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Introduction

What are these lectures about?

♦ Main objective: introduce symbolic methods for studying matrix linear
ordinary differential equations in the complex domain with rational function
coefficients.
♦ Main topics:
I Local Problems: Classification of Singularities, Computing Formal

Invariants, Computing Formal Solutions.
I Global Problems: Finding Closed Form Solutions (Polynomial,

Rational, Exponential Solutions . . . ), Factorization.
♦ General strategy:
I Develop and use appropriate tools of local analysis to compute

efficiently local data (around singularities).
I Global problems are solved by piecing together the local information

around the different singularities.
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Introduction

Linear ODE’s
• Linear differential equations of arbitrary order n:

(E ) y (n)(x) + an−1(x)y (n−1)(x) . . .+ a0(x)y(x) = b(x)

where b and the coefficients ai ’s are in some differential field K , e.g.
K = C(x).
• Systems of first order linear differential equations:

dy1
dx = a11(x)y1(x) + . . .+ a1n(x)yn(x) + b1(x)

...
dyn
dx = an1(x)y1(x) + . . .+ ann(x)yn(x) + bn(x)

Or in matrix notation:
Y ′ = AY + B

with Y = t(y1, . . . , yn), A = (aij) ∈ Mn(K ), B = t(b1, . . . , bn) ∈ Kn.
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Introduction

Differential Fields

A differential field (K , ∂) is a field K with a map (derivation) ∂ : K → K ,
satisfying ∂(a+ b) = ∂(a) + ∂(b), ∂(ab) = ∂(a)b + a∂(b) for all a, b ∈ K .
Notation: ∂(a) = a′

Examples:
I (C(x), ∂ = d

dx ) = field of rational functions

I (C(x , ex), ∂ = d
dx )

I C[[x ]] = ring of formal power series

(C((x)), d
dx ) = quotient field of C[[x ]] = C[[x ]][ 1

x ]

I (M(Ω), d
dx ) = field of fncs merom on Ω open, connected ⊂ C
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Introduction

Solutions
Consider a differential system of dimension n with coefficients in K :

[A] : Y ′ = AY , A ∈ Mn(K ).

• We should describe the class of functions in which the solutions are to be
found.
• A (rational) solution: a vector Y ∈ Kn such that Y ′ = AY .

• The set SK = {Y ∈ Kn | Y ′ = AY } is a vector-space of dim ≤ n over
the field of constants.

• In general, dimSK < n. However, there always exists a differential field
extension K ⊂ L such that over L the solution space has dimension n.

• Fundamental solution matrix of [A]: an n by n invertible matrix W (with
entries in some extension L of K ) satisfying W ′ = AW .
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Introduction

Closed Form Solutions of Linear Differential Equations

I Rational solutions: Functions lying in K .

I Algorithm by Liouville (1833) for K = Q(x) in the scalar case

I Singer (1991) for more general fields.

I Barkatou (1997) for the matrix case, K = C(x), Barkatou-Raab (2012)
for more general fields.

I Algebraic solutions: Functions lying in an algebraic extension of K .

I Investigated by Pépin (1881), Fuchs(1875), Klein, Jordan(1878), . . .

I Algorithms by Singer (1979, 1993).
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Introduction

Liouvillian Solutions

Functions that can be generated from the rational functions by successively
substituting nested algebraic functions, integrals and exponential of
integrals.

An example of such a construction is

1
x2 − 1

√
−→ 1√

x2 − 1
e
∫
−→ exp

(∫
dx√
x2 − 1

)
I Algorithm for second-order equations by Kovacik (1986)

I Singer (1991) using differential Galois theory: the problem of finding
Liouvillian solutions is decidable, in theory, for equations of arbitrary
order. However no practical algorithm.

M. Barkatou (CRM, Pisa 2017) 8 / 180



Introduction

Exponential Solutions

I Any function f whose logarithmic derivative
f ′

f
lies in K .

I They form a subclass of Liouvillian solutions.

I Algorithms for exponential solutions are used in all known methods for
finding Liouvillian solutions.

I Algorithm by Beke (1894).

I van Hoeij (1997) for K = Q̄(x).

I Pflügel, Barkatou (1997) for matrix equations.
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Introduction

Examples of Closed Form Solutions

Closed form solutions: can be written in terms of functions in some
differential field K using: field operations (+,−,×, /), algebraic extensions
√ , composition ◦, differentiation ′, integration

∫
dx

I What are the solutions of

y ′′ +
3(x2 + x + 1)

16(x − 1)2x2 y = 0?

Answer:

y = c1
4
√

x − x2
√

1 +
√
x + c2

4
√
x − x2

√
1−
√
x

Algebraic function: root of a polynomial with coefficients in C(x).

M. Barkatou (CRM, Pisa 2017) 10 / 180



Introduction

Examples
I What are the solutions of

y ′′ +
x

x2 − 1
y ′ − 1

2ν2(x2 − 1)
y = 0?

Answer:

y = c1 exp
(∫

dx

2ν
√
x2 − 1

)
+ c2 exp

(∫
−dx

2ν
√
x2 − 1

)
Liouvillian function.

y = c1e
ln(x+

√
x2−1)

2ν + c2e−
ln(x+

√
x2−1)

2ν

y = c1
(
x +

√
x2 − 1

) 1
2ν

+ c2
(
x +

√
x2 − 1

)−1
2ν

Solutions are algebraic when ν is rational.
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Introduction

I What are the solutions of

y ′′ +
x

x2 − 1
y ′ − 1

2ν2(x2 − 1)
y = 0?

I The answer given by the Maple dsolve command is:

y (x) = c1 sin

(
1/2
√
2 arcsin (x)

ν

)
+ c2 cos

(
1/2
√
2 arcsin (x)

ν

)
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Introduction

Airy Equation

I What are the solutions of

y ′′ − xy = 0?

I Answer :

y (x) = c1 Ai (x) + c2 Bi (x)

Special functions.
I If we ask for Power series solutions, we get

y = c1
∞∑

n=0

(1/9)n x3 n

Γ (n + 1) Γ (n + 2/3)
+ c2

∞∑
n=0

(1/9)n x3 n+1

Γ (n + 4/3) Γ (n + 1)
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Introduction

More General Closed Form Solutions
I A function is in closed form if it can be expressed in terms of well

know special functions: Airy, Bessel, Hermite, Legendre, Laguerre,
Kummer, Whittaker, 2F1−hypergeometric functions, etc.

