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ABSTRACT

Though widely used, the celebrated Kaplan-Meier estimator suffers from a
disadvantage: it may happen, and in small and moderate samples it often does,
that even if the difference between two consecutive times t1 and t2 (t1 < t2) is
considerably large, for the values of the Kaplan-Meier estimators KM (t1) and
KM (t2) at these times we may have KM (t1) = KM (t2). Although that is a gen-
eral problem in estimating a smooth and monotone distribution function from
small or moderate samples, in the context of estimating survival probabilities the
disadvantage is particularly annoying. In the paper we discuss a local smooth-
ing of the Kaplan-Meier estimator based on an approximation by the Weibull
distribution function. It appears that Mean Square Error and Mean Absolute De-
viation of the smoothed estimator is significantly smaller. Also Pitman Closeness
Criterion advocates for the new version of the estimator.
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INTRODUCTION

Let F(z),x > 0, be the cumulative distribution function (CDF) of time to
failure X of an item and let G(y),y > 0, be the CDF of random time to censoring
Y of that item. Let T'= min(X,Y), let I(A) denote the indicator function of the
set A, and let § = I(X <Y). Given ¢t > 0, the problem is to estimate the ”survival
probability” F(t) =1 — F(t) from the ”incomplete” ordered sample

(]-) (T1751)7 (T2752)7' ey (Tn75n)7 Tl S T2 S .. '7< Tn

The Kaplan-Meier (1958) estimator (K M), also called the product limit esti-

mator, is defined as

5 I(T; <t)
H?:1 (1——.1+1) , fort<T,
n—i
(2) KM(t) =
0, if 0,, = 1 for t > T
undefined, if §,, =0 o "

In the case of ties among the T; we adopt the usual convention that failures (§; = 1)

precede censorings (§; = 0). By the definition, KM estimator is right-continuous.
Efron (1967) modified the estimator defining his version K Me as
KM(t), if (¢t>1T, and d, =1)or (t <7, and 6 =0)
(3) KMe(t)=
0, otherwise

Gill (1980) proposed another modification, we shall refer to this version by K Mg,

as

KM(t), if (t>1T, and 6, =1)or (t <T),)

@) KMglt) = {KM(T ), otherwise
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To get some intuition concerning these versions and to illustrate our approach
we shall refer to the well know example from Freireich at al. (1963) - see also
Peterson (1983) or Marubini and Valsecchi (1995). The ”survival times” of 21

clinical patients were
(5) 6,6,6,6%,7,9%,10,10%,11%,13,16,17*,19%,20%, 22, 23, 25", 32", 32", 34", 35"

where * denotes a censored observation. Kaplan-Meier estimator for that data is

presented in Fig. 1, and Efron and Gill versions in Fig. 2.

A disadvantage of those estimators is that in small and moderate samples it
may happen, and it often does, that even if the difference between two different
times ¢; and ¢y (t; < t2) is considerably large, for the values of the Kaplan-
Meier estimators KM (t;) and KM(t3) at these times we may have KM (t1) =
K M(t2). For example, for the above data we have KM (17) = KM (20) = 0.627
and KM (25) = KM (33) = 0.448. It is really very difficult for a statistician to
explain to a practitioner why the probability to survive at least t = 25 is equal to
the probability of surviving at least ¢ = 33! The estimator we propose, denoted by
sKM, gives us sK M (17) = 0.6402, sK M (20) = 0.5824, sK M (25) = 0.5275, and
sK M (33) = 0.4465 (see Fig. 3) which obviously sounds more reasonably.

Another disadvantage of the Efron and Gill estimators is that they estimate the
survival probability beyond what one can reasonably conclude from the sample.
It is obvious that Efron guessing will be preferable for short-tailed distributions
("a pessimistic prophet”) and Gill for the fat-tailed distributions (”an optimistic
prophet”) but to reasonable choose between them one should restrict in a way the
original nonparametric model. For that reason we confine ourselves to the original

Kaplan-Meier version (2).
LOCAL WEIBULL SMOOTHING

Kaplan-Meier estimator is adequate for the nonparametric statistical model in
which the only assumptions concerning possible distributions of life time are their
continuity and strict monotonicity. There are some well known representatives of

that family of distributions:



