A SIMPLE IMPROVEMENT OF THE KAPLAN-MEIER ESTIMATOR
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ABSTRACT

Though widely used, the celebrated Kaplan-Meier estimator suffers from a
disadvantage: it may happen, and in small and moderate samples it often does,
that even if the difference between two consecutive times t1 and t2 (t1 < t2) is
considerably large, for the values of the Kaplan-Meier estimators KM (t1) and
KM (t2) at these times we may have KM (t1) = KM (t2). Although that is a gen-
eral problem in estimating a smooth and monotone distribution function from
small or moderate samples, in the context of estimating survival probabilities the
disadvantage is particularly annoying. In the paper we discuss a local smooth-
ing of the Kaplan-Meier estimator based on an approximation by the Weibull
distribution function. It appears that Mean Square Error and Mean Absolute De-
viation of the smoothed estimator is significantly smaller. Also Pitman Closeness
Criterion advocates for the new version of the estimator.
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INTRODUCTION

Let F(z),x > 0, be the cumulative distribution function (CDF) of time to
failure X of an item and let G(y),y > 0, be the CDF of random time to censoring
Y of that item. Let T'= min(X,Y), let I(A) denote the indicator function of the
set A, and let 6 = I(X < Y). Given ¢t > 0, the problem is to estimate survival
distribution function (SDF) F(t) = 1— F(t) from the ”incomplete” ordered sample

(1) (T1,01), (T2, 02), ..., (Tn,0n), T1 <To <...<T,

The Kaplan-Meier (1958) estimator (K M), also called the product limit estimator,

is defined as

5 I(T:<t)
H?:l (1_—n—;—|—1) , fort <T,
(2) KM(t) =
0, if5, =1 R
T n
undefined, if 8, =0 ©

In the case of ties among the T; we adopt the usual convention that failures (§; = 1)

precede censorings (§; = 0). By the definition, KM estimator is right-continuous.

Efron (1967) modified the estimator defining KM (t) = 0 where originally
it was not defined; Gill (1980) proposed another modification with KM(t) =
KM(T,), where the Kaplan—Meier estimator in its original version was not defined
(i.e. for t > T,, when 4,, = 0).

To get some intuition concerning these versions and to illustrate our approach
we shall refer to the well know example from Freireich at al. (1963) - see also
Peterson (1983) or Marubini and Valsecchi (1995). The ”survival times” of 21

clinical patients were
(3) 6,6,6,6%,7,9%,10,10%,11%,13,16,17%,19%,20%, 22, 23, 25", 32", 32*, 34", 35"

where * denotes a censored observation. Kaplan-Meier estimator for that data is

presented in Fig. 1.
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Fig.1. Kaplan-Meier estimator for data (3)

A disadvantage of those estimators is that in small and moderate samples it
may happen, and it often does, that even if the difference between two different
times t1 and to (t; < tg) is considerably large, for the values of the Kaplan-Meier
estimators K M (t;) and K M (t2) at these times we may have KM (t1) = KM (t2).
For example, for the above data we have KM (17) = KM(20) = 0.627 and
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Fig.2. Estimated values (dots) of estimator S> for data (3)

KM(25) = KM (33) = 0.448. It is really very difficult for a statistician to explain
to a practitioner why the probability to survive at least ¢ = 25 is equal to the

probability of surviving at least ¢ = 33! The estimator we propose, denoted by S5,



gives us S5(17) = 0.6451, S5(20) = 0.6065, S2(25) = 0.4842, and S»(33) = 0.4545

(see Fig. 2) which obviously sounds more reasonably.

Another disadvantage of the Efron and Gill estimators is that they estimate the
survival probability beyond what one can reasonably conclude from the sample.
It is obvious that Efron guessing will be preferable for short-tailed distributions
(”a pessimistic prophet”) and Gill for the fat-tailed distributions (”an optimistic
prophet”) but to reasonable choose between them one should restrict in a way the
original nonparametric model. For that reason we confine ourselves to the original

Kaplan-Meier version (2).

