Noncommutative Valdivia compacta

Marek Cúth

Workshop on set theoretic methods
in compact spaces and Banach spaces
2013, Warsaw
1 Recent history and motivation

2 Some basic facts about skeletons
 - Definitions
 - Retractional skeletons and elementary submodels
 - Skeletons, Valdivia compacta and Plichko spaces

3 Main results
 - Renorming theorems
 - Results in $\mathcal{C}(K)$ spaces
 - The relationship between projectional and retractional skeletons
 - Few words about the proofs
Motivation: Separable Banach spaces have nice properties (renormings, Markushevich basis). Nonseparable Banach spaces need not have those properties. But, some of them do (Hilbert spaces).

Having certain nonseparable Banach space X, does it share the nice properties with separable spaces?
Motivation: Separable Banach spaces have nice properties (renormings, Markushevich basis). Nonseparable Banach spaces need not have those properties. But, some of them do (Hilbert spaces).

Having certain nonseparable Banach space X, does it share the nice properties with separable spaces?

Possible solution: Try to decompose Banach space X into smaller pieces (for example separable subspaces).

Nice properties of separable subspaces could be inherited by the whole space.
Motivation: Separable Banach spaces have nice properties (renormings, Markushevich basis). Nonseparable Banach spaces need not have those properties. But, some of them do (Hilbert spaces).

Having certain nonseparable Banach space X, does it share the nice properties with separable spaces?

Possible solution: Try to decompose Banach space X into smaller pieces (for example separable subspaces).

Nice properties of separable subspaces could be inherited by the whole space.

Existing concepts: projectional resolution of the identity (PRI), projectional generator (PG).
Motivation: Separable Banach spaces have nice properties (renormings, Markushevich basis). Nonseparable Banach spaces need not have those properties. But, some of them do (Hilbert spaces).

Having certain nonseparable Banach space X, does it share the nice properties with separable spaces?

Possible solution: Try to decompose Banach space X into smaller pieces (for example separable subspaces).

Nice properties of separable subspaces could be inherited by the whole space.

Existing concepts: projectional resolution of the identity (PRI), projectional generator (PG).
Banach spaces with a projectional skeleton

W. Kubiś: Banach spaces with a projectional skeleton

\[(PG) \Rightarrow \text{p-skeleton} \Rightarrow (PRI)\]

Definition

A *projectional skeleton* in a Banach space X is a family of projections $\{P_s\}_{s \in \Gamma}$, indexed by an up-directed partially ordered set Γ, such that

1. $X = \bigcup_{s \in \Gamma} P_s X$ and each $P_s X$ is separable.
Banach spaces with a projectional skeleton

W. Kubiš: Banach spaces with a projectional skeleton

\[(PG) \Rightarrow p\text{-skeleton} \Rightarrow (PRI)\]

Definition

A *projectional skeleton* in a Banach space \(X\) is a family of projections \(\{P_s\}_{s \in \Gamma}\), indexed by an up-directed partially ordered set \(\Gamma\), such that

- (i) \(X = \bigcup_{s \in \Gamma} P_sX\) and each \(P_sX\) is separable.
- (ii) \(s \leq t \Rightarrow P_s = P_s \circ P_t = P_t \circ P_s\).
Banach spaces with a projectional skeleton

W.Kubiś: Banach spaces with a projectional skeleton

\((PG) \Rightarrow p\text{-skeleton} \Rightarrow (PRI)\)

Definition

A projectional skeleton in a Banach space \(X\) is a family of projections \(\{P_s\}_{s \in \Gamma}\), indexed by an up-directed partially ordered set \(\Gamma\), such that

(i) \(X = \bigcup_{s \in \Gamma} P_sX\) and each \(P_sX\) is separable.

(ii) \(s \leq t \Rightarrow P_s = P_s \circ P_t = P_t \circ P_s\).

(iii) Given \(s_0 < s_1 < \cdots\) in \(\Gamma\), \(t = \sup_{n \in \omega} s_n\) exists and \(P_tX = \bigcup_{n \in \omega} P_{s_n}X\).
Banach spaces with a projectional skeleton

W. Kubiš: Banach spaces with a projectional skeleton

\[(PG) \Rightarrow p\text{-skeleton} \Rightarrow (PRI)\]

Definition

A *projectional skeleton* in a Banach space \(X\) is a family of projections \(\{P_s\}_{s \in \Gamma}\), indexed by an up-directed partially ordered set \(\Gamma\), such that

(i) \(X = \bigcup_{s \in \Gamma} P_s X\) and each \(P_s X\) is separable.