— exponential E(\) with probability density function PDF o exp{—At}
— Weibull W (A, ) with survival probability W (t; A\, a) = exp{—At*}
— gamma I'(a, \) with PDF oc t*~ ! exp{—A\t})

— generalized gamma T'y(\, o, k) with PDF oc t%* =1 exp{—At®}

— lognormal logN (i, o)

— Gompertz Gom(A, a) with survival probability exp{A(1 — exp(at))}
— Pareto Par()\, a) with survival probability (1 + \t)~¢

— log-logistic logL(\, &) with survival probability 1/(1 + At%)

— exponential-power EP(\, o) with PDF oc exp{—At*}

to mention the most popular among them (e.g. Kalbfleisch and Prentice 1980,

Klein et al. 1990). Here ” oc means as usually ”proportional to”.

It is obvious that on a sufficiently short interval on the real half-line each of
them my be considered as a reasonably good approximation of any CDF from
the nonparametric family under consideration. We have chosen the Weibull tail
W (t; A, a) = exp{—At*} mainly because that gives us a simple algorithm of calcu-
lating the estimator: it is enough to perform logarithmic transformations of data
and apply the standard estimating procedure for A and B in the simple regression
model y = Ax + B.

On the other hand, the Weibull family {exp{—At“},A > 0,a > 0} of tails
appears to be sufficiently flexible to fit all typical survival distributions. E.g. the
maximal (for ¢ > 0) difference between survival probabilities under gamma I'(2, 1)
distribution and that under Weibull W (1.522,2.183) distribution is not greater
than 0.010 (see Tab. 1).

Having the local approximation in mind we proceed as follows. Let M > 1
be a positive integer and, for a given ”typical” survival distribution H, divide
the positive half-line into M disjoint intervals I(j) = [z((j — 1)/M),z(j/M)),
j=1,2,...,M, where x(3) = H1(f) is the Sth quantile (quantile of order 3) of



the distribution H. Let, for a fixed A and «,

mj(q) = max [H(t) = W(t; A, o)
tel(j)

It is obvious that, for a given H and € > 0, one can find M > 1, and for every
j=1,2,...,q, one can find X and «, such that m;(q) < e, j =1,2,...,¢. Tab.1
gives us the values m;(4), j = 1,2,3,4, for a set of representatives H. It appears
that if ¢ = 0.01 then M = 4 is enough large to ensure the local approximation

within the error of ¢.

If we are interested in estimating the survival probability P{X > t} for a
given t, there are two possibilities to smooth an empirical survival function (ESF)
"locally”. We may choose a ”small” positive number h > 0 and approximate ESF
by Weibull survival function on the interval (¢t — h/2,t 4+ h/2) ("a fixed window
width”). Or we may fix an integer m < n and approximate ESF on a random
closed interval [T, Ty+m—1] which contains m points ("neighbours” of ¢) with a

suitably chosen w (”a fixed number of neighbours”). We prefer latter.
THE ESTIMATOR

Let N —1 be the number of distinct elements of the sample (1) in which
d;i=1,i<n, and let i1,i2,...,iy—_1 be indexes of those elements. Let T{j = 0 and
define T} = T;,, Ty = T,,. Then KM (Tp) = 1 and KM (t),t < T),, has jumps at
points T}, j =1,2,..., N — 1, and only at these points. If §,, = 1, then also t = T;,
is a point of a jump of K M. We shall write Kaplan-Meier estimator in the form
of the sequence of pairs (7}, KM}),j =1,2,...,N), where

( KM(T)_,) + KM(T})
2 9

ifj=1,2,...,N—1

(6) KM/ =
KM(T,)/2 foré,=1
Cifj=N

KM(T,)  for 6, =0

Suppose we want to estimate survival probability P{X > t} at a point ¢. If
t > T,, and §,, = 0, our estimator, like the original Kaplan-Meier estimator (2), is

not defined. Otherwise we conctruct our estimator as follows.



First, choose € > 0 as a satisfactory level of the error of local approximation of
a survival probability by a Weibull tail and find M (see previous Section). Choose
m = [N/M] "neighbours” of the point ¢; here [x] is the greatest integer smaller or
equal to x. Observe that to fit a Weibull tail to m points, the numbe of points m
should not be smaller than 2.