LOCAL WEIBULL SMOOTHING

Kaplan-Meier estimator is adequate for the nonparametric statistical model in
which the only assumptions concerning possible distributions of life time are their
continuity and strict monotonicity. There are some well known representatives of

that family of distributions:

— exponential F(\) with probability density function PDF oc exp{—At}
— Weibull W (A, ) with SDF W (t; A\, a) = exp{—At*}
— gamma ['(\, @) with PDF oc t*"texp{—At})
— generalized gamma T'y(\, o, k) with PDF oc t%* =1 exp{— At}
— lognormal logN (p, o)
— Gompertz Gom(\, a) with SDF of the form exp{\(1 — exp(at))}
— Pareto Par()\, «) with SDF equal to (1 4+ \t)~¢
— log-logistic logL(\, &) with SDF 1/(1 + \t%)
— exponential-power EP(\, o) with PDF oc exp{—At“}
to mention the most popular among them (e.g. Kalbfleisch and Prentice 1980,

Klein et al. 1990). Here oc means as usually ”proportional to”.

It is obvious that on a sufficiently short interval on the real half-line each of
them may be considered as a reasonably good approximation of any distribution
function F' from the nonparametric family under consideration. To approximate
the tail F' = 1—F we have chosen the Weibull tail W (t; \, o) = exp{—At*} mainly
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because that gives us a simple algorithm of calculating the estimator: it is enough
to perform a suitable logarithmic transformations of data and apply the standard

estimating procedure for A and B in the simple regression model y = Az + B.

1.00

§+q

Fig.3. SDF (solid line) and its local Weibull
approximation on A(E, q) (dotted line)

On the other hand, the Weibull family {emp{—)\to‘},)\ > 0, > O} of tails
appears to be sufficiently flexible to locally fit all typical survival distributions. To
see that take any CDF F and its SDF F =1 — F, fix ¢ € (0,1), and consider the
family of all intervals [£,€ + ¢), 0 < & < 1 — q. For a fixed £ € [0,1 — ¢] denote by
A(&, q) the interval [F~1(€ + q), F~1(£)] on the real halfline (Fig.3). Let

— mi F(t) —W(t: A
pr (€, q) gggtggigwl () (t; N, @)

The quantity pr(€, q) tells us how good is the best Weibull approximation of the
SDF F on the interval A(¢,q). It is obvious that for every ¢ > 0 one can find a
sufficiently small ¢ such that

pr(g) = max pp(€q)<e
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Observe that pp(1) is the error (in the ”sup—norm”) of approximation of F' by
the best Weibull CDF on the whole positive halfline. Numerical values of pp(q)

for some ¢ and for a number of representatives F' are given in Tab.1.

Tab.1

pr(q)

g=1 |¢g=0.10{¢g=0.20|g =0.25|¢q = 0.30|¢ = 0.50

I'(1,2) |0.0115 | 0.0006 | 0.0018 | 0.0021 | 0.0026 | 0.0097

logN(0,1)|0.0381 | 0.0018 | 0.0043 | 0.0058 | 0.0075 | 0.0162

Gom(1,1)]0.0219 | 0.0011 | 0.0027 | 0.0036 | 0.0046 | 0.0102

Par(1,2) |0.0222 | 0.0021 | 0.0044 | 0.0057 | 0.0070 | 0.0127

logL(1,1) |0.0389 | 0.0031 | 0.0066 | 0.0087 | 0.0110 | 0.0218

EP(1,2) |0.0151 | 0.0005 | 0.0013 | 0.0019 | 0.0062 | 0.0063

Now the idea of an estimator is: choose ¢ which gives us a satisfactory level
of the error of approximation of any F' from a family under consideration and, to
estimate survival probability at a point ¢, smooth the Kaplan—Meier estimator in

a vinicity of ¢, which contains 100q per cent of sample points.

