
1

One–sample one–sided Student t test

under contaminants

Ryszard Zieliński

Summary. A paradoxical behavior of the t test under ε−contamination
is presented. The paradox consists in that under a fixed distribution
of contaminants an increasing of the probability of the appearance of a
contaminant may decrease the violation of the size of the test! A simple
explanation of the phenomenon is given. It is revealed which contami-
nants make the test conservative and which make it liberal: it appears
that, in spite of the established opinion, conservatism or liberalism of the
test depends not so much on the tails of the contaminating distribution
as on where its support is located.
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1. Introduction. The problem how does the Student t test behave
under nonnormal distributions is as old as the test itself. The prevailing
opinion is that the test is conservative for a sample from a long-tailed
distribution or, at least, that its conservatism or liberalism depends on
the tails of the parent distribution (as usual the conservatism means
that the size of the test, or the Type I error, is smaller than the assumed
significance level). The literature of the subject is abundant: see Hotelling
(1961), Efron (1969), Johnson (1978), Cressie (1980), Benjamini (1983)
for the most fundamental results.

The paper treats a somewhat different problem: we are interested in
how much is the size of the test changing if to a Gaussian sample some
contaminants are added. It appears that it is not long-tailedness but
rather the location of the contaminating distribution which makes the
test conservative or liberal.

Let X be a normally distributed random variable with an unknown vari-
ance and consider the problem of testing the hypothesis H : EX = 0
vs. K : EX > 0. Let X1, X2, . . . , Xn be a sample from the parent dis-
tribution N(0, 1); the cumulative distribution function of N(0, 1) will be
denoted as usual by Φ. Let

t =
X̄
S

√
n− 1,

where X̄ =
∑n

1 Xi/n, S2 =
∑n

1 (Xi−X̄)2/n, and, given a (small) positive
α, let k by the critical value of the one-sided Student t test:

Prob(t > k) = α.

Now suppose that the sample comes from (1− ε)Φ(x) + εF (x) for some
ε ∈ [0, 1/2], where F (x) is ”another distribution”. Our interpretation
of such situation is: X1, X2, . . . , Xn are independent; for every i =
1, 2, . . . , n, the observation Xi comes from the parent distribution Φ with
probability 1−ε or from the parent distribution F with probability ε. In
the latter case Xi is said to be a contaminant (other terms are also used
– see e.g. Beckman and Cook (1983)). Let

α(ε, F ) = Prob(t > k)
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be the Type I error when Xi is distributed according to (1 − ε)Φ + εF,
so that α(0, F ) = α(ε, Φ) = α for every ε and F. If F is a symmetric
distribution (i.e. F (x) = 1−F (−x)) then α(ε, F ) is the size of the t test
”under contaminants”. The distribution F represents the magnitude of
the contaminant and ε represents the amount of the contaminants in the
sample.

The aim of the paper is to demonstrate and to explain some peculiarities
concerned with the behavior of the function α(ε, F ) under fixed F .

2. Contamination Let us begin with the well known Tukey (1960)
choice of F (x) = Φ(x/σ), σ > 1. Results of 100,000 simulation experi-
ments for α = 0.01, α = 0.05, α = 0.1, σ = 12, and n = 10 are presented
in Fig. 1. All simulation results presented in the paper concern the case
that n = 10; for other values of n the results similar.

The results look rather strange: under a fixed distribution of contami-
nants an increasing of the probability of the appearance of a contaminant
may decrease the violation of the size of the test!

One can argue that if the contaminants do not differ substantially from
the proper observations (like in Tukey contamination where contami-
nants concentrate around zero) then the size of the test would not differ
substantially from the assumed value of the significance level, possibly
slightly oscillating around it when ε varies.

Consider the following model (”mean-shift model”) with the contaminat-
ing distribution F defined as follows:

(∗) Fµ(x) =
1
2
Φ(

x− µ
σ

) +
1
2
Φ(

x + µ
σ

)

For large µ this can be considered as a suitable model for ”true” out-
liers. It appears that under contamination (*) the Student t test behaves
similarly as under the Tukey contamination. Some numerical results for
µ = 24 and σ = 0.1, based on 100,000 simulations, are presented in Fig.2
which is designed in full analogy to Fig.1.