I These special functions satisfy a second order differential equation

I A lot of information is known about these functions [Abramowitz and
Stegun : Handbook of Mathematical Functions (1972)].

I Open Problem: Given any linear differential equation with rational
function coefficients, decide if it is solvable in closed form, and if so,
find its closed form solutions.

I It is possible to decide with the help of differential Galois theory
wheteher or not Liouvillian solutions exist (Singer 1991).
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Introduction

Example

I What are the solutions of

y ′′ +
2
3x

y ′ − 1
9x

y = 0?

Answer:

y (x) = c1 x1/6I1/3
(
2/3
√
x
)

+ c2 x1/6K1/3
(
2/3
√
x
)

where Iν , Kν are Bessel functions.
I If we ask for Generalized series solutions, we get

y = c1
∞∑

n=0

(1/9)n xn

Γ (n + 1) Γ (n + 2/3)
+ c2 x1/3

∞∑
n=0

(1/9)n xn

Γ (n + 4/3) Γ (n + 1)

(Frobenius series)
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Introduction

Example

I What are the solutions of

y ′′′ − 4xy ′ − 2y = 0?

Answer:

y = c1(A1(x))2 + c2A1(x)A2(x) + c3(A2(x))2

where A1, A2 are two linearly independent solutions of

y ′′ − xy = 0 (Airy Equation)

I Problem: Given any linear differential equation with rational function
coefficients, decide if it is solvable in terms of solutions of linear
equations of lower order.
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Introduction

Formal Solutions
I Formal (or asymptotic) solution describe the behavior of the actual

solutions in in the neighborhood of a given point.

I At an ordinary point x0, Taylor series are sufficient :
∞∑
n=0

an(x − x0)n

I At singular points more general expansions must be used: Frobenius
series, log-exp expansions)

eq( 1
t

)tλ(φ0(t) + φ1(t) log t + · · ·+ φs(t)(log t)s)

t = (x − x0)1/r , r ∈ N∗ (ramification),
q ∈ C[X ], λ ∈ C, s ∈ N

and φj ∈ C[[t]].

I local-to-global approach: global problems are solved by piecing
together the local information around the different singularities.
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Introduction

Examples
• Euler Equation: x2y ′ + y = x

Formal solutions at x = 0: f̂ + ce−1/x , c ∈ C,

f̂ =
∞∑
n=0

(−1)nn!xn+1

• Airy Equation: y ′′ = xy

Formal solutions at x =∞:

Â1(x) =

( ∞∑
n=0

(−1)nant
−3n

)
t−1/2e−2t3/3

Â2(x) =

( ∞∑
n=0

ant
−3n

)
t−1/2e2t3/3

where t = x1/2, a0 = 1, an = 1
2π

1
n! Γ(n + 5

6)Γ(n + 1
6)
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Introduction

Example : Euler Equation
I What are the solutions of

x2 dy

dx
+ y = x . (1)

at the singular point x = 0?
I Answer y = f̂ + ce−1/x , c ∈ C where

f̂ =
∞∑
n=0

(−1)nn!xn+1

I This is a divergent series!
I It cannot be “summed” in the usual sense to a function which is a

solution of (1) in the neighborhood of x = 0.
I What does this formal solution represent exactly? What can it tell us

about the actual solutions?
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Introduction

Example : Euler Equation
I Using the method of variation of parameter, we get the particular

actual solution:

f (x) = e1/x
∫ x

0

e−1/t

t
dt.

I Which can be rewritten (for Re(x) > 0) as:

f (x) =

∫ ∞
0

e−
z
x

1 + z
dz , (2)

I One can prove the following inequalities (for Re(x) > 0):

|f (x)−
N−1∑
n=0

(−1)n n!xn+1| ≤ N! |x |N+1.

I This proves that f̂ is an asymptotic expansion of f (x) as x → 0 in the
half-plane Re(x) > 0 (Poincaré 1886).
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Introduction

Organization of the lectures

♦ Main objective: to present symbolic methods for manipulating, in the
broad sense, systems Y ′ = AY with rational function coefficients.

♦ Main Focus: Formal aspects of Local Analysis and Related Computer
Algebra Algorithms.

♦ Not Discussed: Analytic aspects: Asymptotic and Summability Theory
(see R. Schäfke’s lectures) .

B These lectures are divided into three parts:

I Part 1: Basic Tools for Local Analysis - Systems of First Kind.
I Part 2: Systems of Second Kind - Fundamental Algorithms.
I Part 3: Applications to Solving Systems with Rational Function

Coefficients.
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Local Analysis

Part 1: Basic Tools of Local Analysis- Systems of
First Kind
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Local Analysis

Outline

I Correspondance Matrix/Scalar Equations
I Classification of Singularities
I Systems of First Kind

M. Barkatou (CRM, Pisa 2017) 23 / 180



Correspondance Matrix/Scalar Equations

Correspondance Matrix/Scalar Equations
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Correspondance Matrix/Scalar Equations

Linear Differential Equations over (K , ′)
Three equivalent forms:

• a scalar linear differential equation:

D(y) = any
(n) + . . .+ a0y = 0, ai ∈ K

• a matrix linear differential equation:

Y ′ = AY , A ∈ Mn(K )

• a differential module of dimension n:
an n dim. K -vector space V with an additive map ∂ : V → V

satisfying

∂(αv) = α′v + α∂v

for all α ∈ K , v ∈ V .
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Correspondance Matrix/Scalar Equations

Linear Differential Systems
We consider a system of first order linear differential equations of the form

[A] Y ′ = AY ,

where Y is column-vector of length n,

A is an n × n matrix with entries in K ,

K is a differential field of characteristic zero with constant field C ⊃ Q.
In this talk

K = C((x)) = C[[x ]][x−1], or K = C(x)

with ′ = d
dx the standard derivation.
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Correspondance Matrix/Scalar Equations

Equivalent Systems

Consider a system [A] Y ′ = AY , A ∈ Mn(K ).

Gauge transformation: Y = TZ , T ∈ GL(n,K ) , leads to

[B] Z ′ = BZ ,

B = T [A] := T−1AT − T−1T ′.

Systems [A] and [B] are called equivalent (over K ).