THE ESTIMATOR

Let N —1 be the number of distinct elements of the sample (1) in which
d;=1,i<n, and let iy,i2,...,ixy—_1 be indexes of those elements. Let T{; = 0 and
define T} = T;; and Ty = T),. Then KM(T) = 1 and KM (t),t < T}, has jumps
at points ij,j =1,2,...,N — 1, and only at these points. If §,, = 1, then also
t =T, is a point of a jump of K M. We shall write Kaplan-Meier estimator in the
form of the sequence of pairs (T}, KM}),j = 1,2,..., N), where

(( KM(T!_y) + KM(T))
2 )

ifj=1,2,...,N—1

(4) KMj =
{KMUHQ for 6, =1

L ifj=N
KM(T,) for 6, =0
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For data (3) we have N = 8 and (6,0.929), (7,0.832), (10,0.780), (13,0.722),
(16,0.659), (22,0.583), (23,0.493), and (35,0.448).

Suppose we want to estimate survival probability P{X > t} at a point ¢. If
t > T, and §,, = 0, our estimator, like the original Kaplan-Meier estimator (2), is

not defined. Otherwise we conctruct our estimator as follows.

The smallest number of points to fit a two-parameter Weibull curve W (t; A, ) =
exp{—At®} equals 2. Let us begin with construction of an estimator based on two

consecutive observations ij.

It follows from Tab.l that, for example, the maximal error of the local ap-
proximation of log N(0,1) distribution on each interval that contains 100g = 25
per cent of the population equals 0.0058 and that for no representative distribu-
tion the error exceeds 0.01. If we accept that level of the error of approximation
as satisfactory, we may agree to base our estimation on two consecutive observa-
tions T _,, T}, such that 7}, <t < T}, whenever two observations make no more
than 25 per cent of the sample, i.e. whenever N > 8, and estimate the survival
probability at ¢ by the value W (t; A\, ) with A and « chosen in such a way, that
W(T]|_;; A\ ) = KM _, and W(T}; N\, o) = KM,

Generally: if, to control the error of local approximation we have decided to
choose g, we may believe that whenever N > 2/q, the error of the estimator based
on two consecutive observations would not exceed maxp g (q). (The total error
of the estimator, that includes the error of estimation of an unknown SDF by a
Weibull tail, a systematic error caused by censoring, and a random error of the

sample, is of course greater.) This leads us to the following estimator Sy(t):

(5) Sa(t) = exp{—exp(Y)}
where
( Yo -V, .
Yi+——(X-X Ty <t<T!
1+X2—X1( 1), Iilysts 1y
Yi —Yea .
v _ Yk_l—i_Xk—qu (X — Xk—1), if 7, | <t <T, <Ty
Yy — Yn_
YN_1+M(X—XN_1>, ift>T]’Vand5N:1
XN —XnN1
L undefined ift > Ty and oy =0




and
X; = log(T;), Y; = log(—log(KMJ{)), X =logt

The estimator is presented in Fig.4.

1.00 —
0.75 —

0.50 —

0.25 —

0 T I I I . I
67 10 13 16 2293 35

Fig.4. Kaplan-Meier and S> estimators for data (3)

One may expect that the estimator based on m > 2 neighbours of ¢ would be
more smooth and more exact. It is really so but a flaw of this estimator makes
a difficulty in its practical applications. Let us begin with a construction of such

estimator.

First, choose ¢ > 0 as a satisfactory level of the error of local approximation
of a survival probability by a Weibull tail and find ¢ (see previous Section). Then,
by arguments as above, take m = [¢/N]|. We should obtain m > 2. If that is not the
case, we are not able to estimate survival probability at ¢ within the prescribed

accuracy ¢ of local approximation of SDF by a Weibull tail.