(ii) \(s \leq t \Rightarrow P_s = P_s \circ P_t = P_t \circ P_s\).

(iii) Given \(s_0 < s_1 < \cdots\) in \(\Gamma\), \(t = \sup_{n \in \omega} s_n\) exists and \(P_t X = \bigcup_{n \in \omega} P_{s_n} X\).

We shall say that \(\{P_s\}_{s \in \Gamma}\) is an *r-projectional skeleton* if it is a projectional skeleton such that \(\|P_s\| \leq r\) for every \(s \in \Gamma\).
Banach spaces with a projectional skeleton

W. Kubiš: Banach spaces with a projetalional skeleton

\((PG) \Rightarrow \text{p-skeleton} \Rightarrow (PRI)\)

Definition

A *projectional skeleton* in a Banach space \(X\) is a family of projections \(\{P_s\}_{s \in \Gamma}\), indexed by an up-directed partially ordered set \(\Gamma\), such that

1. \(X = \bigcup_{s \in \Gamma} P_s X\) and each \(P_s X\) is separable.
2. \(s \leq t \Rightarrow P_s = P_s \circ P_t = P_t \circ P_s\).
3. Given \(s_0 < s_1 < \cdots \) in \(\Gamma\), \(t = \sup_{n \in \omega} s_n\) exists and \(P_t X = \overline{\bigcup_{n \in \omega} P_{s_n} X}\).

- We shall say that \(\{P_s\}_{s \in \Gamma}\) is an *\(r\)-projectional skeleton* if it is a projectional skeleton such that \(\|P_s\| \leq r\) for every \(s \in \Gamma\).
- We say that \(\{P_s\}_{s \in \Gamma}\) is a *commutative projectional skeleton* if \(P_s \circ P_t = P_t \circ P_s\) for every \(s, t \in \Gamma\).
On compact spaces, W. Kubiš introduced the notion of a retractional skeleton, dual to a projectional skeleton.
Compact spaces with a retractional skeleton

On compact spaces, W.Kubiś introduced the notion of a retractional skeleton, dual to a projectional skeleton.

\[K \text{ has a retractional skeleton } \Rightarrow C(K) \text{ has a 1-projectional skeleton} \]
On compact spaces, W. Kubiś introduced the notion of a retractional skeleton, dual to a projectional skeleton.

\[K \text{ has a retractional skeleton } \Rightarrow C(K) \text{ has a 1-projectional skeleton} \]

Definition

A *retractional skeleton* in a compact space \(K \) is a family of retractions \(\{r_s\}_{s \in \Gamma} \), indexed by an up-directed partially ordered set \(\Gamma \), such that

(i) For every \(x \in K \), \(x = \lim_{s \in \Gamma} r_s(x) \) and \(r_s[K] \) is metrizable for each \(s \in \Gamma \).
Compact spaces with a retractional skeleton

On compact spaces, W. Kubiś introduced the notion of a retractional skeleton, dual to a projectional skeleton.

\[K \text{ has a retractional skeleton } \implies C(K) \text{ has a 1-projectional skeleton} \]

Definition

A retractional skeleton in a compact space \(K \) is a family of retractions \(\{r_s\}_{s \in \Gamma} \), indexed by an up-directed partially ordered set \(\Gamma \), such that

1. For every \(x \in K \), \(x = \lim_{s \in \Gamma} r_s(x) \) and \(r_s[K] \) is metrizable for each \(s \in \Gamma \).
2. \(s \leq t \implies r_s = r_s \circ r_t = r_t \circ r_s \).

Marek Cúth
Noncommutative Valdivia compacta
Compact spaces with a retractional skeleton

On compact spaces, W. Kubiś introduced the notion of a retractional skeleton, dual to a projectional skeleton.

\(K \) has a retractional skeleton \(\Rightarrow C(K) \) has a 1-projectional skeleton

Definition

A retractional skeleton in a compact space \(K \) is a family of retractions \(\{r_s\}_{s \in \Gamma} \), indexed by an up-directed partially ordered set \(\Gamma \), such that

(i) For every \(x \in K \), \(x = \lim_{s \in \Gamma} r_s(x) \) and \(r_s[K] \) is metrizable for each \(s \in \Gamma \).