If T ∈ GL(n, L) for some differential field extension L of K then [A] and
[B] are called equivalent over L.
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Correspondance Matrix/Scalar Equations

Correspondance Systems/Equations
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Correspondance Matrix/Scalar Equations

Scalar −→ Matrix
Consider a scalar linear differential equation:

D(y) = y (n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0, ai ∈ K

Let
Y = (y , y ′, . . . , y (n−1))T

Then
Y ′ = CY

where

C =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


Notation: C = companion(ai )0≤i≤n−1
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Correspondance Matrix/Scalar Equations

Matrix −→ Scalar

Thm: (Cyclic Vector Lemma) Assume ∃a ∈ K , a′ 6= 0. Then every system
Y ′ = AY is equivalent to a scalar equation D(y) = 0.

In other words, given a system Y ′ = AY over K , one can always construct
a gauge transformation T ∈ GL(n,K ) such that

T [A] := T−1AT − T−1T ′ =


0 1 0 0
0 0 1 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


• Many proofs : Loewy 1918, Cope 1936, Deligne 1970, Ramis 1978, Katz
1989, Barkatou 1993, Churchill-Kovacic 2002 . . .
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Correspondance Matrix/Scalar Equations

Cyclic Vectors
Consider a system [A] : ∂Y = AY over a differential field (K , ∂).

Let Λ = (λ1, · · · , λn) ∈ Kn.

Put
y = ΛY = λ1y1 + · · ·+ λnyn

Computing successively ∂y , · · · , ∂ny and using the equation ∂Y = AY we
obtain

∂ iy = ΛiY for i = 0, · · · , n (3)

where the sequence of row vectors {Λi} is defined inductively as :

Λ0 = Λ, Λi = ∂Λi−1 + Λi−1A for i = 1, · · · , n.
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Correspondance Matrix/Scalar Equations

Let

P =


Λ0
Λ1
...

Λn−1

 , Z =


y
∂y
...

∂n−1y

 , B =


Λ1
Λ2
...

Λn

 .

Then (3) can be written as

Z = PY and ∂Z = BY (4)

Note that B = ∂(P) + PA.

Def: The vector Λ is said to be a cyclic vector for system [A] if the matrix
P is nonsingular (i.e. detP 6= 0).
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Correspondance Matrix/Scalar Equations

If Λ is a cyclic vector then equation (4) can be written

Y = P−1Z and ∂Z = CZ

C := BP−1 = ∂(P)P−1 + PAP−1 is a companion matrix
C = companion(ai )0≤i≤n−1.

I Hence it follows that the system ∂Y = AY is equivalent to the scalar
differential equation :

DΛ(y) = ∂ny + an−1∂
n−1y + · · ·+ a1∂y + a0y = 0

I Note that this equation is by no means uniquely determined by the
system ∂Y = AY . It depends on the choice of the cyclic vector Λ.

I It is always possible (Cope, Ramis) to choose a cyclic vector Λ whose
components are polynomials in x of degree ≤ n − 1.
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Correspondance Matrix/Scalar Equations

Example

Let

A :=


−x + 2 x−1 x3 + x2 4 x−1

x−3 + 2 x−2 1− x 4 x−1

x 3 x2 2 x−1 + x2


Take Λ = [1, 0, 0]. Then

P =


1 0 0

− x2−2
x x3 + x2 4 x−1

2 x2+2+x4+2 x3+x
x2

−x
(
−6 x − 16 + 2 x3 + x2) 4 3−x2+x4+2 x3

x2


detP = −12 x + 12 x3 + 4 x5 + 12 x4 − 52 6= 0. Hence Λ = [1, 0, 0] is a
cyclic vector.
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Correspondance Matrix/Scalar Equations

Example
Compute T := P−1

1 0 0

−2 x4−2 x3+7 x2−4+2 x5+x+x6

x3(3 x4+3 x3−3 x−13+x5)
3−x2+x4+2 x3

x2(3 x4+3 x3−3 x−13+x5)
− 1

x(3 x4+3 x3−3 x−13+x5)

1/4 −14 x3−21 x2+x5−2 x4+9 x+30
3 x4+3 x3−3 x−13+x5 1/4

x(−6 x−16+2 x3+x2)
3 x4+3 x3−3 x−13+x5 1/4 x2(x+1)

3 x4+3 x3−3 x−13+x5


Compute

C := T [A] = T−1AT − T−1T ′ =

 0 1 0
0 0 1
c0 c1 c2


c0 =

−156 + 269 x4 − 146 x5 − 215 x6 + 38 x9 + 15 x10 + 16 x8 + 4 x11 − 109 x7 − 243 x + 432 x3 + x12 − 263 x2

x3 (3 x4 + 3 x3 − 3 x − 13 + x5)

c1 =
130− 156 x4 − 24 x5 + 67 x6 + 4 x9 + 2 x10 + 10 x8 + 42 x7 + 65 x − 311 x3 − 124 x2

x2 (3 x4 + 3 x3 − 3 x − 13 + x5)

c2 =
−52 + 24 x4 + 6 x5 − 2 x6 + x8 + 23 x2 + x7 − 28 x + 14 x3

x (3 x4 + 3 x3 − 3 x − 13 + x5)
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Correspondance Matrix/Scalar Equations

Algebraic complexity

� Arithmetic (operations in C ) complexity estimate:
I Computation of a cyclic vector and the corresponding scalar equation:
O(n5)

� Bounds on degrees and arithmetic sizes:

I Degree of the coefficients ci ’s: n degΛ + n(n+1)
2 degA

I Size of the coefficients ci ’s: n2 degΛ + n3 degA
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Correspondance Matrix/Scalar Equations

Comments on use of cyclic vectors
♦ Interest: Many algorithmic problems are easily solvable for scalar
equations.

♦ Drawbacks:

I for systems with “large" dimension n (in practice n ≥ 10), the
construction of an equivalent scalar equation may take a “long time";

I the scalar equation (when it can be computed) has often “too
complicated" coefficients compared with the entries of the input
system (even for small dimensions) and in consequence solving this
equation can be costly.

I The reduction to a scalar equation may destroy the symmetries or
structure of the input matrix equation ( e. g. Linear Hamiltonian
systems)

♦ Direct methods are to be preferred.
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Classification of Singularities

Singularities
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Classification of Singularities

Singularities

Consider a linear differential equation in the complex plane C with analytic
(e.g. meromorphic or rational function) coefficients:

[A]
dY

dx
= A(x)Y .

Def: x0 ∈ C is an ordinary point if all the entries of A(x) are holomorphic
in some nbhd of x0, otherwise x0 is a singular point.