If m = 2k is even, define
1, if t <1,
w=¢Jj—k+1, T, <. .<Tj<t<Tj,y<..,<Tju

N—m+1, ifTh o, <t

If m = 2k + 1 is odd, find T}. such that |T}. —t| < |T} —t|, j =1,2,...,N, and
define

1, if j* <k+1
w=1{ j*—k, ifh+1<j*<N—k
N-—m+1, if N—k<j*

Take T,,, T}, 1,---T,y4m_1 as neighbours of the point ¢. Then fit a Weibull tail
exp{—At®} to them. To this end ”linearize the tail” by introducing auxiliary vari-

ables

xj =log(KM;), y; =log(=logT;), j=w,w+1,...,w+m—1
and estimating regression coefficients A and « in

y=A+ax

where A = log \. Finally, if (A, &) are estimators of those coefficients and A =
exp{A}, estimate survival probability P{X > ¢} by
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(7) S(t) = exp{—At}

Like the original Kaplan-Meier estimator KM, the smoothed estimator (7) is
difficult for theoretical analysis. It is however obvious that for large n and in
consequence for large N (if the probability of censoring is not growing with n),
and for m = m(N) suitably growing with m/N bounded, the estimator S(t) will
behave like KM. In an asymptotic setup one can hardly expect new interesting

results.

In small and moderate samples the smoothed estimator may considerably differ
from the original one, in such situations however general theoretical conclusions
seem to be impossible. Simulation studies (next Section) demonstrates that the

proposed smoothing really improve estimation.
A SIMULATION STUDY

To compare estimators on a given set of r time-points t1,ts, ..., ¢, we decided
to choose points of the form t; = z4,(H) = H~1(q;) with fixed q1,¢2,...,¢
rather than with fixed tq,to,...,t,. because whatever the parent distribution H
the estimators at a given point x,(H) always estimate the value ¢. For example,
if r =3 and ¢3¢ = 0.25,¢q2 = 0.5,q3 = 0.75, when studying the behaviour of
our estimators under the exponential distribution with PDF proportional to e~
we observe their values at points 0.288,0.693,1.386 while under the lognormal
logN (0,1) distribution at points 0.509,1.0,1.963. In both cases however what we

estimate are the survival probabilities equal to 0.75,0.5,0.25, respectively.

In all simulation studies presented below, due to our numerical experiments,
we decided to choose m = max{[N/M],3}. All results presented in the tables and

figures are based on 10,000 simulations.

Let MSFEkn(q, F,G) denote the mean square error of the Kaplan-Meier es-
timator at the point ¢ = z,(F) if the sample comes from the distribution F
and G is the censoring distribution. Similar notation MSFExn (g, F,G) we ap-
ply to the smoothed version sK M of the Kaplan-Meier estimator. Analogically,

7



MADgk (g, F,G) denotes the mean absolute deviation of the Kaplan-Meier esti-

mator, etc.

Let PCC(q, F,G) denote the Pitman Closeness Criterion (see Keating et al.
1993) for both estimators at the point ¢t = x,(F) if F is the survival distribution

and :

PCC(q, F,G) = Pra{|sKM(t) = g)| < [KM(t) - q)|}

If PCC(q,F,G) > 0.5 then sKM prevails in the sense that the absolute error of
this estimator is smaller than that of KM more often than it is larger.
MSESKM(qa F7 G)

distributions. Table 3 gives us those values for M AD, and Table 4 the values of

PCC.

Table 2 gives us ratios for some survival and censoring

Fig. 4 exhibits MSFE i (q, F,G), MADk (g, F,G)), and PCC at the whole
range of ¢ € (0, 1) for the case where the samples of size 20 or 50, respectively, come
for the Weibull F' = W(1,2) distribution and censoring is exponential G = E(2).
The results presented in Fig. 4 are typical for all the results we obtained under
other pairs (F, G).

ADDITIONAL COMMENTS

1. Our simulations suggest that the bias of sK M is smaller than that of KM
but we were not able to find a regularity in that. Whatever however the bias and
the variance, with respect to MSE and M AD smoothed sK M is better than the
original K M.

