On weak and pointwise topologies in function spaces

Mikołaj Krupski and Witold Marciszewski
University of Warsaw

Transfinite methods in Banach spaces and algebras of operators
Będlewo, July 18-22, 2016
For a compact space K, $C_w(K)$ ($C_p(K)$) is the space of continuous real-valued functions on K endowed with the weak (pointwise) topology.

If K is infinite then the pointwise topology is strictly weaker than the weak one.

Example Let $\sigma = \{ x \in \ell^2 : x_n = 0 \text{ for all but finitely many } n \}$. σ equipped with the norm topology is homeomorphic to σ equipped with the pointwise topology (inherited from \mathbb{R}^ω).

Problem 1 Can $C_p(K)$ and $C_w(K)$ be homeomorphic for an infinite compact space K?

Problem 2 Can $C_p(K)$ and $C_w(L)$ be homeomorphic for infinite compact spaces K and L?
For a compact space K, $C_w(K)$ ($C_p(K)$) is the space of continuous real-valued functions on K endowed with the weak (pointwise) topology. If K is infinite then the pointwise topology is strictly weaker than the weak one.

Example
Let $\sigma = \{ x \in \ell^2 : x_n = 0 \text{ for all but finitely many } n \}$. σ equipped with the norm topology is homeomorphic to σ equipped with the pointwise topology (inherited from \mathbb{R}^ω).

Problem 1
Can $C_p(K)$ and $C_w(K)$ be homeomorphic for an infinite compact space K?

Problem 2
Can $C_p(K)$ and $C_p(L)$ be homeomorphic for infinite compact spaces K and L?
For a compact space K, $C_w(K)$ ($C_p(K)$) is the space of continuous real-valued functions on K endowed with the weak (pointwise) topology.

If K is infinite then the pointwise topology is strictly weaker than the weak one.

Example

Let $\sigma = \{ x \in \ell_2 : x_n = 0 \text{ for all but finitely many } n \}$. σ equipped with the norm topology is homeomorphic to σ equipped with the pointwise topology (inherited from \mathbb{R}^ω).
For a compact space K, $C_w(K)$ ($C_p(K)$) is the space of continuous real-valued functions on K endowed with the weak (pointwise) topology.

If K is infinite then the pointwise topology is strictly weaker than the weak one.

Example

Let $\sigma = \{ x \in \ell_2 : x_n = 0 \text{ for all but finitely many } n \}$. σ equipped with the norm topology is homeomorphic to σ equipped with the pointwise topology (inherited from \mathbb{R}^ω).

Problem 1

Can $C_p(K)$ and $C_w(K)$ be homeomorphic for an infinite compact space K?
For a compact space K, $C_w(K)$ ($C_p(K)$) is the space of continuous real-valued functions on K endowed with the weak (pointwise) topology.

If K is infinite then the pointwise topology is strictly weaker than the weak one.

Example

Let $\sigma = \{ x \in \ell_2 : x_n = 0 \text{ for all but finitely many } n \}$. σ equipped with the norm topology is homeomorphic to σ equipped with the pointwise topology (inherited from \mathbb{R}^ω).

Problem 1

Can $C_p(K)$ and $C_w(K)$ be homeomorphic for an infinite compact space K?

Problem 2

Can $C_p(K)$ and $C_w(L)$ be homeomorphic for infinite compact spaces K and L?
For a compact space K, by $M(K)$ denote the space of all Radon measures on K, which can be identified with the dual space $C(K)^*$. $B_{M(K)}$ stands for the unit ball of $M(K)$, equipped with the weak* topology inherited from $C(K)^*$.
For a compact space K, by $M(K)$ denote the space of all Radon measures on K, which can be identified with the dual space $C(K)^*$. $B_{M(K)}$ stands for the unit ball of $M(K)$, equipped with the weak* topology inherited from $C(K)^*$.

Fact

For a compact space K, $C_w(K)$ is linearly homeomorphic to a closed linear subspace of $C_p(B_{M(K)})$.
For a compact space K, by $M(K)$ denote the space of all Radon measures on K, which can be identified with the dual space $C(K)^*$. $B_{M(K)}$ stands for the unit ball of $M(K)$, equipped with the weak* topology inherited from $C(K)^*$.

Fact

For a compact space K, $C_w(K)$ is linearly homeomorphic to a closed linear subspace of $C_p(B_{M(K)})$.

$$i(f)(\mu) = \mu(f) \quad \text{for } f \in C(K), \mu \in B_{M(K)}$$
A few instances when the answer to Problem 1 is immediate
A few instances when the answer to Problem 1 is immediate

Fact

If K is an infinite countable compact space, then $C_p(K)$ is metrizable whereas $C_w(K)$ is not.
A few instances when the answer to Problem 1 is immediate

Fact

If K is an infinite countable compact space, then $C_p(K)$ is metrizable whereas $C_w(K)$ is not.