• x0 is an ordinary point ⇒ there exists a fund soln matrix W whose
entries are holomorphic in in some nbhd of x0.
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Classification of Singularities

Classification of Singularities

♦ Suppose that A(x) is holomorphic in a punctured nbhd of x0,
Ω = {x ∈ C |0 < |x − x0| < ρ}, with at most a pole at the point x0.

♦ Since Ω is not simply connected, the solutions of Eqn [A] need not be
single-valued, but we have the following result (cf. Wasow):

Every fund soln matrix W of [A] has the form:

W (x) = Φ(x)(x − x0)Λ

where Φ(x) is holomorphic on Ω, and Λ is a constant matrix.

Def: The point x0 is called a regular singular point for [A] if Φ(x) has at
most a pole at the point x0, otherwise x0 is called an irregular singular
point.
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Classification of Singularities

Examples

I dy
dx = α

x y , α ∈ C

fund soln: xα so x = 0 is a regular singular point

I dy
dx = −a

pxp+1 y , a ∈ C∗, p ∈ N∗

fund soln: e
a
xp so x = 0 is an irregular singular point.

I dY
dx = Λ

x Y , Λ ∈ Mn(C)

fund soln matrix xΛ so x = 0 is a regular singular point.
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Classification of Singularities

Classification of the point at ∞
The change of variable x 7→ 1

x permits to classify the point x =∞ as an
ordinary, regular singular or irregular singular point for [A]:

Let z = 1
x

dY
dx = A(x)Y ⇒ dY

dz = − 1
z2
A(1

z )Y

Type of x =∞ for dY
dx = A(x)Y

= Type of z = 0 for dY
dz = − 1

z2
A(1

z )Y

Examples
dy
dx = 1

3x y , z = 1
x ⇒

dy
dz = − 1

3z y

z = 0 is a regular singular point ⇒ x =∞ is a regular singular point

y ′ = 2
x3
y z = 1

x ⇒
dy
dz = −2zy

z = 0 is an ordinary point ⇒ x =∞ is an ordinary point.
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Classification of Singularities

The scalar case
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Classification of Singularities

Newton Polygon of a Scalar Equation
Let

D =
n∑

i=0

ai

(
d

dx

)i

, ai ∈ C[[x ]].

Def: N(D) := Newton polygon of D = Convex hull with nonnegative
slopes of the points (i , v(ai )− i)

6

-
O

��
��
�
�
�
��

ni

v(ai )− i

0 6= f =
∑

j fjx
j ∈ C((x)), v(f ) = min{j | fj 6= 0}, v(0) = +∞.
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Classification of Singularities

Fuchs Criterion for Scalar Equations

The point x = 0 is regular singular ⇐⇒ v(ai )− i ≥ v(an)− n for all i
(Fuchs criterion).

6

-
O n
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Classification of Singularities

Formal solutions: Scalar case

Let
D(y) = an(x)y (n) + · · ·+ a0(x)y = 0

where the aj(x) ∈ C[[x ]] (formal power series).

There exists n linearly independent formal solutions of the form:

yi = eqi (
1
t

)tλi (φi0 + φi1 log t + · · ·+ φisi (log t)si )

x = tri , ri ∈ N∗ (ramification)
qi ∈ C[X ], λi ∈ C, si ∈ N

and φij ∈ C[[t]].

Existence: Fabry, Poincaré, Malgrange, etc.
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Classification of Singularities

The regular case

x = 0 is regular singular ⇐⇒ all the qi ’s are zero.

yi = xλi (φi0 + φi1 log x + · · ·+ φisi (log x)si )

In that case:
I no need of ramification: t = x (ri = 1)

I φij ∈ C{x} whenever the ai ’s are convergent,
I λi called local exponent (at x = 0) = root of indicial equation,

Construction: Frobenius method.
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Classification of Singularities

The irregular case

x = 0 is Irregular singular ⇐⇒ at least one of the qi ’s is not zero.

yi = eqi (
1
t

)tλi (φi0 + φi1 log t + · · ·+ φisi (log t)si )

In that case:
I the “degree" of qi in x−1 = slope of the Newton polygon of D and its

leading coefficient = a root of the corresponding Newton polynomial.
I may need ramification: t = x1/ri , ri > 1
I the involved power series are in general divergent.

Construction : Newton Algorithm based on Newton polygon calculations.
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Classification of Singularities

Matrix Case: Another Classification of
Singularities
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Classification of Singularities

• In the scalar case, the nature of a singular point x0 can be read off from
the leading terms of the coefficients of the equation (Fuchs’ Criterion).

• In the matrix case, there is no analogue of the Fuchs’ Criterion.

• The nature of a singular point x0 is based upon the knowledge of
fundamental matrix solution and hence is not immediately checkable for a
given system.

• Important Problem: Give an algorithm to decide for any system
whether it has regular singularity.
I First step: Give a characterization of regular singularities which is not

based on a prior knowledge of solutions.
From now we will assume that x0 = 0 (unless otherwise specified).
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Classification of Singularities

A Classification easier to check
Consider a linear differential system with a singularity at x = 0:

[A] : Y ′ = A(x)Y ,

A(x) =
1

xp+1

∞∑
i=0

Aix
i , Ai ∈ Mn(C), A0 6= 0, p ∈ N.

The integer p(A) := p is called the Poincaré rank of the system [A].

Def:
- If p(A) = 0, the point x0 = 0 is called a singularity of first kind for
system [A].

- If p(A) > 0, the point x0 = 0 is called a singularity of second kind for
system [A].
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Classification of Singularities

Comparison of the two classifications

♦ The two classifications are not directly comparable. However we have the
following

I x = 0 is a singularity of the first kind ⇒ x = 0 is a regular singularity.

I The converse is false, in general: a singularity of second kind (p > 0)
may be a regular singularity.

I System [A] has a regular singularity at x = 0 iff ∃T ∈ GL(n,K ) s.t.
T [A] has a singularity of first kind at x = 0.

♦ Important Problem: Give an algorithm to decide whether a system of
second kind has a regular singularity (Part 2 of this Tutorial).
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Classification of Singularities

Singular Differential Systems
K = C((x)) = C[[x ]][x−1] field formal Laurent series.

[A]
dY

dx
= A(x)Y ,

A(x) an n × n matrix with entries in K :

A(x) = x−p−1
∞∑
i=0

Aix
i , A0 6= 0, p = p(A) ∈ N Poincaré rank of [A]

Gauge transformation: Y = TZ , T ∈ GL(n,K ) , leads to

[B]
Z

dx
= BZ , B = T [A] := T−1AT − T−1T ′.

