Hyper-Stonean envelopes of locally compact spaces

H. G. Dales, Lancaster, UK

Bedlewo, 20 July 2016
References

Banach space preliminaries

Take Banach spaces E and F.

Then E and F are \textbf{isomorphic} if they are linearly homeomorphic. Write $E \sim F$.

Also E and F are \textbf{isometrically isomorphic} if there is an isometric linear bijection $T : E \to F$. Write $E \cong F$.

The \textbf{dual} of a Banach space E is denoted by E' and the \textbf{bidual} is $E'' = (E')'$; we regard E as a subspace of E''. A \textbf{predual} of E is a Banach space F with $F' \cong E$.

\textbf{Example}: Let K be a locally compact space. Then $C_0(K)$ and $C^b(K)$ are the Banach algebras of all continuous functions on K that vanish at infinity and all bounded continuous functions on K, taken with the uniform norm

$$|f|_K = \sup\{|f(x)| : x \in K\}.$$

The dual of $C_0(K)$ is $M(K)$, the complex-valued, regular Borel measures on K. \hfill \square
Banach A-bimodules

Let A be a Banach algebra. Then the bidual A'' is a Banach A-bimodule for the maps

$$(a, M) \mapsto a \cdot M, \quad (a, M) \mapsto M \cdot a.$$

There are two products on A'' extending the module maps. For $a, b \in A$, and $\lambda \in A'$, define:

$$\langle b, a \cdot \lambda \rangle = \langle ba, \lambda \rangle, \quad \langle b, \lambda \cdot a \rangle = \langle ab, \lambda \rangle.$$

Then, for $a \in A$, $\lambda \in A'$, and $M \in A''$, define:

$$\langle a, \lambda \cdot M \rangle = \langle M, a \cdot \lambda \rangle, \quad \langle a, M \cdot \lambda \rangle = \langle M, \lambda \cdot a \rangle.$$

Let $M, N \in A''$. For each $\lambda \in A'$, define

$$\langle M \Box N, \lambda \rangle = \langle M, N \cdot \lambda \rangle, \quad \langle M \Diamond N, \lambda \rangle = \langle N, \lambda \cdot M \rangle.$$

Easier to understand: take $M = \lim_{\alpha} a_\alpha$ and $N = \lim_{\beta} b_\beta$ in A'' (in the weak-* topology) for nets (a_α) and (b_β) in A. Then

$$M \Box N = \lim_{\alpha} \lim_{\beta} a_\alpha b_\beta, \quad M \Diamond N = \lim_{\beta} \lim_{\alpha} a_\alpha b_\beta.$$

Arens’ theorem

Theorem (Arens 1951) Let A be a Banach algebra. Then (A'', \square) and (A'', \diamond) are two Banach algebras, each containing A as a closed subalgebra.

Arens regularity

The algebra A is **Arens regular** if

$$M \square N = M \diamond N \quad (M, N \in A''),$$

and **strongly Arens irregular = SAI** if the opposite extreme holds: if $M \square N = M \diamond N$ for all $N \in A''$, then necessarily $M \in A$ - and similarly on the other side.

Closed subalgebras and quotients of Arens regular algebras are Arens regular.
Examples

Arens regularity/SAI gives a very sharp contrast between two classic classes of Banach algebras.

(I) Every C^*-algebra, including $C_0(K)$, is Arens regular - and its bidual is a C^*-algebra, called the **enveloping von Neumann algebra**.

(II) Let G be a locally compact group. Every group algebra $L^1(G)$ is SAI (Lau-Losert); the measure algebra $M(G)$ is SAI (Losert, Neufang, Pachl, and Steprāns).

The ‘topological centre’ of $L^1(G)$ is determined by just two elements of $L^1(G)''$. How many such points are needed for $M(G)$?

There are examples that are neither Arens regular nor SAI.
Topological preliminaries

A topological space is extremely disconnected if the closure of every open set is itself open. A Stonean space is a compact topological space that is extremely disconnected.

Example: $\beta\mathbb{N}$ is Stonean.

Let U be a dense subset of a Stonean space K. Then $\beta U = K$. Each infinite Stonean space K contains a copy of $\beta\mathbb{N}$, and so $|K| \geq 2^\mathfrak{c}$.