If m = 2k is even, define

1, ift <17y
w=¢j—k+1, T, <. .<Tj<t<Tj,y<..,<Tj
N-—m+1, ifTh . <t



If m = 2k + 1 is odd, find T}. such that |T}. —¢| < [T} —t[, j =1,2,...,N, and
define

1, if j* <k+1
w={ j* —k, ifk+1<j*<N—k
N-—m+1, if N—k<j*

Take T, Ty 1s---Tyypm—1 as neighbours of the point t. Then fit a Weibull tail
exp{—At®} to them. To this end "linearize the tail” by introducing auxiliary vari-

ables
T = log(KMj’-), yj = log(—logTJ{), j=w,w+1,...,w+m—1
and estimating regression coefficients A and « in
y=A+ax

where A = log \. Finally, if (A, &) are estimators of those coefficients and A\ =
exp{A}, estimate survival probability P{X > ¢} by

(6) Sign () = exp{—AtY}

As it was expected, the estimator based na m > 2 points is more accurate (see
next Section), however a disadvantage of the smoothed estimator based on m > 2
points consists in that it may happen, and sometime it does (see Fig.5), that
sKM(t1) < sKM(ty) though t; < to. It may happen if t; has a value close to
the upper bound of the interval of those ¢, which are estimated by smoothing the
points at Ty, Ty ,1,... and 5 is close to the lower bound of the interval of those
t, which are estimated by smoothing the points at T}, |, T} ,5,.... In that case a
kind of adjustment of the estimator at two adjacent points is needed but as yet

we do not how to approach the problem.

Like the original Kaplan-Meier estimator KM, the smoothed estimators (5)
and (6) are difficult for theoretical analysis. It is obvious that for large n and
in consequence for large N, the estimators will behave like KM, however in an

asymptotic setup one can hardly expect new interesting results.
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Fig.5. Kaplan-Meier and Sjg.25n] estimators for data (3)

In small and moderate samples the smoothed estimator may considerably differ
from the original one, in such situations however general theoretical conclusions
seem to be impossible. Simulation studies (next Section) demonstrates that the

proposed smoothing really improves estimation.

A SIMULATION STUDY

We have chosen ¢ = 0.25. To compare the estimators for a fixed time-to-failure
distribution F' and for a fixed censoring distribution G, we generated n indepen-
dent observations X1,...,X,, from F' and n independent observations Y7,...,Y,
from G. Next we calculated the ordered sample of the form (1) and the Kaplan-
Meier estimator in the form (4). If N < 8, the sample was rejected. We continued
simulation until we observed the prescribed number L of samples. In all simu-
lations we assumed L = 10,000. For a given p € (0,1) we estimated survival
probability by the Kaplan-Meier estimator KM (t) and by estimators So(t) and
Sio.25n1(t) for ¢ = F~'(p). For each estimator, we calculated Mean Squar Er-
ror (MSE) and Mean Absolute Deviation (MAD). As it was expected, for large
sample sizes the estimators do not differ substantially and in small samples esti-
mators So and Sjg 25n] prevail. In an exhaustive simulation study we found
that 0.47 < MSE(Sp.o5n)/MSE(KM) < 0.89 with the lower bound 0.47
observed for Gompertz Gom(1,1) distribution as F' and exponential dis-

tribution E(3) as G, both for samples n = 10, which means that mean
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F =1ogN(0,1),G = E(0.25)
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Fig.6. Simulated ratios of M SFE
Sa (solid lines) and Sp.25n] (dashed lines)

F =Gomp(2,1),G = E(1)

and M AD of smoothed estimators
to those of the Kaplan-Meier estimator.

PCC3 - solid lines, PCClg.25n) - dashed lines.
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square error was reduced by 11 to 53 per cent. Similar reduction for
MAD was between 9 (for Pareto Par(2,2) and exponential F(1) distribu-
tions) and 39 (for Gom(1,1) and E(1)) per cent. More numerical results

have been presented in a technical report (Rossa and Zieliriski 1999).