Systems [A] and [B] are called equivalent over K .
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Classification of Singularities

Exp. Parts and Formal Solutions
[A] has a formal fundamental matrix solution of the form

Φ(x1/s)xΛ exp
(
Q(x−1/s)

)

s ∈ N∗, Φ ∈ GL(n,C((x1/s))),

Q(x−1/s) = diag
(
q1(x−1/s), . . . , qn(x−1/s)

)
where the qi ’s are

polynomials in x−1/s over C without constant term,
Λ is a constant matrix commuting with Q.

I Q is invariant under all gauge transformations T ∈ GL(n,K).

K =
⋃

m∈N∗
C((x1/m)) field of formal Puiseux series in x .
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Classification of Singularities

Classification of singularities
I When Q(x−1/s) 6≡ 0, the origin is an irregular singular point of the

system [A]. In this case the elements of Q(x−1/s) determine the main
asymptotic behavior of actual solutions as x → 0 in sectors of
sufficiently small angular opening (Asymptotic existence theorem (cf.
Wasow)).

I If Q(x−1/s) ≡ 0, the point x = 0 is regular singular point of [A]. In
this case s = 1 and the formal series Φ(x) converges whenever the
series for A(x) does.

I Existence of Formal Solutions goes back to Turritin, Hukuhara, Levelt,
Balser-Jurkat-Lutz

I Efficient computation of Q [Barkatou 1997], [Pflügel 2000],
[Barkatou-Pflügel 2007]
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Classification of Singularities

Example: y ′′(z) = zy(z) (Airy Equation)

z =∞ is a singular point at ∞

x = 1
z ⇒ x5y ′′ + 2x4y ′ − y = 0

⇒ y′ =

(
0 1
1
x5
− 2

x

)
y

Formal Solution Matrix: Y = Φ(x)UxJU−1eQ(x)

Φ(x) = . . . , U =

(
1 1
1 −1

)
, J =

( 1
4 0
0 −3

4

)

Q =

(
− 2

3x3/2 0
0 2

3x3/2

)

M. Barkatou (CRM, Pisa 2017) 56 / 180



Classification of Singularities

Hukuhara-Turritin’s Normal Form

Any differential system [A] is equivalent over K to a system [B] of the form:

B = Γ1x
−k1−1 + Γ2x

−k2−1 + · · ·+ Γmx
−km−1 + (Γ0 + N)x−1

where
(a) k1 > k2 > · · · > km > 0 are rational numbers (k1 is Katz-invariant of

[A]),
(b) the Γj ’s and N are constant matrices,
(c) the Γj ’s are diagonal and commute with N.

Existence : Hukuhara (1930’s), Turritin (1950’s) , Wasow (1960’s),
Levelt, Jurkat, Lutz, Balser (1970’s) , Babbit& Varadajan (1980’s), etc.

Algorithms: Moser (1960’s), Dietrich (1970’s), Levelt, Wagenfuhrer,
Hilali&Wazner (1980’s), Chen , Barkatou, (1990’s), Pflügel (2000)

Efficient computation: [Barkatou 1997], [BP98], [Pflügel 2000]
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Classification of Singularities

What’s the point of knowing the Exp. Parts?
I Local analysis near a singularity:

I Asymptotic behavior of actual solutions

I Summability problems,

I Stokes multipliers, etc.

I Local data are useful for solving global problems:
I Computing exponential solutions of systems with coefficients in C(x) or

in an extension of C(x)

I Factorisation problems, Computing eigenrings

I Computing Hom(A,B)

I Testing the equivalence of two systems with rational function
coefficients
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Systems of First Kind

Systems of First Kind
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Systems of First Kind

Structure of Solutions

Consider a linear differential system of first kind: [A] : Y ′ = A(x)Y ,

A(x) =
1
x

∞∑
i=0

Aix
i , Ai ∈ Mn(C), A0 6= 0.

Thm Any system of first kind has a formal fundamental matrix solution of
the form

S(x)xΛ

where Λ is a constant matrix and S ∈ GL(n,C((x))).
Moreover, the formal series S(x) converges whenever the series for A(x)
does.

• Many Proofs: Sauvage (1886) developed a method, analogous to
Frobenius method for the scalar case.
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Systems of First Kind

Sauvage’s method
It constructs n linearly independent vector solutions y1, · · · , yn of the form

yj = xλj
nj−1∑
k=0

fk,j(x)
logk x
k!

(5)

where λj ∈ C, nj is a positive integer and the fkj ’s are vectors of power
series in x .
I the characteristic polynomial of the matrix A0 plays the role of the

indicial equation,
I each exponent λj is an eigenvalue of A0,
I the integer nj is the dimension of a Jordan block corresponding to λ,
f0,j(0), f1,j(0), . . . , fnj−1,j(0) is a Jordan chain of generalized
eigenvectors of A0 associated to λj ;

I and the other coefficients in the power series fk,j are given by linear
recurrence formulas.
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Systems of First Kind

Eulerian systems : Y ′ = Λ
xY , Λ ∈ Mn(C)

I A fundamental solution is given by xΛ = exp (Λ log x)
I The matrix Λ can be brought to its Jordan normal form J = P−1ΛP

by a suitable P ∈ GLn(C).
I Hence PxJ is as well a fundamental solution the system.
I The matrix xJ is a block-diagonal matrix, with blocks of the form

xλ


1 log x logν−1 x

(ν−1)!

0 1
. . .

...
. . . . . . log x

0 . . . 0 1


I λ is an eigenvalue of Λ and ν is the size of Jordan block associated

with λ.
I The entries of the fundamental matrix PxJ are of the form xλp(x)

where λ is an eigenvalue of Λ and p(x) is a polynomial in log x with
degree less than the size of a Jordan block associated to λ.
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Systems of First Kind

Another proof

I It is possible to construct a formal gauge transformation
S ∈ GL(n,C((x))) such that the transformed system S [A] has the
simple form of a Eulerian system Y ′ = x−1ΛY .

I Two cases are distinguished:
1. the non-resonant case: the residue matrix A0 has no eigenvalues that

differ from each other by positive integers,
2. the resonant case: A0 has eigenvalues differing by positive integers.

I In the first case, the exponent matrix Λ can be taken equal to the
residue matrix A0 itself and S0 = In,

I In the second case S0 is a singular matrix and Λ depends not only on
A0 but in all the coefficients A0,A1, · · · ,A` where ` is the largest
positive integer which is the difference of two eigenvalues of A0.