2. Sufficiently far to the right, the original Kaplan-Meier estimator in all simu-
lations gives the values zero. It follows that ”practically”, for large ¢, it’s variance

is equal to zero. That of course is not the case for sK M.

3. In our simulations we were also interested in M SE and other characteristics
of the estimators under consideration if there is no censoring. For every ¢ € (0, 1)

the Kaplan-Meier estimator is then unbiased and is variance at the point x,(F) is
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equal to ¢(1 — ¢)/n. It is interesting to observe (Fig. 5) that sometimes censoring

can improve M SE. On a paradox of this kind see Csorgé et al. (1998).

4. A disadvantage of the smoothed estimator consists in that it may happen,
and sometime it does (see Fig. 6), that sKM (t1) < sKM (t2) though t; < to. It
may happen if ¢; has a value close to the upper bound of the interval of those t,
which are estimated by smoothing the points at 77,7, _,... and ¢ is close to
the lower bound of the interval of those ¢, which are estimated by smoothing the
points at T}, 1,7}, ;- -.. The problem is that what we propose is not a global
smoothing of the Kaplan-Meier estimator, but a local smoothing for estimating
survival probability at a given point ¢, for each ¢ separately. A kind of adjustment
of estimators at two adjacent points is however needed but as yet we do not how

to approach the problem.
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Tab. 1

max |H (t) — W (t;\,0)|

H

(0, +00) (0,z(1/4)) |(z(1/4),x(1/2))|(x(1/2), x(3/4))| (x(3/4),+00)

r'(2,1) |W(1.522,2.183)|W(0.983,1.779)| W (0.700, 1.290) | W (0.700, 1.028) | W (0.850, 0.755)
0.010 0.006 0.004 0.004 0.007

I'y(1,2,2)| W(0.30,3.08) | W(0.31,3.45) |W(0.309,3.112)| W (0.33,2.89) | (0.335,2.748)
0.0138 0.0016 0.0022 0.0023 0.0018

logN (0, 1)| W (0.612, 1.190) | W (0.899, 1.699) | W (0.700, 1.295) | W (0.700, 1.028) | W (0.814, 0.800)
0.0423 0.0073 0.0041 0.0036 0.0049

Gom(1,1) | W (1.803,1.390) | W (1.300, 1.092) | W (1.493, 1.204) | W (1.679, 1.392) | W (1.737, 1.652)
0.0294 0.0025 0.0022 0.0030 0.0040

Par(1,2) | W(1.25,0.73) | W(1.70,0.953) | W(1.55,0.905) | W (1.398,0.789) | W (1.397, 0.620)
0.0380 0.0012 0.0027 0.0029 0.0063

logL(1,1) | W (0.631,0.655) | W (0.800, 0.925) | W (0.700, 0.800) | W (0.700, 0.635) | W (0.920, 0.398)
0.0400 0.0016 0.0034 0.0050 0.0094

EP(1,2) |[W(1.907,1.301) | W (1.351,1.045) | W (1.699,1.201)| W (1.8,1.29) |W(1.862,1.448)
0.0216 0.0023 0.0034 0.0021 0.0020




Tab. 2

Distrib. | Distrib. | ¢ = 0.75 q = 0.50 q=0.25 q=0.10
of of n n n n
survival [censoring |10 [ 20 |50 [10 |20 [50 [10 |20 |50 |10 |20 |50