(ii) \(s \leq t \Rightarrow r_s = r_s \circ r_t = r_t \circ r_s \).

(iii) Given \(s_0 < s_1 < \cdots \) in \(\Gamma \), \(t = \sup_{n \in \omega} s_n \) exists and \(r_t(x) = \lim_{n \to \infty} r_{s_n}(x) \) for every \(x \in K \).
On compact spaces, W. Kubiš introduced the notion of a retractional skeleton, dual to a projectional skeleton.

\(K \) has a retractional skeleton \(\Rightarrow C(K) \) has a 1-projectional skeleton

Definition

A **retractional skeleton** in a compact space \(K \) is a family of retractions \(\{r_s\}_{s \in \Gamma} \), indexed by an up-directed partially ordered set \(\Gamma \), such that

(i) For every \(x \in K \), \(x = \lim_{s \in \Gamma} r_s(x) \) and \(r_s[K] \) is metrizable for each \(s \in \Gamma \).

(ii) \(s \leq t \Rightarrow r_s = r_s \circ r_t = r_t \circ r_s \).

(iii) Given \(s_0 < s_1 < \cdots \) in \(\Gamma \), \(t = \sup_{n \in \omega} s_n \) exists and \(r_t(x) = \lim_{n \to \infty} r_{s_n}(x) \) for every \(x \in K \).

We say that \(\{r_s\}_{s \in \Gamma} \) is a **commutative retractional skeleton** if \(r_s \circ r_t = r_t \circ r_s \) for every \(s, t \in \Gamma \).
For every suitable elementary submodel M ...
The connection with elementary submodels

For every suitable elementary submodel M ...

means that

There is $\varphi_1, \ldots, \varphi_n$ and a countable set Y such that whenever $M \supset Y$ is a countable set with $\varphi_1, \ldots, \varphi_n$ absolute for M, then ...
The connection with elementary submodels

For every suitable elementary submodel M ...

means that

There is $\varphi_1, \ldots, \varphi_n$ and a countable set Y such that whenever $M \supset Y$ is a countable set with $\varphi_1, \ldots, \varphi_n$ absolute for M, then ...

Theorem (Kubis)

Let K be a compact space, and let $D \subset K$ be a dense subset. Then the following properties are equivalent:

(i) There exists a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K such that $D \subset \bigcup_{s \in \Gamma} r_s[K]$.

Marek Cúth

Noncommutative Valdivia compacta
The connection with elementary submodels

For every suitable elementary submodel M ...

means that

There is $\varphi_1, \ldots, \varphi_n$ and a countable set Y such that whenever $M \supset Y$ is a countable set with $\varphi_1, \ldots, \varphi_n$ absolute for M, then ...

Theorem (Kubis)

Let K be a compact space, and let $D \subset K$ be a dense subset. Then the following properties are equivalent:

(i) There exists a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K such that $D \subset \bigcup_{s \in \Gamma} r_s[K]$.

(ii) For every suitable elementary submodel M, $\mathcal{C}(K) \cap M$ separates the points of $D \cap M$.
Banach space X has a commutative p-skeleton $\iff X$ is Plichko.
Banach space X has a commutative p-skeleton $\iff X$ is Plichko

Compact space K has a commutative r-skeleton $\iff K$ is Valdivia
Banach space X has a commutative p-skeleton $\iff X$ is Plichko

Compact space K has a commutative r-skeleton $\iff K$ is Valdivia

Recall:
- Banach space X is called Plichko (resp. 1-Plichko) if there are a linearly dense set $M \subset X$ and a norming (resp. 1-norming) set $D \subset X^*$ such that for every $x^* \in D$ the set $\{m \in M : x^*(m) \neq 0\}$ is countable.
Banach space X has a commutative p-skeleton $\iff X$ is Plichko

Compact space K has a commutative r-skeleton $\iff K$ is Valdivia

Recall:

- Banach space X is called *Plichko* (resp. 1-*Plichko*) if there are a linearly dense set $M \subset X$ and a norming (resp. 1-norming) set $D \subset X^*$ such that for every $x^* \in D$ the set $\{m \in M : x^*(m) \neq 0\}$ is countable.
- Let Γ be a set. We put $\Sigma(\Gamma) = \{x \in \mathbb{R}^\Gamma : |\{\gamma \in \Gamma : x(\gamma) \neq 0\}| \leq \omega\}$.
Banach space X has a commutative p-skeleton $\iff X$ is Plichko