M. Barkatou (CRM, Pisa 2017) 63 / 180



Systems of First Kind

The non-resonant case

[A] : Y ′ = A(x)Y , A(x) =
A0

x
+
∞∑
i=1

Aix
i−1, Ai ∈ Mn(C), A0 6= 0.

Thm 1 If the eigenvalues of A0 do not differ by nonzero integers, then
there exists T ∈ GL(n,C[[x ]]) with T (0) = In such that
T [A] :=T−1AT − T−1T ′ = A0

x

Proof: Look for T =
∑∞

i=0 Tix
i satisfying: xT ′ = xAT − TA0.

Inserting the series of A and T in the above equation yields:

A0T0 − T0A0 = 0, (A0 − jIn)Tj − TjA0 = −
j−1∑
i=0

Aj−iTi , j ≥ 1. (6)

By choosing T0 = In, the Tj ’s are determined recursively by (6) which has
a unique solution since A0 − jIn and A0 have no common eigenvalues for
j ≥ 1 (see next slide).
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Systems of First Kind

Sylvester Equation

♦ Uniqueness of solution of (6) follows from the following well-known
Linear Algebra result :

I Let M and N be two square matrices of order m and n with entries in
a field C and having no common eigenvalues ( in the algebraic closure
of C). Then for every matrix L ∈ Matm,n(C) there exists a unique
matrix X ∈ Matm,n(C) such that MX − XN = L.

♦ The matrix X can be determined by solving a sparse system of mn linear
equations in mn unknowns (More efficient algorithms exist).
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Systems of First Kind

Systems of First Kind: The resonant case

[A] : Y ′ = A(x)Y , A(x) =
A0

x
+
∞∑
i=1

Aix
i−1, Ai ∈ Mn(C), A0 6= 0.

Thm 2 There exists T ∈ GL(n,C[x ]) with detT (x) 6= 0 for x 6= 0 such
that B = T [A] = x−1(B0 + xB1 + . . . ) where the eigenvalues of B0 do not
differ by nonzero integers.
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Systems of First Kind

Proof of Thm 2.
• Arrange eigenvalues of A0 in disjoint sets so that the elements in each set
differ only by integers.

• Let µ1, . . . , µs the elements of such a set:

<µ1 > <µ2 > . . . > <µs , µi − µi+1 = `i ∈ N∗, i = 1, . . . , s − 1.

• Let µs+1, . . . , µr denote the other eigenvalues of A0.

• For i = 1, . . . , r , denote by mi the multiplicity of µi .

• By applying a constant gauge transformation we can assume that:

A0 =

(
A11

0 0

0 A22
0

)
,

where A11
0 is an m1 by m1 matrix having one single eigenvalue µ1 :

A11
0 = µ1Im1 + N1

N1 being nilpotent matrix.
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Systems of First Kind

• Apply the gauge transformation U = diag(xIm1 , In−m1) yields the new
system:

Z ′ = x−1B(x)Z , B(x) = xU−1A(x)U − xU−1U ′

with the leading matrix:

B(0) =
(
A0 + xU−1A1U − xU−1U ′

)
|x=0 .

• Let A1 be partitioned as A0 :

A1 =

(
A11

1 A12
1

A21
1 A22

1

)
, A11

1 ∈ Cm1×m1

Then

B(0) =

(
A11

0 − Im1 A12
1

0 A22
0

)
.

Hence the eigenvalues of B(0) are: µ1 − 1, µ2, . . . , µs , . . . , µr , each with
the same initial multiplicity mi .
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Systems of First Kind

• By repeating this process `1 times, the eigenvalues become:

µ1 − `1 = µ2, µ2, . . . , µs , . . . , µr .

• Thus, after `1 + . . .+ `s−1 steps, the eigenvalues µ1, . . . , µs are reduced
to one single eigenvalue µs of multiplicity m1 + . . .+ ms .

• By applying the same process to the other groups of eigenvalues, one
obtains a matrix B0 whose eigenvalues do not differ by positive integer. •

The matrix T in Thm2 is obtained as a product of invertible constant
matrices or matrices of type U.
Hence T is a polynomial matrix whose determinant is nonzero.

• The degree of T (x) is bounded by ` the largest integer difference
between the eigenvalues of the residue matrix A0.
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Systems of First Kind

Example

A(x) =


2 x−1 − 2 −2 + x−1 0

2 2 x−1 + 2 x

3 3 x−1

 A0 =


2 1 0

0 2 0

0 0 1

 .

Put U = diag(x , x , 1) and let B := xU[A]

B(x) = xU−1AU − xU−1U ′ =


−2 x + 1 −2 x + 1 0

2 x 1 + 2 x x

3 x2 3 x2 1

 .

B0 =


1 1 0

0 1 0

0 0 1


which has 1 as eigenvalue of multiplicity 3.
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Systems of Second Kind

Part 2 : Systems of Second Kind - Fundamental
Algorithms
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Systems of Second Kind

Outline

1. Formal Solutions

2. How to recognize a regular singularity? Moser Algorithm

3. Splitting Lemma

4. Formal Reduction

5. Katz Invariant

6. Formal Solutions
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Formal Solutions

Formal Solutions of a Singular Differential System

M. Barkatou (CRM, Pisa 2017) 73 / 180



Formal Solutions

Formal Solutions
A differential equation

Y ′ = AY , A ∈ Mn(C[[x ]][x−1])

has a formal fundamental matrix solution of the form

Φ(x1/s)xΛ exp
(
Q(x−1/s)

)

s ∈ N∗, Φ ∈ GL(n,C[[x1/s ]]),

Q(x−1/s) = diag
(
q1(x−1/s), . . . , qn(x−1/s)

)
the qi ’s are polynomials in x−1/s

Λ is a constant matrix commuting with Q.
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Formal Solutions

Exponential Part

I Q is invariant under gauge transformations T ∈ GL(n,C((x))).

I x = 0 is regular singular ⇐⇒ Q(x−1/s) ≡ 0. In this case s = 1 and
the formal series Φ(x) converges whenever the series for A(x) does.

I When Q(x−1/s) 6≡ 0, the origin is an irregular singular point of the
system. In this case Φ(x) need not be convergent even if the series for
A(x) does.