Typical results that we have obtained for p € (0,1) are presented in Fig. 6,
where the ratios of mean square errors MSE(Sy)/MSE(KM) (solid lines) and
MSE(S(p.25n])/MSE(KM) (dashed lines) are exhibited for two pairs of the time-

to-failure distribution F' and censoring distribution G.

Let PCCy(p, F,G) denote the Pitman Closeness Criterion (see Keating et al.
1993) for estimators S and KM at the point t = F~!(p) if F is the survival

distribution and G is censoring distribution:
PCCy(p, F,G) = Pra{|S2(t) —p)| < [KM(t) —p)l}

If PCCy(p, F,G) > 0.5 then Sy prevails in the sense that the absolute error of
this estimator is smaller than that of KM more often than it is larger. Similar

notation PCC|,n) we adopt for estimator Sy, ni-

Fig. 6 exhibits typical behaviour of PC'C' for the whole range of p € (0,1).
ADDITIONAL COMMENTS

1. Our simulations suggest that also the bias of our estimators is smaller than
that of KM but we were not able to find any regularity in that. Whatever how-
ever the bias and the variance, with respect to M SE and M AD the smoothed

estimators are better than the original K M.

2. Sufficiently far to the right, the original Kaplan-Meier estimator in all simu-
lations gives the values zero. It follows that ”practically”, for large ¢, it’s variance

is equal to zero. That of course is not the case for the smoothed estimators.

3. In our simulations we were also interested in M SFE and other characteristics
of the estimators under consideration if there is no censoring. For every p € (0,1)
the Kaplan-Meier estimator is then unbiased and is variance at the point F'~1(p)
is equal to p(1—p)/n. It is interesting to observe (Fig. 7) that sometimes censoring

may improve M SE. On a paradox of this kind see Csorgo et al. (1998).
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Fig.7. Simulated M SE of the Kaplan-Meier estimator (dotted line),
the proposed smoothed estimator Sy (solid line), Sjp.25n7 (dense dotted line)

and Kaplan-Meier estimator without censoring (dashed line).
F = Gom(2,1), G = E(0.75), sample size n = 20.

ACKNOWLEDGEMENTS

The research of the second author has been supported by grant KBN 2 PO3A
033 17.

REFERENCES

Csorgo, S. and Faraway, J.J. (1998). The paradoxical nature of the proportional
hazards model of random censorship. Statistics 31, 67-78

Efron, B. (1967). The two-sample problem with censored data. Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and Probability 4, 831-852

Freireich, E.O. et al. (1963). The effect of 6-mercaptopurine on the duration of
steroid-induced remission in acute leukemia: a model for evaluation of other po-
tentially useful therapy. Blood 21, 699-716

13



Gill, R.D. (1980). Censoring and Stochastic Integrals. Mathematical Centre Tract
No. 124, Amsterdam: Mathematisch Centrum.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The statistical analysis of failure time
data. Wiley

Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete
observations. Journal of the American Statistical Association, 53, 457—481.

Keating, J.P., Mason, R.L, and Sen, P.K. (1993). Pitman’s Measure of Closeness:
A comparison of Statistical Estimators SIAM Philadelphia

Klein, J.P., Lee, S.C. and Moeschberger, M.L. (1990). A partially parametric es-
timator of survival in the presence of randomly censored data. Biometrics, 46,
795-811.

Marubini, E. and Valsecchi, M.G. (1995). Analysing Survival Data from Clinical
Trials and Observational Studies, Wiley

Peterson, A.V. (1983). Kaplan-Meier estimator. In Encyclopedia of Statistical Sci-
ences, S. Kotz, N.L.Johnson, and C.B.Read, eds., Vol.4, Wiley

Rossa, A. and Zielinski, R. (1999). Locally Weibull-Smoothed Kaplan—Meier Esti-
mator, Institute of Mathematics Polish Academy of Sciences, Preprint 599

14