Compact space K has a commutative r-skeleton $\iff K$ is Valdivia

Recall:

- Banach space X is called \textit{Plichko} (resp. \textit{1-Plichko}) if there are a linearly dense set $M \subset X$ and a norming (resp. 1-norming) set $D \subset X^*$ such that for every $x^* \in D$ the set $\{m \in M : x^*(m) \neq 0\}$ is countable.
- Let Γ be a set. We put $\Sigma(\Gamma) = \{x \in \mathbb{R}^\Gamma : |\{\gamma \in \Gamma : x(\gamma) \neq 0\}| \leq \omega\}$.
- Compact space K is a \textit{Corson compact}, if K is homeomorphic to a subset of $\Sigma(\Gamma)$.
Skelettons, Valdivia compacta and Plichko spaces

Banach space X has a commutative p-skeleton ⇐ X is Plichko

Compact space K has a commutative r-skeleton ⇐ K is Valdivia

Recall:

- Banach space X is called *Plichko* (resp. *1-Plichko*) if there are a linearly dense set $M \subset X$ and a norming (resp. 1-norming) set $D \subset X^*$ such that for every $x^* \in D$ the set \{m ∈ M : x^*(m) ≠ 0\} is countable.
- Let $Γ$ be a set. We put $Σ(Γ) = \{x ∈ R^Γ : |\{γ ∈ Γ : x(γ) ≠ 0\}| ≤ ω\}$.
- Compact space K is a *Corson compact*, if K is homeomorphic to a subset of $Σ(Γ)$.
- $A \subset K$ is a *Σ-subset* of K if there is a homeomorphic embedding $h : K \rightarrow [0, 1]^κ$ such that $A = h^{-1}[Σ(κ)]$.
Banach space X has a commutative p-skeleton $\iff X$ is Plichko

Compact space K has a commutative r-skeleton $\iff K$ is Valdivia

Recall:

- Banach space X is called *Plichko* (resp. 1-*Plichko*) if there are a linearly dense set $M \subset X$ and a norming (resp. 1-norming) set $D \subset X^*$ such that for every $x^* \in D$ the set $\{m \in M : x^*(m) \neq 0\}$ is countable.

- Let Γ be a set. We put $\Sigma(\Gamma) = \{x \in \mathbb{R}^\Gamma : |\{\gamma \in \Gamma : x(\gamma) \neq 0\}| \leq \omega\}$.

- Compact space K is a *Corson compact*, if K is homeomorphic to a subset of $\Sigma(\Gamma)$.

- $A \subset K$ is a Σ-*subset* of K if there is a homeomorphic embedding $h : K \to [0, 1]^\kappa$ such that $A = h^{-1}[\Sigma(\kappa)]$.

- Compact space K is a *Valdivia compact*, if there exists a dense Σ-subset of K.
Characterization of WLD spaces

Theorem

The following conditions are equivalent for a Banach space $\langle X, \| \cdot \| \rangle$:

(i) $(B_{\langle X^*, \| \cdot \| \rangle}, w^*)$ is Corson ($= X$ is WLD).
Theorem

The following conditions are equivalent for a Banach space $\langle X, \| \cdot \| \rangle$:

(i) $(B_{\langle X^*, \| \cdot \| \rangle}, w^*)$ is Corson (= X is WLD).

(ii) $\langle X, \| \cdot \| \rangle$ is 1-Plichko for every equivalent norm $\| \cdot \|$.
Characterization of WLD spaces

Theorem

The following conditions are equivalent for a Banach space \(\langle X, \| \cdot \| \rangle \):

(i) \((B_{\langle X^*, \| \cdot \| \rangle}, w^*)\) is Corson (= \(X\) is WLD).

(ii) \(\langle X, \| \cdot \| \rangle\) is 1-Plichko for every equivalent norm \(\| \cdot \|\).

(iv) \((B_{\langle X^*, \| \cdot \| \rangle}, w^*)\) is Valdivia for every equivalent norm.
Characterization of WLD spaces

Theorem

The following conditions are equivalent for a Banach space $\langle X, \| \cdot \| \rangle$:

(i) $(B_{\langle X^*, \| \cdot \| \rangle}, w^*)$ is Corson (= X is WLD).