The Souslin number $c(K)$ of K is the minimum cardinality κ such that each family of non-empty, pairwise-disjoint, open subsets has cardinality at most κ; K satisfies CCC, the countable chain condition, iff $c(K) \leq \aleph_0$ is countable.
Injective spaces

A Banach space E is **injective** if, for every Banach space F, every closed subspace G of F, and every $T \in \mathcal{B}(G, E)$, there is an extension $\tilde{T} \in \mathcal{B}(F, E)$ of T; the space E is **λ-injective** if, further, we can always find such a \tilde{T} with $\|\tilde{T}\| \leq \lambda \|T\|$.

It is standard that an injective Banach space is λ-injective for some $\lambda \geq 1$.

Dual spaces

A Banach space E is **isomorphically dual** if there is a Banach space F such that $E \sim F'$.

A Banach space E is **isometrically dual** if there is a Banach space F such that $E \cong F'$.

A Banach space can be isomorphically dual, but not isometrically dual; see later.
Boolean algebras

Let B be a Boolean algebra (e.g., the Borel sets \mathcal{B}_K for a locally compact space K). An ultrafilter on B is a subset p that is maximal with respect to the property that

$$b_1, \ldots, b_n \in p \Rightarrow b_1 \land \cdots \land b_n \neq 0.$$

The family of ultrafilters on B is the **Stone space** of B, denoted by $St(B)$. A topology on $St(B)$ is defined by taking the sets

$$\{p \in St(B) : b \in p\}$$

for $b \in B$ as a basis of the open sets of $St(B)$. In this way, $St(B)$ is a totally disconnected compact space; it is extremely disconnected if and only if B is complete as a Boolean algebra.

Example $B = \mathcal{P}(\mathbb{N})$, the power set of \mathbb{N}. Then $St(B)$ is just $\beta \mathbb{N}$, and it is the character space of $\ell^\infty = C(\beta \mathbb{N})$. \square
Theorem (Banach–Stone) Let K and L be two non-empty, compact spaces. Then the following are equivalent:

(a) K and L are homeomorphic;

(b) $C(L) \cong C(K)$;

(c) $C(L)$ and $C(K)$ are C^*-isomorphic;

(d) there is an algebra isomorphism from $C(L)$ onto $C(K)$;

(e) there is a Banach-lattice isometry from $C(L)$ onto $C(K)$;

(f) there is an isometry from $C_R(L)$ onto $C_R(K)$.
\[C(K) \sim C(L) \]

Theorem (Milutin) Suppose that \(K \) and \(L \) are uncountable, metrizable, compact. Then \(C(K) \sim C(L) \). \[\square \]

Theorem (Cengiz) Suppose that \(C(K) \sim C(L) \). Then \(K \) metrizable iff \(L \) is; \(w(K) = w(L) \); \(|K| = |L| \). \[\square \]

Fact \(K \) metrizable implies \(C(K) \sim C(L) \) for some \(L \) with \(L \) totally disconnected (take \(L \) to be the Cantor set). \[\square \]

But:

Example (Koszmider) There is a connected, compact \(K \) such that \(C(K) \not\sim C(L) \) for any totally disconnected \(L \). \[\square \]

11
Gleason’s theorem

Here is the key theorem, mainly due to Gleason, but some others.

Theorem Let K be a compact space. Then the following are equivalent:

(a) the lattice $C^*_R(K)$ is **Dedekind complete**;

(b) K is Stonean;

(c) $C(K)$ is injective in the category of commutative C^*-algebras and continuous $*$-homomorphisms;

(d) K is projective in the category of compact spaces;

(e) $C(K)$ is 1-injective as a Banach space;

and about 4 other standard properties. \[\square\]

Each compact K has a **Gleason cover** G_K.

12
Injective spaces - questions

Theorem Let E be a 1-injective Banach space. Then $E \sim C(K)$ for a Stonean space K. \qed

Open Question What if E is just λ-injective. Is the same true? (Yes if $\lambda < 2$.)

Open Question Suppose that $C(K)$ is injective. Is $C(K) \sim C(L)$ for some Stonean space L? Is K totally disconnected?

By **Amir’s theorem**, $C(K)$ injective implies that K contains a dense, open, extremely disconnected subset, and so K is not connected.

Proposition $C(K)$ injective implies K totally disconnected when $c(K) < \mathfrak{c}$. \qed
Injectivity and dual spaces

Theorem Suppose that $C(K)$ is isomorphically dual. Then $C(K)$ is an injective space. \(\square\)

The converse is not true (Rosenthal). So ‘isomorphically dual’ is stronger than ‘injective’.