I The elements of Q(x−1/s) determine the main asymptotic behavior of
actual solutions as x → 0 in sectors of sufficiently small angular
opening (Asymptotic existence theorem (cf. Wasow)).
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Formal Solutions

I Existence :
I Matrix Case: Hukuhara (1930’s), Turritin (1950’s) , Wasow (1960’s),

Levelt , Jurkat, Lutz, Balser (1970’s) , Babbit& Varadajan (1980’s), . . .

I Scalar Case: Fabry (1885), Poincaré (1886), Malgrange (1978), . . .

I Algorithms (for related problems):
I Matrix Case: Moser (1960’s), Dietrich (1970’s), Levelt, Wagenfuhrer,

Hilali&Wazner (1980’s), Chen , Barkatou, (1990’s), Pflügel (2000),
Barkatou (2004), Barkatou-Pflügel (2007)

I Scalar Case: Frobenius method- Newton Algorithm : Della-Dora et al.
(1986), Dietrich (1986), Barkatou (1988), . . .

I Efficient computation (Matrix case): [Barkatou 1997],
[Barkatou-Pflügel 1999], [Pflügel 2000], [Barkatou-Pflügel 2007]
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Formal Solutions

Examples

• Euler Equation: x2y ′ + y = x

It has a formal power series solution f̂ =
∑∞

n=0(−1)nn!xn+1

Homogeneous Equation: x3y ′′ + (x2 + x)y ′ − y = 0

⇒ dY
dx =

(
0 1
1
x3
−( 1

x + 1
x2

)

)
Y , Y =

(
y
y ′

)
Formal Solution Matrix: Y = Φ(x)eQ

Q =

( 1
x 0
0 0

)
Φ(x) =

(
1 f̂

− 1
x2

f̂ ′

)
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Formal Solutions

Systems of Second Kind
A matrix linear differential equation with Poincaré rank p > 0 :

[A] Y ′ = AY ,

A(x) =
1

xp+1

∞∑
i=0

Aix
i , Ai ∈ Mn(C), A0 6= 0.

I System [A] has a regular singularity at x = 0 if it is equivalent to a
system of the first kind (for which p=0).

I Problem: Give an algorithm to decide for any system of second kind
whether it has regular singularity.
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Moser Reduction

Systems of Second Kind with Regular Singularity
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Moser Reduction

How to recognize a regular singular system?

Problem 1: Given a system [A] of second kind, i.e. with Poincaré rank
p(A) > 0, to decide whether it is regular singular or not.

In other words, to decide if the Poincaré rank of the given system can be
reduced to 0 or not?

Problem 2: Given a system [A] with Poincaré rank p(A) > 0, to decide
whether there exists T ∈ GL(n,K ) such that p(T [A]) < p(A).

There is an algorithm due to Moser (1960) which transforms a given
system [A] to an equivalent one with minimal Poincaré rank.

Other methods for reducing Poincaré rank (to its minimal value): Levelt
(1992), Wagenfurer (1989), . . . , Barkatou &El Bacha (2012).
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Moser Reduction

Moser Reduced Systems

A(x) =
1

xp+1

∞∑
i=0

Aix
i , Ai ∈ Mn(C), A0 6= 0, p ∈ Z.

Moser rank: m(A) = p + rank(A0)
n if p > 0, otherwise m(A) = 1.

Moser invariant: µ(A) = min {m(T [A]) | T ∈ GL(n,C((x)))}

Definition. [A] is said to be Moser-reducible if m(A) > µ(A).

• [A] is Moser-reducible ⇐⇒ ∃T ∈ GL(n,C((x))) such that
m(T [A]) < m(A).

• x = 0 is regular singular for [A] ⇐⇒ µ(A) = 1.
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Moser Reduction

A Criterion for Moser-reducibility
Theorem. [Moser 1960]
1. If p > 0 then A is Moser-reducible iff the polynomial

ΘA(λ) := x rank(A0) det (λI − A0/x − A1)|x=0
≡ 0.

2. If A is Moser reducible then the reduction can be carried out with a
transformation of the form
T = (P0 + xP1)diag(1, . . . , 1, x , . . . , x), Pi ∈ Cn×n, detP0 6= 0.

I Applying Moser’s Theorem several times, if necessary, µ(A) can be
determined.

I Further, a matrix polynomial T ∈ GL(n,K ) such that
m(T [A]) = µ(A) can be computed in this way
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Moser Reduction

Remarks

I Moser’s initial intention: classification of singularity

I Barkatou (1997): also useful for computing formal solutions in the
irregular singular case.

I Moser’s Theorem can be applied to a system [A] for diminishing the
number p(A), when it is possible.

I A necessary condition that there exist a gauge transformation

T ∈ GL(n,C((x))) such that T [A] =
1

xp′+1 (B0 + B1x + · · · ) with

p′ < p (B0 6= 0), is that A0 is nilpotent.
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Moser Reduction

Review: Moser Reduction Algorithms

I There are various algorithms to compute T such that T [A] is
Moser-reduced.

I Moser’s paper: no constructive algorithm given
I Dietrich (1978), Hilali/Wazner (1987): first efficient algorithms,
I Barkatou (1995): version for rational function coefficients,

implemented in ISOLDE
I Barkatou-Pflügel (2007): New reduction algorithm + complexity

analysis.
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Moser Reduction

Description of Moser Algorithm
I By a constant gauge transformation we can put A0 in the form:

A0 =

(
A11

0 0
A21

0 0

)
, A11

0 ∈ Cr×r r = rank(A0).

I Let A1 be partitioned so that A11
1 is a square matrix of order r :

A1 =

(
A11

1 A12
1

A21
1 A22

1

)
,

I Consider

Gλ(A) =

(
A11

0 A12
1

A21
0 A22

1 + λIn−r

)
.

I Then detGλ(A)) = ΘA(λ).
I A is Moser-reducible ⇐⇒ detGλ(A) ≡ 0.
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Moser Reduction

Case 1: rank(A11
0 A12

1 ) < r

A is Moser-reducible ⇐⇒
∣∣∣∣ A11

0 A12
1

A21
0 A22

1 + λIn−r

∣∣∣∣ = 0.

Proposition 1 If m(A) > 1 and rank(A11
0 A12

1 ) < r , then A is reducible
and the reduction can be carried out with the gauge transformation

T = diag(xIr , In−r ).

Proof: Let B = T [A] = T−1AT − T−1 dT
dx .