For a topological space X and $x \in X$ by $\chi(x, X)$ we denote the minimal cardinality of a base of neighborhoods of x. We put $\chi(X) = \sup\{\chi(x, X) : x \in X\}$ - the *character* of X.
A few instances when the answer to Problem 1 is immediate

Fact

If K is an infinite countable compact space, then \(C_p(K) \) is metrizable whereas \(C_w(K) \) is not.

For a topological space \(X \) and \(x \in X \) by \(\chi(x, X) \) we denote the minimal cardinality of a base of neighborhoods of \(x \). We put \(\chi(X) = \sup\{\chi(x, X) : x \in X\} \) - the character of \(X \).

Fact

If \(K \) is infinite compact such that \(|K| < |M(K)| \), then \(\chi(C_p(K)) = |K| \) and \(\chi(C_w(K)) = |M(K)| \).
A few instances when the answer to Problem 1 is immediate

Fact

If K is an infinite countable compact space, then \(C_p(K) \) is metrizable whereas \(C_w(K) \) is not.

For a topological space \(X \) and \(x \in X \) by \(\chi(x, X) \) we denote the minimal cardinality of a base of neighborhoods of \(x \). We put \(\chi(X) = \sup \{ \chi(x, X) : x \in X \} \) - the character of \(X \).

Fact

If K is infinite compact such that \(|K| < |M(K)|\), then \(\chi(C_p(K)) = |K| \) and \(\chi(C_w(K)) = |M(K)| \).

\(|K| < |M(K)|\) if the cofinality of \(|K|\) is countable.
For a topological space X and $x \in X$ by $\psi(x, X)$ we denote the minimal cardinality of a family \mathcal{U} of open sets such that $\bigcap \mathcal{U} = \{x\}$. We put $\psi(X) = \sup \{\psi(x, X) : x \in X\}$ - the pseudocharacter of X.

Fact

Let K be a non-separable compact space such that there is a family $\{\mu_n \in M(K) : n \in \omega\}$ of functionals separating elements of $C(K)$ (equivalently, there is a linear continuous injection $T : C(K) \to \ell^\infty$).

Then $\psi(C_p(K)) = d(K) > \omega$ and $\psi(C_w(K)) = \omega$.

A concrete example of a compact space K with above properties is the Stone space of the measure algebra associated with the Lebesgue measure λ on $[0,1]$. $C(K)$ is a function space representation of the algebra $L^\infty[0,1]$.
For a topological space X and $x \in X$ by $\psi(x, X)$ we denote the minimal cardinality of a family \mathcal{U} of open sets such that $\bigcap \mathcal{U} = \{x\}$. We put $\psi(X) = \sup \{\psi(x, X) : x \in X\}$ - the pseudocharacter of X. $d(X)$ is the density of X, i.e. the minimal cardinality of a dense subset of X.
For a topological space X and $x \in X$ by $\psi(x, X)$ we denote the minimal cardinality of a family \mathcal{U} of open sets such that $\bigcap \mathcal{U} = \{x\}$. We put $\psi(X) = \sup \{\psi(x, X) : x \in X\}$ - the pseudocharacter of X. $d(X)$ is the density of X, i.e. the minimal cardinality of a dense subset of X.

Fact

Let K be a non-separable compact space such that there is a family $\{\mu_n \in M(K) : n \in \omega\}$ of functionals separating elements of $C(K)$ (equivalently, there is a linear continuous injection $T : C(K) \to \ell_\infty$). Then $\psi(C_p(K)) = d(K) > \omega$ and $\psi(C_w(K)) = \omega$.

A concrete example of a compact space K with above properties is the Stone space of the measure algebra associated with the Lebesgue measure λ on $[0,1]$. $C(K)$ is a function space representation of the algebra $L_\infty[0,1]$.

M. Krupski & W. Marciszewski (UW)
On weak and pointwise topologies
Będlewo 2016
5 / 11
For a topological space X and $x \in X$ by $\psi(x, X)$ we denote the minimal cardinality of a family \mathcal{U} of open sets such that $\bigcap \mathcal{U} = \{x\}$. We put $\psi(X) = \sup \{\psi(x, X) : x \in X\}$ - the pseudocharacter of X. $d(X)$ is the density of X, i.e. the minimal cardinality of a dense subset of X.