E(1) E(0.5) (0.810.84/0.84 (0.7910.84 |0.83 [0.66 {0.72 |0.71 [0.62 |0.61 |0.58
E(1) E(1) (0.78]0.84/0.84|0.89 (0.80 0.80 [0.57 0.65 [0.67 [0.68 [0.67 [0.55
E(1) E(2) 0.74]0.79/0.84|0.58 |0.70 [0.74 |0.53 [0.61 |0.58 [0.78 |0.74 [0.57
E(2) E(1) (0.81/0.85/0.831(0.79(0.84 0.83 |0.67 0.73 0.72|0.63 [0.61 [0.60
E(2) E(2) (0.78]0.85(0.84 |0.70 (0.80 [0.81 [0.57 0.65 [0.67 [0.67 [0.65 [0.56
E(2) E(3) [0.75/0.81/0.850.61 [0.73 [0.74 |0.52 0.63 [0.61 [0.72 [0.72 [0.59
W(1,2) E(0.5) [0.780.84 0.820.77/0.84 10.83 [0.67 [0.77 |0.74 /0.59 [0.61 |0.61
W(1,2) E(1) 10.740.81|0.82|0.68 [0.78 |0.80 [0.55 0.65 |0.68 |0.60 0.60 [0.55
W(1,2) E(2) 0.75/0.7310.830.60 [0.60 [0.79 |0.49 0.53 |0.69 [0.63 [0.64 [0.57
Gom(1,1) | E(0.5) 1|0.820.83(0.82|0.81 0.840.84{0.69 [0.77 0.77 0.55 [0.56 |0.55
Gom(1,1) E(2) 1[0.780.82(0.84/0.61 [0.73|0.78 |0.48 [0.55 |0.55 [0.68 [0.60 [0.51
Gom(1,1) E(3) 0.79/0.74/0.820.54 [0.59 [0.70 |0.47 0.51 [0.53 |0.83 [0.79 0.61
Gom(2,1) E(1) (0.82]0.83(0.830.80 (0.85 [0.84 [0.67 0.76 |0.74 [0.55 0.55 [0.54
Gom(2,1) | E(2.5) 1[0.78]0.84 (0.85|0.68 0.78 [0.82 |0.54 0.61 [0.62 [0.64 |0.58 [0.51
Gom(2,1) E(4) (0.78]0.81/0.84|0.60 [0.72 [0.74 |0.48 0.57 [0.57 |0.73 |0.65 [0.55
Par(2,2) E(1) (0.83]0.83/0.84|0.81 (0.85 [0.84 |0.74 0.76 [0.73 0.72 [0.71 [0.72
Par(2,2) E(3) (0.78]0.87/0.86(0.73 0.81 [0.79 |0.66 0.73 [0.74 [0.77 |0.73 [0.59
Par(2,2) E(5) [0.75]0.84/0.85|0.66 [0.76 [0.75 |0.61 0.66 [0.64 [0.80 [0.73 [0.60
Par(2,3) E(2) (0.82]0.85(0.83|0.81|0.84 [0.84 |0.75 [0.74 |0.72(0.74 [0.68 [0.67
Par(2,3) E(4) (0.81/0.87/0.84(0.75(0.82 (0.81 |0.65 0.70[0.73 |0.75 0.72 0.59
Par(2,3) E(8) 0.77]0.85(0.85|0.66 [0.77 [0.75 |0.60 0.68 [0.63 [0.90 [0.77 [0.59
LogL(5,10) | E(0.5) [0.76(0.84/0.820.83|0.85 [0.84 [0.79 0.82/0.77 |0.75 0.81 [0.89
LogL(5,10) | E(1) [0.66(0.80(0.820.77(0.81 [0.84 |0.76 0.81 [0.76 |0.72 |0.73 [0.83
LogL(5,10) | E(2) [0.67/0.67(0.7910.72(0.73 [0.80 0.72 0.71 |0.77 |0.68 [0.70 [0.75
LogN(0,1) |E(0.125) [0.81|0.84 /0.85|0.83|0.86 [0.84 [0.76 [0.77 |0.72{0.73 |0.68 [0.74
LogN(0,1) | E(0.75) [0.73]0.84/0.85|0.73(0.79 [0.80 |0.65 [0.72|0.73 |0.74 [0.73 [0.60
LogN(0,1) | E(2) [0.73]0.71/0.820.65 (0.66 [0.74 |0.71 0.64 |0.66 [0.86 [0.79 [0.75




