov chain. If pi = µ([i]) and the
transition probabilities are pij, then

P (σ, log f) = −
n∑

i,j=1

pipij log pij

+
n∑

i,j=1

pipij logmij.

Using an inequality that is standard in the proof
of the Variational Principle (see, e.g. formula (6) of
[Misiurewicz, 1976]), one gets

P (σ, log f) ≤
n∑

i=1

pi logRi.

Now instead of σ we consider σ−1. This corre-
sponds to replacing the matrix M by its transpose.
They have the same spectral radii. Moreover, the
pressure and metric entropy are preserved by taking
the inverse of the map, and the system (Σ, σ−1, µ)
is also a stationary Markov chain with the same
measures of cylinders [i] and transition probabilities
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pjipj/pi. However, the rows of MT are the columns
of M , so we get now

P (σ, log f) ≤
n∑

i=1

pi logCi.

In this way we get (9) and (10), and the proof
follows as in the preceding section.

4. Entropy of Graphs

A special case of non-negative matrices and their
spectral radii, when the matrix has only entries 0
and 1, can be interpreted in terms of Dynamical
Systems or Graph Theory.

Thus, if M = (mij) is a 0–1 matrix, we can
consider the space

ΣM = {(xk)∞k=−∞ :∀k xk ∈ {1, . . . , n} and

mxkxk+1
= 1}

with the topology of a subset of {1, . . . , n}Z with the
product topology (in each {1, . . . , n}, we take the
discrete topology). Further, σM : ΣM → ΣM is the
shift to the left, that is,

σM ((xk)) = (yk), where yk = xk+1.

The system (ΣM , σM ) is the subshift of finite type
with transition matrix M . The logarithm of the
spectral radius of M is equal to the exponential
growth rate of the number of cylinders of length
k (the sets of sequences with prescribed terms at
coordinates 0, 1, . . . , k − 1), and is the topological
entropy of σM .

Alternatively, we can think of a directed graph
(digraph) G with n vertices, in which there is an
arrow from the ith vertex to the jth one if and only
if mij = 1. Then the logarithm of the spectral radius
of M (we will call it the entropy of G and denote it
h(G)) is the exponential growth rate of the number
of paths of length k in G.

The number of arrows beginning in a given ver-
tex v is the outdegree of v; the number of arrows
ending at v is the indegree of v. Note that the out-
degree of the ith vertex of G is the ith row sum of
M , and the indegree of the ith vertex of G is the ith
column sum of M . Thus, we can restate Theorem 1
as follows.

Theorem 2. Let G be a digraph with n vertices.
Let the outdegree of the ith vertex be d+

i and its

indegree d−i . Then for every p ∈ [0, 1]

h(G) ≤ max{p log d+
i + (1 − p) log d−i : 1 ≤ i ≤ n},

(14)

(unless the right-hand side is −∞).

Here we were able to add 0 and 1 as possible
values of p to incorporate the trivial upper estimates
of (1).

In fact, using (1), we get the following simple
lemma.

Lemma 1. If the outdegree of each vertex of G (or
the indegree of each vertex of G) is k then h(G) =
log k.

Let us define the capacity of a vertex of G as
the geometric mean of its outdegree and indegree.
Then from Theorem 2, we get immediately a version
of the theorem of Barankin.

Corollary 1. The entropy of a digraph is not larger
than the maximum of the logarithms of the capaci-
ties of its vertices.

Now we consider the following problem. For a
digraph G let us denote by |G| an undirected graph
that is obtained from G by replacing each arrow by
an edge. We assume that in G if there is an arrow
from a vertex v to a vertex u then there is no arrow
from u to v, so the graph |G| is simple (i.e. has
no multiple edges between a pair of vertices or self-
loops at a vertex).

Problem. For a given simple undirected graph H,
find

hdir(H) := max{h(G) : |G| = H}.
Lemma 1 and Corollary 1 provide a quick solu-

tion in the case when H is a k-regular graph (the
degree of each vertex of H is k) with k even.

Theorem 3. If H is a k-regular simple undirected
graph and k is even, then

hdir(H) = log
k

2
.

Proof. If G is any digraph with |G| = H, then
the capacity of every vertex of G is the geomet-
ric mean of two non-negative integers whose sum
is k. By the inequality between the geometric and
arithmetic means, we see that this capacity is not
larger than k/2, so by Corollary 1, h(G) ≤ log(k/2).
Thus, hdir(H) ≤ log(k/2).
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On the other hand, by the theorem stated by
Euler in 1736 and proved by Hierholzer in 1873,
since the degree of each vertex is even, there exists
an Eulerian circuit (a closed path that follows each
edge of H exactly once). When we follow it and
orient edges accordingly, we get a digraph G with
the indegree and outdegree of each vertex equal to
k/2. Now, by Lemma 1, h(G) = log(k/2). Thus,
hdir(H) ≥ log(k/2). �

In order to get a similar result for k odd, we
have to add an assumption that H is bipartite. This
means that the set of vertices of H can be divided
into two subsets, such that there are no edges join-
ing vertices from the same subset.