Fact

Let K be a non-separable compact space such that there is a family $\{\mu_n \in M(K) : n \in \omega\}$ of functionals separating elements of $C(K)$ (equivalently, there is a linear continuous injection $T : C(K) \to \ell_\infty$). Then $\psi(C_p(K)) = d(K) > \omega$ and $\psi(C_w(K)) = \omega$.

A concrete example of a compact space K with above properties is the Stone space of the measure algebra associated with the Lebesgue measure λ on $[0, 1]$ ($C(K)$ is a function space representation of the algebra $L^\infty[0, 1]$).
A topological space X is Fréchet-Urysohn if for any $A \subseteq X$ and $x \in \overline{A}$, there is a sequence $(x_n)_{n \in \omega}$ of points from A which converges to x.
A topological space X is Fréchet-Urysohn if for any $A \subseteq X$ and $x \in \overline{A}$, there is a sequence $(x_n)_{n \in \omega}$ of points from A which converges to x. A space X is scattered if no nonempty subset $A \subseteq X$ is dense-in-itself.

Fact
Let K be an infinite scattered compact space. Then $C_p(K)$ is Fréchet-Urysohn and $C_w(K)$ is not.

Proposition
For any infinite compact spaces K and L the spaces $C_w(K)$ and $C_p(L)$ are not uniformly homeomorphic.
A topological space X is Fréchet-Urysohn if for any $A \subseteq X$ and $x \in \overline{A}$, there is a sequence $(x_n)_{n \in \omega}$ of points from A which converges to x. A space X is scattered if no nonempty subset $A \subseteq X$ is dense-in-itself.

Fact

Let K be an infinite scattered compact space. Then $C_p(K)$ is Fréchet-Urysohn and $C_w(K)$ is not.
A topological space X is Fréchet-Urysohn if for any $A \subseteq X$ and $x \in \overline{A}$, there is a sequence $(x_n)_{n \in \omega}$ of points from A which converges to x. A space X is scattered if no nonempty subset $A \subseteq X$ is dense-in-itself.

Fact

Let K be an infinite scattered compact space. Then $C_p(K)$ is Fréchet-Urysohn and $C_w(K)$ is not.

Proposition

For any infinite compact spaces K and L the spaces $C_w(K)$ and $C_p(L)$ are not uniformly homeomorphic.
Theorem (M. Krupski)

if K is infinite metrizable finite-dimensional compactum, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.
Theorem (M. Krupski)

If K is infinite metrizable finite-dimensional compactum, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.

A normal space is strongly countable-dimensional if it can be represented as a countable union of closed finite-dimensional subspaces.
Theorem (M. Krupski)

If K is infinite metrizable finite-dimensional compactum, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.

A normal space is strongly countable-dimensional if it can be represented as a countable union of closed finite-dimensional subspaces.

Main Theorem

Let K be a compact strongly countable-dimensional space and L be a compact space such that $C_w(L)$ is homeomorphic to $C_w(M) \times E$ for some uncountable metrizable compact space M and some topological space E. Then $C_p(K)$ and $C_w(L)$ are not homeomorphic.
Theorem (M. Krupski)

If K is infinite metrizable finite-dimensional compactum, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.

A normal space is **strongly countable-dimensional** if it can be represented as a countable union of closed finite-dimensional subspaces.

Main Theorem

Let K be a compact strongly countable-dimensional space and L be a compact space such that $C_w(L)$ is homeomorphic to $C_w(M) \times E$ for some uncountable metrizable compact space M and some topological space E. Then $C_p(K)$ and $C_w(L)$ are not homeomorphic.

Corollary

If K is a compact strongly countable-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.
Corollary

If K is a compact finite-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.
Corollary

If K is a compact finite-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.

For a set Γ, $\Sigma(\Gamma)$ is the Σ-product of real lines indexed by Γ, i.e., the subspace of \mathbb{R}^Γ consisting of functions with countable supports.
Corollary

If K is a compact finite-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.

For a set Γ, $\Sigma(\Gamma)$ is the Σ-product of real lines indexed by Γ, i.e., the subspace of \mathbb{R}^Γ consisting of functions with countable supports.

A compact space K is a *Valdivia* compact space if, for some set Γ, there exists an embedding $i : K \rightarrow \mathbb{R}^\Gamma$ such that the intersection $i(K) \cap \Sigma(\Gamma)$ is dense in $i(K)$.
Corollary

If K is a compact finite-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.

For a set Γ, $\Sigma(\Gamma)$ is the Σ-product of real lines indexed by Γ, i.e., the subspace of \mathbb{R}^Γ consisting of functions with countable supports.

A compact space K is a Valdivia compact space if, for some set Γ, there exists an embedding $i : K \to \mathbb{R}^\Gamma$ such that the intersection $i(K) \cap \Sigma(\Gamma)$ is dense in $i(K)$.

