impan seminar:

working group in applications of set theory



17.01.2019. 10.15, room 105;
Tomasz Weiss (UKSW)
Accessible points, harmonic measure and the Riemann mapping

Abstract: Let D be a bounded domain in Rn, n larger than 1. We provide an elementary proof that the set of all boundary accessible points of D is an analytic set. We investigate the nature of the set of accessible points of D when n=2 using only set theoretical methods. We provide also a view of the relation between harmonic measure in D, if n=2, D simply connected, and the Riemann mapping of D. In this talk we prove new results and give easier proofs of known results.

Previous talks this semester:

10.01.2019. 10.15, room 105;
Tomasz Kochanek (IMPAN/UW)
Rosenthal's lemma and its applications

Abstract: In this instructional talk we will recall Rosenthal's lemma on uniformly bounded sequences of measures and present its several classical applications in the Banach space and vector measures theory. First, we will prove the surprising Nikodym's uniform boundedness principle and Phillips' lemma where the application of Rosenthal's result makes the proofs much easier than the original ones. A few further corollaries of Nikodym's principle will be mentioned, such as the Dieudonné-Grothendieck theorem on bounded vector measures and the Seever theorem on the range of an operator into a B(Σ)-space. Next, we shall prove two beautiful consequences of Rosenthal's lemma: the Diestel-Faires theorem and the Orlicz-Pettis theorem. If time allows, we will also briefly discuss their further deep consequences in the structural theory of Banach spaces.

20.12.2018. 10.15, room 105;
Damian Sobota (Kurt Godel RC, Vienna)
The Josefson--Nissenzweig theorem for Cp(X)-spaces

Abstract: The famous Josefson--Nissenzweig theorem asserts that for every infinite-dimensional Banach space X there exists a sequence (xn*) in the dual space X* which is weak* convergent to 0 and each xn* has norm 1. Despite the apparent simplicity of the theorem no constructive proof --- even in the case of Banach spaces of continuous functions on compact spaces --- has been known.
Recently, Banakh, Śliwa and Kąkol in their studies of separable quotients of topological vector spaces of the form Cp(X), i.e. spaces of continuous functions on Tychonoff spaces endowed with the pointwise convergence topology, have obtained several results characterizing those Cp(X)-spaces for which the Josefson--Nissenzweig theorem holds.
During my talk I will present some introductory facts concerning the theorem for Cp(X)-spaces, show that the existence of "Josefson--Nissenzweig" sequences for Cp(K)-spaces, where K is compact Hausdorff, is strongly related to a variant of the Grothendieck property of Banach spaces, as well as prove that every compact space obtained as a limit of an inverse system consisting only of minimal extensions admits such sequences (and the proof is constructive). This is a joint work with Lyubomyr Zdomskyy.

13.12.2018. 10.15, room 105;
Piotr Koszmider (IM PAN)
Controlling linear operators on C(K)s through the rigidity of K.

Abstract: In the second talk of the series devoted to classical phenomena in Banach spaces of the form C(K) we will see how linear operators on a C(K) can be represented by continuous maps from K into the space of the Radon measures on K with the weak* topology. Previously presented results concerning weakly compact subsets in M(K) will allow us to obtain a "geometric" understading of the rigidity conditions on the algebra of all linear operators (having few operators modulo weakly compact operators) as versions of topological or Boolean rigidity conditions (having few continuous maps or few Boolean endomorphisms) which can be imposed on K.

29.11.2018. 10.15, room 105;
Piotr Koszmider (IM PAN)
The Grothendieck property for Banach spaces of continuous functions

Abstract: In the first talk of the series devoted to classical phenomena in Banach spaces of the form C(K) we will see how weakly compact sets in the dual space to C(K) generalize finite subsets of K. The concrete goal will be to motivate the Grothendieck property (weak and weak* convergence coincide in the dual) for C(K)s as a generalization of K having no nontrivial convergent sequence and to prove that l≡C(βN) has the Grothendieck property. This will require the proof of the Grothendieck-Dieudonne characterization of weakly compact sets in the spaces of measures. All the results and proofs presented during the talk are in classical texbooks, but we will try to represent combinatorial and topological bias, leading in the following talks to more set-theoreic issues. The purpose of this series of talks is to introduce particpants with the set-theoretic topological background to some topics related to Banach spaces of the form C(K). The area is quite sensitive to infinitary combinatorics, e.g., Talagrand: CH implies that there is infinite K such that C(K) is Grothendieck but does not have l as its quotient; Haydon, Levy, Odell: p=2ω1 implies that every Grothendieck C(K) for K infinite has l as its quotient;

22.11.2018. 10.15, room 105;
Tomasz Kochanek (IM PAN / MIM UW)
Bases of Banach spaces with respect to filters.