3. Fixed number of contaminants in the sample. Denote by
Pi(F ), i = 1, 2, . . . , n, the probability Prob(t > k) under exactly i con-
taminants with the distribution F. Then

α(ε, F ) =
n

∑

i=0

(

n
i

)

εi(1− ε)n−iPi(F ).
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It appears that for some i, (i+1) outliers influence the size of the test to a
lesser extent than i outliers do. As an example consider Pi(∗) for µ = 24
and σ = 0.1: some numerical results, based on 100,000 simulations, are
presented in Fig. 3.

4. The t statistic under contaminants Until now we have been dis-
cussing the behavior of some properties of the distribution of the statistic
t rather than the behavior of t itself. Suppose that one of the observations
X1, X2, . . . , Xn, say X1, is replaced by a contaminant, u say, and write
the t statistic in the form

t(u) =
1
n (u + s1)

√

1
n (u2 + s2)− [ 1

n (u + s1)]2

√
n− 1,

where s1 =
∑n

2 Xi and s2 =
∑n

2 X2
i . The shape of the function t(u),

−∞< u < +∞, is presented in Fig.4.

The fact that the function t(u) is bounded appears to play the crucial
role in the behavior of the t test under contaminants. The function t(u)
achieves its maximum (if s1 > 0) or its minimum (if s1 < 0) at u0 = s2/s1,
the extreme value being equal to

sign(s1) ·
√

(n− 1)(s2 + s2
1)/[(n− 1)s2 − s2

1].

If s1 = 0 (observe however that P{s1 = 0} = 0) then the function t(u)
increases and takes all its values in the interval (−1, 1). If s1 is close
to zero then the maximum of t(u) is close to 1 and every contaminant
makes the test conservative (if the critical value of the test is greater
than 1 which is a common case). If for a positive constant, say λ, s2/s1
is ”far to the left of λ” and the outlier u is ”far to the right of λ”, then
t(u) would not exceed the critical value and the test is conservative. On
the other hand if the distribution of contaminants is concentrated near
s2/s1 (if contaminants fall into interval (a, b) in Fig.5) then the test is
liberal. But s2/s1 is a random variable. Its distribution for n = 10, i.e.
the distribution of

∑n
2 X2

i /
∑n

2 Xi with Xi normal N(0, 1), is presented
in Fig. 6. Looking at Fig. 6 one can easily understand why the first
outlier (∗) with a large value of µ makes the test conservative. To see
why the second outlier makes the test liberal look at Fig. 7 where the
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distribution of s2/s1 with s2 = u2 +
∑n

3 X2
i , and s1 = u +

∑n
3 Xi (solid

line) is presented (here u is an (∗) outlier with µ = 24 and σ = 0.1 and
numerical results are based on 10,000 simulations): the first outlier shifts
s2/s1 to the right and the second outlier easily meets that value.

5. Heavy tails. Observe that t(u) → 1 as u → +∞ and t(u) → −1 as
u → −∞. It follows that if the critical value of the test is greater than
1 then a sufficiently large (positive) outlier makes the test conservative
(negative outliers always make the test conservative). If however the
critical value is less than 1 (which is a case of a rather theoretical interest)
than sufficiently large positive outlier make the test liberal.

6. Exactly one outlier in the sample. The results enable us to
answer the following question: what is the maximal size of the α-level
t-test when exactly one contaminant in the sample appears: we shall
denote that quantity by MS(α, n). The obvious answer is: it is equal to
the probability that s1 > 0 and t(u0) > k. After simple calculations we
obtain:

MS(α, n) = P
{

(n− 1)(s2 + s2
1)

(n− 1)s2 − s2
1

> k2(α, n) and s1 > 0
}

=
1
2
P

{

s2

s2
1

<
n− 1 + k2(α, n)

(n− 1)(k2(α, n)− 1)

}

=
1
2
P

{

F (n− 2, 1) <
n

(n− 2)(k2(α, n)− 1)

}

where F (n − 2, 1) is a random variable with F distribution with n − 2
and 1 degree of freedom. The values of MS(α, n) for some n and α are
given in the following table:

Significance level α
n

0.10 0.05 0.01
3 0.2627 0.1793 0.0784
5 0.2172 0.1204 0.0340

10 0.2088 0.1033 0.0230
20 0.2091 0.0987 0.0200
∞ 0.2114 0.0958 0.0178
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If n → ∞ then MS(α, n) → 1 − Φ
(

√

k2
α − 1

)

where kα = Φ−1(1 − α);
the appropriate asymptotic values are given in the last row of the above
table.
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