Theorem 4. If H is a k-regular simple bipartite
undirected graph and k is odd, then

hdir(H) = log
√
k2 − 1

2
.

Proof. If G is any digraph with |G| = H, then
the capacity of every vertex of G is the geomet-
ric mean of two non-negative integers whose sum
is k. Therefore, this capacity is not larger than
((k + 1)/2) · ((k − 1)/2) = (k2 − 1)/4, so by Corol-
lary 1, h(G) ≤ log(

√
k2 − 1/2). This proves that

hdir(H) ≤ log(
√
k2 − 1/2).

Since the graph H is bipartite, there exists a
partition of the set of vertices of H into two sets, X
and Y , such that every edge of H joins a vertex from
X with a vertex from Y . Since the degree of every
vertex of H is k, by Theorem 2 of [Lenard, 2001] (a
simple consequence of the Marriage Lemma), there
is a one-to-one function ϕ :X → Y , such that every
x ∈ X is joined by an edge with ϕ(x). Similarly,
there is a one-to-one function ψ :Y → X, such that
every y ∈ Y is joined by an edge with ψ(y). In
particular, the cardinalities of X and Y are equal,
so ϕ is also onto. When we erase all edges from x
to ϕ(x), we get a graph H ′ which is (k− 1)-regular.
Thus, as in the proof of Theorem 3, we can orient
the edges of H ′ in such a way that each vertex has
outdegree and indegree (k−1)/2. Now we orient the
removed edges of H to go from X to Y , and in such
a way we get a digraph G with |G| = H such that
all vertices from X have outdegree (k + 1)/2 and
indegree (k − 1)/2, while all vertices from Y have
outdegree (k − 1)/2 and indegree (k + 1)/2.

Let M be the transition matrix of G. Then M2

has row sums

k + 1
2

· k − 1
2

=
k2 − 1

4
,

so by (1), its spectral radius is (k2−1)/4. Thus, the
spectral radius of M is

√
k2 − 1/2. This proves that

hdir(H) ≥ log(
√
k2 − 1/2). �

5. Application to Biological Systems

Now we consider the question mentioned in the
Introduction: what is the maximal entropy of the
k-dimensional hypercube over all possible assign-
ments of directions of edges? This is our Problem
in the case when H is the 1-skeleton of the k-
dimensional hypercube. The results of the preceding
section give immediately the answer.

Theorem 5. If H is the 1-skeleton of the k-
dimensional hypercube then

(a) if k is even, then hdir(H) = log k
2 ;

(b) if k is odd, then hdir(H) = log
√

k2−1
2 .

Proof. The graph H is a k-regular simple undi-
rected graph, so in view of Theorems 3 and 4, the
only thing we have to prove is that if k is odd then H
is bipartite. To show this, we embed the hypercube
into R

k in a natural way, with vertices at {0, 1}k .
Then we divide the set of vertices into two sets,
according to whether the sum of coordinates of the
vertex is even or odd. The endpoints of each edge
differ exactly at one coordinate, so they belong to
different sets of the partition. This completes the
proof. �

6. Examples

In this section we provide two examples. The first
one shows that in Theorem 1 we do not get a lower
estimate of the spectral radius by the minimum of
Rp

iC
1−p
i , even for the matrices obtained from hyper-

cubes, as in Sec. 5.
Consider the graph from Fig. 1. Four lower ver-

tices have outdegree 2 and indegree 1, while four
upper vertices have outdegree 1 and indegree 2.
Thus, if p ∈ (0, 1), the values of Rp

iC
1−p
i are 2p and

21−p; all of them are positive. Nevertheless, all paths
either stay in the bottom and follow a period 4 cir-
cuit, or go to the top and there follow the period 4
circuit. Therefore, their number grows linearly with
the length of the path, so the entropy of the graph
is 0.
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Fig. 1. Entropy zero digraph with positive capacities.

The second example shows that the estimate
from Theorem 1 is stronger than its special case
with p = 1/2. Let M be the following matrix:




0 2 1 1
0 0 2 0
1 0 0 1
0 0 1 0


.

The row sums are 4, 2, 2, 1, and the column sums
1, 2, 4, 2. The numbers Rp

iC
1−p
i with p = 1/2 are 2,

2, 2
√

2,
√

2, so their maximum is

2
√

2 ≈ 2.828427125.

On the other hand, the numbers Rp
iC

1−p
i with p =

2/3 are 2 3
√

2, 2, 2 3
√

2, 3
√

2, so their maximum is

2 3
√

2 ≈ 2.519842100.

Of course, this is just an upper estimate; the spec-
tral radius of M is equal to the largest root of the
equation x3 − 2x − 5 = 0, that is, approximately
2.094551482. A similar but more complicated exam-
ple can be constructed on a hypercube.
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