(ii) $\langle X, \| \cdot \| \rangle$ is 1-Plichko for every equivalent norm $\| \cdot \|$.

(iii) $\langle X, \| \cdot \| \rangle$ has a 1-projectional skeleton for every equivalent norm $\| \cdot \|$.

(iv) $(B_{\langle X^*, \| \cdot \| \rangle}, w^*)$ is Valdivia for every equivalent norm.
Characterization of WLD spaces

Theorem

The following conditions are equivalent for a Banach space \(\langle X, \| \cdot \| \rangle \):

(i) \((B_{\langle X^*, \| \cdot \| \rangle}, w^*) \) is Corson (= \(X \) is WLD).

(ii) \(\langle X, \| \cdot \| \rangle \) is 1-Plichko for every equivalent norm \(\| \cdot \| \).

(iii) \(\langle X, \| \cdot \| \rangle \) has a 1-projectional skeleton for every equivalent norm \(\| \cdot \| \).

(iv) \((B_{\langle X^*, \| \cdot \| \rangle}, w^*) \) is Valdivia for every equivalent norm

(v) \((B_{\langle X, \| \cdot \| \rangle^*, w^*) \) has a retractional skeleton for every equivalent norm \(\| \cdot \| \).
Theorem

The following conditions are equivalent for a Banach space \((X, \| \cdot \|)\):

(i) \(X\) is Asplund.
Characterization of Asplund spaces

Theorem

The following conditions are equivalent for a Banach space \((X, \| \cdot \|)\):

(i) \(X\) is Asplund.

(ii) \((X, \| \cdot \|)^{**}\) has a 1-projectional skeleton for every equivalent norm \(\| \cdot \|\).
The following conditions are equivalent for a Banach space \((X, \| \cdot \|)\):

(i) \(X\) is Asplund.

(ii) \((X, \| \cdot \|)^{**}\) has a 1-projectional skeleton for every equivalent norm \(\| \cdot \|\).

(iii) \((B(X, \| \cdot \|)^{**}, w^*)\) has a retractional skeleton for every equivalent norm \(\| \cdot \|\).
Subspaces of $\mathcal{C}(K)$ spaces

Theorem

The following conditions are equivalent for a compact K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact with the property (\mathcal{M}).
The following conditions are equivalent for a compact K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact with the property (M).

Definition

A compact space K is said to have the property (M) if every Radon probability measure on K has separable support.

Remark: It is not provable in ZFC whether every Corson compact K has the property (M).
Subspaces of $\mathcal{C}(K)$ spaces

Theorem

The following conditions are equivalent for a compact K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact with the property (M).

(ii) Every subspace of $\mathcal{C}(K)$ is 1-Plichko.
The following conditions are equivalent for a compact K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact with the property (M).

(ii) Every subspace of $\mathcal{C}(K)$ is 1-Plichko.

(iv) (B_{Y^*}, w^*) is Valdivia for every subspace $Y \subset \mathcal{C}(K)$.
Theorem

The following conditions are equivalent for a compact \(K \), which is a continuous image of a space with a retractional skeleton.

(i) \(K \) is a Corson compact with the property \((M)\).

(ii) Every subspace of \(\mathcal{C}(K) \) is \(1\)-Plichko.

(iv) \((B_{Y^*}, w^*)\) is \textit{Valdivia} for every subspace \(Y \subset \mathcal{C}(K) \).
The following conditions are equivalent for a compact K, which is a continuous image of a space with a retractional skeleton.

(i) K is a Corson compact with the property (M).

(ii) Every subspace of $C(K)$ is 1-Plichko.

(iii) Every subspace of $C(K)$ has a 1-projectional skeleton.

(iv) (B_{Y^*}, w^*) is Valdivia for every subspace $Y \subset C(K)$.
Subspaces of $\mathcal{C}(K)$ spaces

Theorem

The following conditions are equivalent for a compact K, which is a continuous image of a space with a retractional skeleton.

(i) K is a Corson compact with the property (M).

(ii) Every subspace of $\mathcal{C}(K)$ is 1-Plichko.

(iii) Every subspace of $\mathcal{C}(K)$ has a 1-projectional skeleton.