Tab. 3

Distrib. | Distrib. | ¢ = 0.75 q = 0.50 q=0.10
of of n n

survival [censoring | 10 [ 20 |50 |10 |20 |50 50
E(1) E(0.5) (0.890.92(0.92(0.89 0.92 [0.91 0.75
E(1) E(1) (0.88]0.92(0.92(0.83(0.90 [0.89 0.68
E(1) E(2) (0.86(0.89(0.91|0.76 [0.84 [0.86 0.67
E(2) E(1) (0.89/0.92/0.91{0.89(0.92 (0.91 0.77
E(2) E(2) (0.88]0.92(0.92(0.84 (0.89 [0.90 0.68
E(2) E(3) (0.85/0.90(0.92(0.78 [0.85 [0.86 0.65
W(1,2) E(0.5) [0.880.91(0.91/0.8810.92(0.91 0.79
W(1,2) E(1) 10.850.90(0.91 0.82 [0.89 0.89 0.72
W(1,2) E(2) (0.87]0.85(0.91(0.75(0.78 [0.88 0.74
Gom(1,1) | E(0.5) 1(0.890.91(0.91 0.90 [0.92 [0.92 0.74
Gom(1,1) E(2) 10.870.901(0.92/0.77 [0.86 [0.88 0.65
Gom(1,1) E(3) (0.91/0.85(0.901(0.72 (0.76 [0.84 0.69
Gom(2,1) E(1) 0.90/0.91/0.91|0.89 (0.92 [0.92 0.73
Gom(2,1) | E(2.5) 1(0.87/0.91(0.92|0.82 (0.89 (0.90 0.67
Gom(2,1) E(4) (0.87]0.90(0.92(0.77 (0.85 [0.86 0.65
Par(2,2) E(1) 0.90/0.92/0.92(0.91 [0.93 [0.92 0.84
Par(2,2) E(3) 0.88]0.93(0.920.86 (0.90 [0.84 0.67
Par(2,2) E(5) (0.85/0.91(0.920.83|0.88 [0.87 0.68
Par(2,3) E(2) (0.89/0.93/0.91{0.90(0.92 |0.91 0.82
Par(2,3) E(4) 0.89]0.93/0.92(0.86 (0.91 [0.90 0.70
Par(2,3) E(8) 0.86(0.92(0.92|0.82 (0.88 [0.86 0.66
LogL(5,10) | E(0.5) [0.881(0.92(0.91|0.71{0.92 0.91 0.95
LogL(5,10) | E(1) 0.81]0.90(0.91|0.88(0.90 [0.92 0.92
LogL(5,10) | E(2) |0.81]0.81(0.89(0.83(0.85 [0.90 0.82
LogN(0,1) |E(0.125) [0.89(0.92(0.92|0.91 [0.93 [0.91 0.86
LogN(0,1) | E(0.75) [0.87]0.92/0.92|0.86 [0.89 [0.90 0.70
LogN(0,1) | E(2) |0.85]0.84/0.91(0.79 (0.82 [0.86 0.80




Tab. 4

Distrib. | Distrib. | ¢ = 0.75 q = 0.50 q=0.25 q=0.10
of of n n n n
survival [censoring |10 [ 20 |50 [10 |20 [50 [10 |20 |50 |10 |20 |50