Abstract: In 2011, Vladimir Kadets proposed the following problem: Given a filter F of subsets of natural numbers and a Banach space X, we say that a sequence (en) in X forms an F-basis, provided that every x in X has a unique representation as a series of linear combinations of en's, where the convergence is understood in the norm topology and with respect to F. Thus, for F being the filter of cofinite sets we obtain the classical notion of Schauder basis for which it is well-known that all the coordinate functionals are automatically continuous. The question is whether, they must be continuous for a general filter F. I shall present a positive answer to this questions in the case where the character of F is smaller than the pseudointersection number (published in Studia Math. 2012). Unfortunately, the answer is still not known in the important case where F is the statistical filter consisting of all sets of asymptotic density 1. We will also discuss some other related open problems concerning bases with brackets and with individual brackets.

15.11.2018. 10.15, room 105;
Fulgencio Lopez (IM PAN)
A capturing construction scheme from the diamond principle. Continuation from 8.11.18.

08.11.2018. 10.15, room 105;
Fulgencio Lopez (IM PAN)
A capturing construction scheme from the diamond principle.

Abstract: S. Todorcevic introduced the concept of a capturing construction scheme and showed it is consistent with the diamond principle. A construction scheme is a well-founded family of finite subsets of ω1. We give a quick presentation of the history and motivation for this tool and show that it follows from the diamond principle.

25.10.2018. 10.15, room 105;
Arturo Martínez-Celis (IM PAN)
On the Michael Space Problem

Abstract: A Lindelöf Topological space is Michael if it has non-Lindelöf product with the space of the irrational numbers. These kind of spaces were introduced by Ernest Michael in 1963 and it is still unknown if one can be constructed in ZFC. We will introduce the notion of Michael ultrafilter, which implies the existence of a Michael space. We will also discuss the relation between this kind of ultrafilters and some classical cardinal invariants and we will use this to study the behaviour of this notion in some models of set theory.

11.10.2018. 10.15, room 105;
Piotr Koszmider (IMPAN)
Uncountable constructions from CH using generic filters

Abstract: We will present some old CH constructions due to S. Shelah. As usual they use transfinie induction, diagonalization and enumeration of all relevant objects in type ω1. However, the use of the Martin's axiom type arguments makes them additionally powerful.







Talks in the second semester of 2017-18.

Talks in the first semester of 2017-18.

Talks in the second semester of 2016-17.

Talks in the first semester of 2016-17.

Talks in the second semester of 2015-16.

Talks in the first semester of 2015-16.

Talks in the second semester of 2014-15.

Talks in the first semester of 2014-15.

Talks in the second semester of 2013-14.

Talks in the first semester of 2013-14.

Talks in the second semester of 2012-13.

Talks in the first semester of 2012-13.

Talks in the second semester of 2011-12.

Talks in the first semester of 2011-12.

Time and place: Thursdays 10.15-12.00 am, room 105, Sniadeckich 8


The scope of the seminar: Set-theoretic combinatorial and topological methods in diverse fields of mathematics, with a special emphasis on abstract analysis like Banach spaces, Banach algebras, C*-algebras, Here we include both the developing of such methods as forcing, descriptive set theory, Ramsey theory as well as their concrete applications in the fields mentioned above.

Working group style: We will make efforts so that this seminar has more a working character rather than the presentation style. This means that we encourage long digressions, discussions, background preparations and participation of everyone. We would like to immerse ourselves into the details of the mathematical arguments studied. Also the talks are usualy devoted to research in progress or fascinating results leading to some project not yet resolved. While ready final results could be presented at other seminars at IM PAN or UW.

Participants this semester so far:

  • Tomasz Kochanek (IM PAN/UW)
  • Ziemowit Kostana (Ph.D. student UW)
  • Piotr Koszmider (IM PAN)
  • Wiesław Kubiś (Czech Academy and UKSW)
  • Fulgencio Lopez (IM PAN)
  • Arturo Martínez-Celis (IM PAN)
  • Tomasz Weiss (UKSW)
  • Michał Wojciechowski (IM PAN)
  • Przemysław Wojtaszczyk (IM PAN)
  • Piotr Zakrzewski (UW)
Forthcoming talks :


  • 24.01.2019; No seminar.

  • 31.01.2019; Arturo Martínez-Celis (IM PAN)

  • 7.02.2019; Alessandro Vignati (KU Leuven); An introductory talk on the Calkin algebra.