(iv) (B_{Y^*}, w^*) is Valdivia for every subspace $Y \subset \mathcal{C}(K)$.

(v) (B_{Y^*}, w^*) has a retractional skeleton for every subspace $Y \subset \mathcal{C}(K)$.
The following conditions are equivalent for a compact space K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact.
Theorem

The following conditions are equivalent for a compact space K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact.

(ii) $C(L)$ is 1-Plichko for every continuous image L of K.
Subspaces of $\mathcal{C}(K)$ spaces

Theorem

The following conditions are equivalent for a compact space K, which is a continuous image of a space with a commutative retractional skeleton.

(i) K is a Corson compact.

(ii) $\mathcal{C}(L)$ is 1-Plichko for every continuous image L of K.

(iv) $(B_{\mathcal{C}(L)^*}, w^*)$ is Valdivia for every continuous image L of K.
The following conditions are equivalent for a compact space K, which is a continuous image of a space with a retractional skeleton.

(i) K is a Corson compact.

(ii) $C(L)$ is 1-Plichko for every continuous image L of K.

(iv) $(B_{C(L)^*}, w^*)$ is Valdivia for every continuous image L of K.
The following conditions are equivalent for a compact space K, which is a continuous image of a space with a retractional skeleton.

(i) K is a Corson compact.

(ii) $C(L)$ is 1-Plichko for every continuous image L of K.

(iii) $C(L)$ has a 1-projectional skeleton for every continuous image L of K.

(iv) $(B_{C(L)^*}, w^*)$ is Valdivia for every continuous image L of K.
The following conditions are equivalent for a compact space K, which is a continuous image of a space with a retractional skeleton.

(i) K is a Corson compact.
(ii) $C(L)$ is 1-Plichko for every continuous image L of K.
(iii) $C(L)$ has a 1-projectional skeleton for every continuous image L of K.
(iv) $(B_{C(L)^*}, w^*)$ is Valdivia for every continuous image L of K.
(v) $(B_{C(L)^*}, w^*)$ has a retractional skeleton for every continuous image L of K.

Theorem
Proposition

Let K be a compact space. Consider the following conditions

(i) K has a retractional skeleton

(ii) $C(K)$ has a 1-projectional skeleton

(iii) $(B_{C(K)^*}, w^*)$ has a retractional skeleton

Then the following implications hold:

$$(i) \Rightarrow (ii) \Rightarrow (iii).$$

Moreover, if K has a dense set of G_δ points, then all the conditions are equivalent.
Corollary

The following conditions are equivalent for a compact space K.

(i) K is a Corson compact.
Corollary

The following conditions are equivalent for a compact space K.

(i) K is a Corson compact.
(ii) Every continuous image of K is Valdivia.
Corollary

The following conditions are equivalent for a compact space K.

(i) K is a Corson compact.

(ii) Every continuous image of K is Valdivia.

(iii) Every continuous image of K has a retractional skeleton.
Skelettons in $\mathcal{C}(K)$ spaces

Theorem

Let K be a compact space. Then the following conditions are equivalent:

(i) $\mathcal{C}(K)$ has a 1-projectional skeleton.

(ii) There is a retractional skeleton $\{r_s\} s \in \Gamma$ in $(\mathcal{B} \mathcal{C}(K)^*, \text{w}^*)$ such that $S_s \in \Gamma_{r_s}[K]$ is a convex set.

(iii) There is a retractional skeleton $\{r_s\} s \in \Gamma$ in $\mathcal{P}(K)$ such that $S_s \in \Gamma_{r_s}[K]$ is a convex set.
Theorem

Let K be a compact space. Then the following conditions are equivalent:

(i) $\mathcal{C}(K)$ has a 1-projectional skeleton.

(ii) There is a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in $(B_{\mathcal{C}(K)^*}, w^*)$ such that $\bigcup_{s \in \Gamma} r_s[K]$ is a convex set.
Theorem

Let K be a compact space. Then the following conditions are equivalent:

(i) $C(K)$ has a 1-projectional skeleton.

(ii) There is a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in $(B_{C(K)}^*, w^*)$ such that $\bigcup_{s \in \Gamma} r_s[K]$ is a convex set.