E(1) E(0.5) (0.6310.59 |0.59 [0.59 |0.59 |0.60 [0.65 |0.62 [0.62 [0.85 |0.75 |0.66
E(1) E(1) (0.61/0.580.60(0.61 [0.58 [0.61 |0.71 0.63 [0.61 [0.87 [0.82 [0.75
E(1) E(2) (0.60/0.59 [0.60 0.64 [0.57 [0.60 |0.86 0.73 [0.64 [0.91 [0.91 [0.93
E(2) E(1) 0.63]0.59(0.60 |0.58 [0.59 [0.60 |0.64 0.62 [0.62 |0.84 [0.74 [0.63
E(2) E(2) (0.61]0.59(0.60 |0.60 [0.59 [0.60 [0.71 0.63 [0.61 [0.87 [0.84 [0.76
E(2) E(3) 0.600.59(0.60 |0.62 [0.58 [0.61 |0.83 0.67 [0.62 |0.91 [0.90 0.91
W(1,2) E(0.5) [0.61 (0.60 0.60 |0.59 [0.60 |0.60 [0.65 [0.61 0.62 |0.84 |0.73 [0.64
W(1,2) E(1) 10.620.60 |0.60 |0.61 [0.59 |0.61 |0.73 0.65 [0.63 |0.87 [0.81 0.70
W(1,2) E(2) (0.62/0.61/0.61|0.69 [0.62 [0.60 |0.86 [0.75 [0.64 [0.89 [0.86 [0.71
Gom(1,1) | E(0.5) [0.53(0.59 [0.64 0.58 0.59 [0.59 |0.64 [0.61 [0.59 |0.82 [0.72 (0.67
Gom(1,1) E(2) 10.590.58 |0.60 |0.64 [0.59 |0.61 |0.78 [0.68 |0.65 |0.84 0.85 0.79
Gom(1,1) E(3) (0.5810.60 |0.60 |0.70 0.60 [0.59 |0.92 0.80 [0.69 {0.86 [0.83 [0.87
Gom(2,1) E(1) 0.620.60 [0.60 |0.58 |0.58 [0.59 [0.64 0.62 |0.61 [0.84 0.73 [0.67
Gom(2,1) | E(2.6) 1[0.61/0.59(0.60 |0.61 [0.59 [0.60 [0.72 0.65 [0.64 [0.85 |0.84 (0.73
Gom(2,1) E(4) 0.590.59 [0.60 |0.63 0.60 [0.61 |0.81 0.69 [0.64 [0.85 |0.87 [0.84
Par(2,2) E(1) (0.63]0.5810.59(0.57 (0.58 [0.59 |0.62 0.61 [0.61 |0.78 |0.69 [0.60
Par(2,2) E(3) (0.61/0.590.60(0.59 (0.58 [0.61 |0.66 0.58 [0.57 [0.92 |0.89 [0.86
Par(2,2) E(5) (0.61/0.58(0.59(0.59 0.58 [0.60 [0.79 0.96 [0.60 |0.96 [0.96 [0.97
Par(2,3) E(2) (0.64/0.57/0.60 |0.58 [0.59 [0.60 |0.63 0.61 [0.61 [0.81 [0.71 [0.61
Par(2,3) E(4) (0.67]0.58(0.60 |0.60 [0.58 [0.60 [0.60 0.60 [0.59 [0.82 |0.82 [0.74
Par(2,3) E(8) (0.60/0.59 0.60 |0.60 [0.57 [0.61 [0.79 0.64 |0.60 [0.94 [0.95 [0.94
LogL(5,10) | E(0.5) [0.59(0.58(0.59(0.57 (0.59 [0.59 [0.63 0.61 [0.61 |0.90 [0.64 [0.55
LogL(5,10) | E(1) [0.65(0.59(0.59 |0.60 0.58 [0.60 |0.66 0.61 [0.62 |0.86 0.74 [0.59
LogL(5,10) | E(2) [0.65(0.65(0.61 |0.66 [0.62 [0.58 [0.74 0.69 [0.62 0.92 [0.88 [0.75
LogN(0,1) |E(0.125) [0.62/0.59 [0.59 |0.57 [0.58 [0.59 |0.62 [0.61 [0.62 |0.80 |0.69 [0.59
LogN(0,1) | E(0.75) [0.60/0.58 0.59 |0.60 [0.59 [0.61 |0.68 0.59 [0.58 [0.91 0.85 [0.79
LogN(0,1) | E(2) [0.63]0.61/0.59(0.71(0.57 [0.56 [0.95 [0.86 [0.70 [0.99 [0.99 [0.98




0.5
0.0 T T T T T T

67 10 13 16 2223 35

Fig.1 The Kaplan-Meier estimator /X M
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Fig.2 The Efron’s and Gill’s versions of the Kaplan-Meier estimator
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Fig. 3. Locally smoothed Kaplan-Meier estimator
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Fig. 4 Simulated M SE, M AD and PCC for the Kaplan-Meier estimator
and the smoothed estimator. Sample comes from W(l.O, 2.0),

random censoring from E(?)
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Fig.5. Simulated M SE of the Kaplan-Meier estimator and the smoothed estimator
in comparison with variance of the empirical distribution function EDF = Kaplan — M eierwithoutcensoring.
Sample comes from Gom(l, 1), random censoring from E(Q)
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Fig.6. Kaplan-Meier and locally smoothed Kaplan-Meier estimators
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