Open Question Suppose that $C(K)$ is isomorphically dual. Is $C(K) \sim C(L)$ for a Stonean space L? Is K totally disconnected?
Normal measures on K

Let K be a locally compact space.

Definition A (positive) measure μ on K is normal if it is order-continuous, i.e., $\langle f_\alpha, \mu \rangle \to 0$ for each net (f_α) in $C(K)^+ \cap C(K)$ such that $f_\alpha \to 0$ in order.

Proposition A measure μ on K is normal iff $|\mu|(L) = 0$ for every compact subset L of K with $\text{int} \, L = \emptyset$.

The normal measures form a closed subspace $N(K)$ of $M(K)$.

A point mass is normal iff the point is isolated.
Examples of $N(K)$

Example 1 All measures on $\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$ are σ-normal, but $N(\mathbb{N}^*) = \{0\}$. □

Example 2 $N(K) = \{0\}$ for each separable K without isolated points. E.g., $N(G_I) = \{0\}$. □

Example 3 $N(G) = \{0\}$ for each non-discrete, locally compact group. □

Example 4 $N(K) = \{0\}$ for each locally connected space without isolated points. □

Example 5 $N(K) = \{0\}$ for each connected F-space. □

However we have the following example of Grzegorz Plebanek.

Example 6 There is a connected, compact space K satisfying CCC with $N(K) \neq \{0\}$. □
Theorem - Dixmier, 1952, and Grothendieck, 1955 Let K be a compact space. Then the following are equivalent, and define a hyper-Stonean space:

(a) K is Stonean and the normal measures separate the elements of $C(K)$;

(b) $C(K)$ is lattice-isomorphic to the dual of a Banach lattice;

(c) $C(K)$ is isometrically dual as a Banach space (so that $C(K)$ is a von Neumann algebra);

(d) there is a locally compact space Γ and a positive measure μ with $C(K) = L^\infty(\Gamma, \mu)$.

[and several other equivalences - but no purely topological one].

Certainly: K hyper-Stonean \Rightarrow K Stonean.
Examples

In the above case, the isometric predual of \(C(K) \) is unique - it is \(N(K) \), so that \(C(K)_* = N(K) \).

Thus, when \(N(K) = \{0\} \), \(C(K) \) is not isometrically a dual space.

Example \(\beta \mathbb{N} \) is hyper-Stonean - because \(C(\beta \mathbb{N}) = \ell^\infty = (\ell^1)' \).

Can have \(C_0(K) \) isomorphically, but not isometrically, dual with

(i) \(K \) non-compact;

(ii) \(K \) compact and not Stonean;

(iii) \(K \) Stonean, but not hyper-Stonean.

For (iii), take \(K = G_\mathbb{I} \), the Gleason cover of \(\mathbb{I} \). Here \(C(K) \) is isomorphic to \(\ell^\infty \) (and so is isomorphic to a bidual space). However \(N(K) = \{0\} \), and so \(K \) is not hyper-Stonean.
A fixed measure on K

Fix a positive measure μ on K. Then $L^1(K, \mu)$ is the closed subspace of $M(K)$ consisting of the measures which are absolutely continuous with respect to μ. The dual space is

$$L^1(K, \mu)' = L^\infty(K, \mu),$$

and this is a commutative C^*-algebra, with character space Φ_μ, say. The Gel’fand transform is

$$\mathcal{G}_\mu : L^\infty(K, \mu) \to C(\Phi_\mu).$$

The space Φ_μ is hyper-Stonean.

For example, if μ is counting measure on \mathbb{N}, then Φ_μ is $\beta\mathbb{N}$.
A Boolean algebra

Let K be a compact space, and fix $\mu \in M(K)^+$. Then \mathcal{B}_μ is \mathcal{B}_K modulo the μ-null sets. The Stone space $St(\mathcal{B}_\mu)$ of \mathcal{B}_μ is exactly Φ_μ, described above. So $\varphi \in \Phi_\mu$ is an ultrafilter, and we can consider ‘limits along the ultrafilter’, say $\lim_{B \to \varphi}$.