Proposition

Every Valdivia compact space is either scattered or contains a closed uncountable metrizable subspace.
Corollary

If K is a compact finite-dimensional space and L is a compact space containing a closed uncountable metrizable subspace, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.

For a set Γ, $\Sigma(\Gamma)$ is the Σ-product of real lines indexed by Γ, i.e., the subspace of \mathbb{R}^Γ consisting of functions with countable supports. A compact space K is a Valdivia compact space if, for some set Γ, there exists an embedding $i : K \to \mathbb{R}^\Gamma$ such that the intersection $i(K) \cap \Sigma(\Gamma)$ is dense in $i(K)$.

Proposition

Every Valdivia compact space is either scattered or contains a closed uncountable metrizable subspace.

Corollary

If K is an infinite finite-dimensional Valdivia compact space, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.
The **double arrow space** \(\mathbb{K} \) is the set \(\mathbb{K} = ((0, 1] \times \{0\}) \cup ([0, 1) \times \{1\}) \) equipped with the order topology given by the lexicographical order (i.e., \((s, i) \succ (t, j)\) if either \(s < t\), or \(s = t\) and \(i < j\)).
The double arrow space \mathcal{K} is the set $\mathcal{K} = ((0, 1] \times \{0\}) \cup ([0, 1) \times \{1\})$ equipped with the order topology given by the lexicographical order (i.e., $(s, i) \prec (t, j)$ if either $s < t$, or $s = t$ and $i < j$).

Proposition (M.)

For each nonempty compact metrizable space M, the Banach spaces $C(\mathcal{K})$ and $C(\mathcal{K}) \times C(M)$ are isomorphic.
The double arrow space \mathbb{K} is the set $\mathbb{K} = ((0, 1] \times \{0\}) \cup ([0, 1) \times \{1\})$ equipped with the order topology given by the lexicographical order (i.e., $(s, i) \prec (t, j)$ if either $s < t$, or $s = t$ and $i < j$).

Proposition (M.)

For each nonempty compact metrizable space M, the Banach spaces $C(\mathbb{K})$ and $C(\mathbb{K}) \times C(M)$ are isomorphic.

Proposition

For the double arrow space \mathbb{K}, the function spaces $C_p(\mathbb{K})$ and $C_w(\mathbb{K})$ are not homeomorphic.
Fact

Let K be an infinite compact space and S be an infinite scattered compact space. The spaces $C_w(K)$ and $C_p(S)$ are not homeomorphic.
Fact
Let K be an infinite compact space and S be an infinite scattered compact space. The spaces $C_w(K)$ and $C_p(S)$ are not homeomorphic.

Theorem
Let K be an infinite compact space and S be an infinite scattered compact space. Spaces $C_p(K)$ and $C_w(S)$ are not homeomorphic.
Fact

Let K be an infinite compact space and S be an infinite scattered compact space. The spaces $C_w(K)$ and $C_p(S)$ are not homeomorphic.

Theorem

Let K be an infinite compact space and S be an infinite scattered compact space. Spaces $C_p(K)$ and $C_w(S)$ are not homeomorphic.

Theorem (M. Krupski)

If K is infinite metrizable compact C-space, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.
Fact
Let K be an infinite compact space and S be an infinite scattered compact space. The spaces $C_w(K)$ and $C_p(S)$ are not homeomorphic.

Theorem
Let K be an infinite compact space and S be an infinite scattered compact space. Spaces $C_p(K)$ and $C_w(S)$ are not homeomorphic.

Theorem (M. Krupski)
if K is infinite metrizable compact C-space, then $C_p(K)$ and $C_w(K)$ are not homeomorphic.

Corollary
If K is infinite compact metrizable C-space and L is an arbitrary compact space, then $C_p(K)$ and $C_w(L)$ are not homeomorphic.
Question

Is it true that $C_p([0, 1]^{\omega})$ and $C_w([0, 1]^{\omega})$ are not homeomorphic?
Question
Is it true that $C_p([0, 1]^{\omega})$ and $C_w([0, 1]^{\omega})$ are not homeomorphic?

Question
Is it true that $C_p(\beta\omega)$ and $C_w(\beta\omega)$ are not homeomorphic?
Question
Is it true that $C_p([0, 1]^{\omega})$ and $C_w([0, 1]^{\omega})$ are not homeomorphic?

Question
Is it true that $C_p(\beta\omega)$ and $C_w(\beta\omega)$ are not homeomorphic?

Question
Is it true that $C_p(\beta\omega \setminus \omega)$ and $C_w(\beta\omega \setminus \omega)$ are not homeomorphic?