(iii) There is a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in $P(K)$ such that $\bigcup_{s \in \Gamma} r_s[K]$ is a convex set.
Theorem

Let \((X, \| \cdot \|) \) be a Banach space. Then the following conditions are equivalent:

(i) \(X \) has a 1-projectional skeleton.
Theorem

Let \((X, \| \cdot \|)\) be a Banach space. Then the following conditions are equivalent:

(i) \(X\) has a 1-projectional skeleton.

(ii) There is a retractional skeleton \(\{r_s\}_{s \in \Gamma}\) in \((B_X^*, w^*)\) such that \(\bigcup_{s \in \Gamma} r_s[K]\) is a convex and symmetric set.
Sets induced by an r-skeleton and their role in the proofs

Definition

Let $s = \{ r_s \}_{s \in \Gamma}$ be a retractional skeleton in a compact space K and let $D(s) = \bigcup_{s \in \Gamma} r_s[K]$. Then we say that $D(s)$ is induced by an r-skeleton in K.

Sets induced by an r-skeleton and dense Σ-subsets have some common topological properties (dense, countably closed, Fréchet-Urysohn).
Sets induced by an r-skeleton and their role in the proofs

Definition

Let $\mathcal{s} = \{r_s\}_{s \in \Gamma}$ be a retractional skeleton in a compact space K and let $D(\mathcal{s}) = \bigcup_{s \in \Gamma} r_s[K]$. Then we say that $D(\mathcal{s})$ is induced by an r-skeleton in K.

K has an r-skeleton \iff there exists a set $D \subset K$ induced by an r-skeleton.
Sets induced by an r-skeleton and their role in the proofs

Definition

Let $s = \{r_s\}_{s \in \Gamma}$ be a retractional skeleton in a compact space K and let $D(s) = \bigcup_{s \in \Gamma} r_s[K]$. Then we say that $D(s)$ is induced by an r-skeleton in K.

- K has an r-skeleton \iff there exists a set $D \subset K$ induced by an r-skeleton
- K has a commutative r-skeleton \iff there exists a dense Σ-subset $A \subset K$
Sets induced by an r-skeleton and their role in the proofs

Definition

Let $\mathcal{S} = \{s_r\}_{s \in \Gamma}$ be a retractional skeleton in a compact space K and let $D(s) = \bigcup_{s \in \Gamma} r_s[K]$. Then we say that $D(s)$ is induced by an r-skeleton in K.

K has an r-skeleton \iff there exists a set $D \subset K$ induced by an r-skeleton

K has a commutative r-skeleton \iff there exists a dense Σ-subset $A \subset K$

Sets induced by an r-skeleton and dense Σ-subsets have some common topological properties (dense, countably closed, Fréchet-Urysohn)
Simultaneous projectional skeletons

Theorem

Assume D is induced by a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K.

Marek Cúth

Noncommutative Valdivia compacta
Simultaneous projectional skeletons

Theorem

Assume D is induced by a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K. Let $\{P_s\}_{s \in \Gamma}$ be the 1-projectional skeleton in $C(K)$ induced by $\{r_s\}_{s \in \Gamma}$; i.e., $P_s(f) = f \circ r_s$, $s \in \Gamma$, $f \in C(K)$.
Simultaneous projectional skeletons

Theorem

Assume D is induced by a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K. Let $\{P_s\}_{s \in \Gamma}$ be the 1-projectional skeleton in $C(K)$ induced by $\{r_s\}_{s \in \Gamma}$; i.e., $P_s(f) = f \circ r_s$, $s \in \Gamma$, $f \in C(K)$.

Let Y be a $\tau_p(D)$-closed subset of $C(K)$.
Simultaneous projectional skeletons

Theorem

Assume D is induced by a retractional skeleton $\{r_s\}_{s \in \Gamma}$ in K. Let $\{P_s\}_{s \in \Gamma}$ be the 1-projectional skeleton in $\mathcal{C}(K)$ induced by $\{r_s\}_{s \in \Gamma}$; i.e., $P_s(f) = f \circ r_s$, $s \in \Gamma$, $f \in \mathcal{C}(K)$.

Let Y be a $\tau_p(D)$-closed subset of $\mathcal{C}(K)$. Then there is an up-directed, σ-closed and unbounded set $\Gamma' \subset \Gamma$ such that $\{P_s\upharpoonright_Y\}_{s \in \Gamma'}$ is a 1-projectional skeleton in Y.
References I

Thank you for your attention!