This approach gives us some useful formulae. Indeed,

$$\lim_{B \to \varphi} \frac{1}{\mu(B)} \int_B \lambda \, d\mu = G_\mu(\lambda)(\varphi)$$

for each $\lambda \in L^\infty(K, \mu)$.
A characterization of Φ_μ

Theorem Let K and μ be as above, and suppose that $|\mathcal{B}_\mu| = \kappa$, an infinite cardinal. Then Φ_μ is a hyper-Stonean space satisfying CCC. Further,

$$w(\Phi_\mu) = \kappa \quad \text{and} \quad |\Phi_\mu| \leq 2^\kappa.$$

Theorem A hyper-Stonean space X has the form Φ_μ for some μ if and only if X satisfies CCC.

Classical theorem Suppose that μ is a continuous measure and that \mathcal{B}_μ is separable. Then (\mathcal{B}_μ, μ) is the same as the special case in which $K = \mathbb{I}$ and μ is Lebesgue measure.

In this special case, Φ_μ is \mathbb{H}, called the hyper–Stonean space of the unit interval.
The bidual of $C(K)$

Let (K, τ) be a compact space. Then $C(K)$ is Arens regular, and $C(K)''$ is a commutative C^*-algebra. So, by Gel'fand,

$$C(K)'' = C(\tilde{K})$$

for a compact, hyper-Stonean space (\tilde{K}, σ), called the **hyper-Stonean envelope** of K.

There is a continuous embedding $\iota : K \to \tilde{K}$ and a continuous projection $\pi : \tilde{K} \to K$ such that $\pi \circ \iota$ is the identity on K.

The map ι is not usually a homeomorphism. Indeed, K consists exactly of the isolated points of (\tilde{K}, σ), and so K is open in (\tilde{K}, σ). The closure of K in (\tilde{K}, σ) is identified with βK_d.

For $x \in K$, set $K\{x\} = \pi^{-1}(\{x\})$, the **fibre** of x. Then $C(K)$ is identified with the algebra of functions in $C(\tilde{K})$ that are constant on fibres.
Singular measures

A family \mathcal{F} of positive measures on a compact space K is singular if any two distinct measures in \mathcal{F} are mutually singular. Let $U_\mathcal{F}$ be the space that is the disjoint union of the sets Φ_μ with the topology in which each Φ_μ is compact and open.

There is a maximal such family; we may suppose that it contains all point masses.

Fact Let K be an uncountable, compact, metrizable space (e.g., $\mathbb{I} = [0, 1]$). Then there is such a family \mathcal{F} consisting of just \mathfrak{c} point masses and \mathfrak{c} continuous measures (and each such family has these cardinalities). \qed
'Constructions' of \widehat{K}

Let K be a locally compact space. We have obtained \widehat{K} abstractly.

Take $P(K)$ to be the probability measures on K.

Theorem Take \mathcal{F} to be a maximal singular family in $P(K)$. Then the map

$$\Lambda \mapsto (\Lambda \mid L^1(K, \mu) : \mu \in \mathcal{F})$$

from $C_0(K)''$ onto $\mathfrak{A} = \bigoplus_\infty \{C(\Phi_\mu) : \mu \in \mathcal{F}\}$ is a C^*-isomorphism. It follows from this that $C_0(K)$ is Arens regular and that we can identify \widehat{K} with the hyper-Stonean space $\Phi_{\mathfrak{A}} = \beta U_{\mathcal{F}}$.

Set $U_K = \bigcup \{\Phi_\mu : \mu \in P(K)\}$. Then $\widehat{K} = \beta U_K$. \square
A second construction

Take K to be locally compact. For $\mu, \nu \in M(K)^+$, set $\mu \sim \nu$ if $\mu \ll \nu$ and $\nu \ll \mu$. The equivalence class of μ is $[\mu]$. Set $[\mu] \leq [\nu]$ if $\mu \ll \nu$. Then

$$(M(K)^+ / \sim, \leq)$$

is a distributive lattice with a minimum element; it is a Dedekind complete Boolean ring. Its Stone space, called S_K, is an extremely disconnected, locally compact space. For each $\mu \in M(K)^+$, the Stone space $St(\mathcal{B}_\mu)$ is compact and open in S_K.

Theorem Take \mathcal{F} to be a maximal singular family in $P(K)$. Then $U_\mathcal{F}$ is a dense open subspace of S_K, $C^b(U_\mathcal{F}) \cong C(\widetilde{K})$, and \widetilde{K} is homeomorphic to βS_K. \qed
A third construction

Let L be a convex subset of a real-linear space. The family $\mathcal{F}(L)$ of all faces of L is a lattice (not generally distributive).

The set L is a simplex when the ambient space is a Riesz space, L is a subset of the positive cone, and every element of this cone is a positive multiple of an element of L.

Take K compact. The space $P(K)$ is a (Choquet) simplex in the ambient space $M_\mathbb{R}(K)$, and the family $\text{Comp}_{P(K)}$ of complemented faces of $P(K)$ is a complete Boolean algebra.

Theorem For K compact, the space \widetilde{K} is homeomorphic to the Stone space $St(\text{Comp}_{P(K)})$ (and more information). \(\square \)
A fourth construction

Let E be a Banach space with closed subspaces F and G such that $E = F \oplus_1 G$. Then we have an **L-decomposition**; the corresponding projections are **L-projections**.

The collection of L-projections on E is denoted by Proj_E. It is a Boolean algebra for the operations

$$P \land Q = PQ, \quad P \lor Q = P + Q - PQ, \quad P' = I_E - P.$$

The closed linear span of Proj_E is a subalgebra of $\mathcal{B}(E)$ that is a commutative C^*-algebra, called the **Cunningham algebra** of E.

Theorem Let K be compact. Then \tilde{K} is homeomorphic to the Stone space $St(\text{Proj}_{M(K)})$ (and more information). \qed
Bounded Borel functions

Let $B^b(K)$ denote the C^*-algebra of bounded Borel functions on K.

For $\lambda \in B^b(K)$, define $\kappa_E(\lambda)$ on $C(K)' = M(K)$ by

$$\langle \kappa_E(\lambda), \mu \rangle = \int_K \lambda \, d\mu \quad (\mu \in M(K)).$$

This extends the canonical embedding of $C(K)$.

Thus we identify $B^b(K)$ as a closed subalgebra of $C(\tilde{K})$. By Stone–Weierstrass, it does not separate the points of \tilde{K}. Set

$\varphi \sim \psi$ if $\kappa_E(\lambda)(\varphi) = \kappa_E(\lambda)(\psi) \quad (\lambda \in B^b(K)).$

This is an equivalence relation; the equivalence class that contains φ is denoted by $[\varphi]$.

The character space of $B^b(K)$ is \tilde{K}/\sim, a quotient of \tilde{K}. This space is totally disconnected, but usually not extremely disconnected.

The space $B^b(K)$ is not injective, and hence it is not isomorphic to a dual space.
Submodules of $M(K)$

The $\| \cdot \|$-closed, $C(K)$-submodules of $M(K)$ correspond to the clopen subspaces of \tilde{K}.

Thus $M(K) = \ell^1(K) \oplus M_c(K)$ gives a partition
\[\{ \beta K_d, \tilde{K}_c \} \]
of \tilde{K} into clopen subspaces.

Fix a $\mu \in M(K)^+$. Then
\[
\begin{array}{c}
B^b(K) \xrightarrow{\kappa_E} C(\tilde{K}) \\
\downarrow q_{\mu} \quad \downarrow \rho_{\mu} \\
L^{\infty}(K, \mu) \xrightarrow{G_{\mu}} C(\Phi_{\mu})
\end{array}
\]
is commutative, and $\kappa_E(B^b(K)) \mid \Phi_{\mu} = C(\Phi_{\mu})$.

Further,
\[
M(K) = \ell^1(K) \oplus L^1(K, \mu) \oplus M_s(K, \mu)
\]
gives a partition
\[\{ \beta K_d, \Phi_{\mu}, \Phi_{\mu,s} \} \]
of \tilde{K} into clopen subspaces.
A characterization

Let \((K, \tau)\) be an uncountable, compact, metrizable space. Then the hyper-Stonean envelope \(X = (\tilde{K}, \sigma)\) has the following properties:

(i) \(X\) is a hyper-Stonean space;

(ii) the set \(S\) of isolated points of \(X\) has cardinality \(\mathfrak{c}\), the closure \(Y\) of \(S\) in \(X\) is a clopen subspace of \(X\), and \(Y\) is homeomorphic to \(\beta S_d\);

(iii) \(X \setminus Y\) contains a family of \(\mathfrak{c}\) pairwise disjoint, clopen subspaces, each homeomorphic to \(\mathbb{H}\);

(iv) the union \(U_\mathcal{F}\) of the above sets is dense in \(X \setminus Y\) and is such that \(\beta U_\mathcal{F} = X \setminus Y\).

Further, any two spaces \(X_1\) and \(X_2\) satisfying the above properties are mutually homeomorphic.

So \(X = \tilde{I}\) is a very special compact set related to \(\beta \mathbb{N}\), but bigger.
A key preliminary result

Let S be a non-empty set, and let κ be an infinite cardinal. Then a κ-uniform ultrafilter on S is an ultrafilter \mathcal{U} on S such that each set in \mathcal{U} has cardinality at least κ.

Let \mathcal{A} be a non-empty family of subsets of S. Then \mathcal{A} has the κ-uniform finite intersection property if each non-empty, finite subfamily of \mathcal{A} has an intersection of cardinality at least κ.

Let S be an infinite set of cardinality κ, and let \mathcal{A} be a non-empty family of at most κ subsets of S such that \mathcal{A} has the κ-uniform finite intersection property. Then there are at least 2^{2^κ} κ-uniform ultrafilters on S that contain \mathcal{A}. □
Some cardinalities

Here K be an infinite, compact, metrizable space and $X = \sim K$.

Fact Then $|B^b(K)| = c$ and $|\Phi_{B^b(K)}| = 2^c$.

Theorem (i) $|C(X)| = 2^c$ and $|X| = 2^{2^c}$;
(ii) $|U_K| = 2^c$ and $w(U_K) = c$;
(iii) $|\sim K \setminus U_K| = 2^{2^c}$.

For $\mu \in M(K)^+$, set
$$[\Phi_{\mu}] := \bigcup\{[\varphi] : \varphi \in \Phi_{\mu}\}.$$ Easy that $[\Phi_{\mu}]$ is a closed subset of $\sim K$. It seemed possible that it would be the case that $\bigcup\{[\Phi_{\mu}] : \mu \in M(K)^+\}$ would be equal to the whole of $\sim K$; its complement consists of dark matter. However:

Fact $|\beta K_d \setminus [U_K]| = |K_c \setminus [U_K]| = 2^{2^c}$.

Detour on \(C(X) \) as a bidual space

What if \(C(X) \) is isometrically isomorphic to the bidual of a Banach space?

Theorem Take \(X \) infinite and compact, and suppose that \(C(X) \cong E'' \), where \(E \) is a **separable** Banach space. Then there are exactly two possibilities:

(a) the set of isolated points of \(X \) is countably infinite, and then \(C(X) \cong C(\beta\mathbb{N}) = \ell^\infty = c_0'' \), and so \(X \) is homeomorphic to \(\beta\mathbb{N} \);

(b) the set of isolated points of \(X \) has cardinality \(\mathfrak{c} \), and then \(C(X) \) is isometrically isomorphic to \(C(\mathbb{I})'' \), and so \(X \) is homeomorphic to \(\tilde{\mathbb{I}} \). \(\square \)

Open problem: What happens if \(C(K) \cong E'' \) with \(E \) not necessarily separable? Does there exists a locally compact \(K \) with \(C(X) = C_0(K)'' \)? At least there is a compact space \(K \) and a clopen subspace \(V \) of \(\tilde{K} \) with \(X \) homeomorphic to \(V \).
A theorem

Take K to be the semi-group $(\mathbb{N},+)$. Then $\beta \mathbb{N}$ is also a semigroup for an operation \Box (or $+$) such that $\delta_u \Box \delta_v$ (a product in $\ell^1(\mathbb{N})'' = M(\beta \mathbb{N})$) is $\delta_u \Box v$. Analogue for K the compact group \mathbb{T}.

Some quite heavy calculations involving singular measures sitting on Cantor sets and limits along ultrafilters show that $\delta_u \Box \delta_v$ can have a variety of properties for $u,v \in \tilde{\mathbb{T}}$. For example:

Theorem There are a positive, singular measure μ in $M(\mathbb{T})$, elements $v \in \mathbb{T}^*_d$, and a closed subset L of $\tilde{\mathbb{T}}$ such that $(\delta_u \Box \delta_v)(L) = 1/2$ for each $u \in \Phi_\mu$. In particular, $\delta_u \Box \delta_v$ is not a point mass. One can arrange that $\delta_u \Box \delta_v$ is neither a discrete nor a continuous measure on $\tilde{\mathbb{T}}$. \qed