B = x−p−1[B0 + xB1 + · · · ] + x−1diag(Ir , 0)

where

B0 =

(
A11

0 A12
1

0 0

)
,

Since p > 0, then m(B) = p + rank(B0)/n < m(A) = p + r/n.
M. Barkatou (CRM, Pisa 2017) 86 / 180



Moser Reduction

Example

A = x−2

(
0 0

2 0

)
+ x−1

(
4 0

0 −3

)
+

(
0 −4

0 0

)
.

Here p = 1, r = 1 ⇒ m(A) = 1 + 1/2 = 3/2 > 1.

detGλ(A) =

∣∣∣∣ 0 0
2 −3 + λ

∣∣∣∣ = 0 ⇒ A is Moser-reducible.

Let

T =

(
x 0

0 1

)

B := T [A] = T−1AT − T−1T ′ =
1
x

(
3 −4

2 −3

)
.

The system Z ′ = BZ has a singularity of first kind at x = 0.

Hence Y ′ = AY has a regular singularity at x = 0.
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Moser Reduction

To solve Y ′ = AY , it suffices to solve Z ′ = BZ whose solution can be
obtained immediately since B = x−1B0 where B0 is the constant matrix:

B0 =

(
3 −4

2 −3

)
.

The matrix B0 is diagonalizable:

B0 = P−1JP, où P =

(
−1 2

−1 1

)
et J =

(
−1 0

0 1

)
.

⇒ PxJ is a fundamental matrix solution for Z ′ = BZ .

It follows that

W = TPxJ =

(
x 0

0 1

)(
−1 2

−1 1

)(
x−1 0

0 x

)
=

(
−1 2 x2

−x−1 x

)

is a fundamental matrix solution of Y ′ = AY .
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Moser Reduction

Case 2: rank(A11
0 A12

1 ) = r

Proposition 2 If A is reducible and rank(A11
0 A12

1 ) = r , then there exists a
constant matrix Q such that the matrix Gλ(Q[A]) has the form has the
following particular form:

Gλ(A) =

 A11
0 U1 U2
V1 W1 + λIn−r−h W 2
0 0 W3 + λIh

 , (7)

where 1 ≤ h ≤ n− r , W 1, W 3 are square matrices of order (n− r − h) and
h respectively, W3 is upper triangular with zero diagonal with the condition

rank(A11
0 U1) < r (8)

M. Barkatou (CRM, Pisa 2017) 89 / 180



Moser Reduction

Proposition 3 If m(A) > 1 and Gλ(A) has the form (7) with the condition
(8), then A is reducible and the reduction can be carried out with the
transformation

T = diag(xIr , In−r−h, xIh)

Proof: Put B = T [A] = T−1AT − T−1 dT
dx . One has

B = x−p−1[B0 + xB1 + · · · ] + x−1diag(Ir , 0, Ih)

where

B0 =

 A11
0 U1 0
0 0 0
0 0 0

 ,

and then rank(B0) = rank(A11
0 U1) < r = rank(A0). On the other hand

since p > 0, then m(B) = p + rank(B0)/n. Hence m(B) < m(A).
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Moser Reduction

Summary
If A is Moser-reducible and m(A) > 1 then one can construct a matrix
polynomial S of the form :

S = Udiag(x , x , · · · , x , 1, 1, · · · , 1)

where U ∈ GL(n,C), such that m(S [A]) < m(A).

I Moser’s Theorem allows us to check whether A is Moser-reducible.
I If A is Moser-reducible then by the above theorem we can find a

matrix S such that m(S [A]) < m(A).
I After this reduction has been carried out we can apply Moser’s

Theorem to check whether further reduction is possible and so on.
I After a finite number of steps we obtain at most np an equivalent

matrix B such that m(B) = µ(A).
I The nature of the singularity depends on the first np coefficients in

the series expansion of A
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Moser Reduction

Example
Consider the system [A] dY

dx = A(x)Y

A(x) =


−2 x−1 0 x−2 0

x2 −−1+x2

x x2 −x3

0 x−2 x 0

x2 x−1 0 − x2+1
x


Here

p = 1, r = rank(A0) = 2.

Hence
m(A) = 1 + 2/4 = 3/2 > 1.

One can check that

ΘA(λ) := x rank(A0) det (λI − A0/x − A1)|x=0
≡ 0

Hence A is Moser reducible.
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Moser Reduction

The equivalent matrix B computed by our implementation is

B(x) =


− x2+1

x x 1 −x

x−1 −1+x2

x 0 0

0 x−1 −2 x−1 0

x 0 x2 − x2+1
x


The transformation T is 

0 0 1 0

x2 0 0 0

0 x 0 0

0 0 0 1


Hence [A] is singular regular.
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Moser Reduction

Consider the system dY
dx = x−1A(x)Y where

A(x) =


4 x3 −2 x6 −x6

0 −1− x−1 x−1 0
x−7 0 x−1 − 2 x−1

x−5 + x−6 −x−2 x2 + x + x−2 −3


Here m(A) = 7 + 1/4 = 29/4.

x−1B(x) =


−2− x−1 0 x−1 0
x−2 − x−1 x − 1 x3 + x2 − 2 x + x−1 −3− x

0 x−2 x−1 − 3 0
−x−1 x + 1 x3 + x2 + x−1 −x − 4


The transformation T is 

0 x6 0 −x6

x 0 0 0
0 0 x 0
0 0 0 1


One has µ(A) = m(B) = 2 + 2/4 = 5/2.
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Irregular Singularity

Systems of Second Kind with Irregular Singularity
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Irregular Singularity

Formal Solutions
Consider a system [A] Y ′ = AY with minimal Poincaré rank p > 0 :

A(x) =
1

xp+1

∞∑
i=0

Aix
i , Ai ∈ Mn(C), A0 6= 0.

System [A] has a formal fundamental matrix solution of the form

Φ(x1/s)xΛexp
(
Q(x−1/s)

)

s ∈ N∗, Φ ∈ GL(n,C((x1/s))),

Q(x−1/s) = diag
(
q1(x−1/s), . . . , qn(x−1/s)

)
the qi ’s are polynomials in x−1/s over C without constant term
Λ is a constant matrix commuting with Q.
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Irregular Singularity

How to compute the formal solutions of [A] ?

Formal Reduction : an algorithmic procedure that allows construction of
formal solutions.

Main idea: Transformation of system into new system with smaller p or n

Important tools: Moser Algorithm, Splitting Lemma, Katz Invariant
computation.

• Discussion depending on structure of A0. We distinguish two cases:

1. Case 1: A0 has at least two eigenvalues.
2. Case 2: A0 has only one eigenvalue.
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Splitting Lemma

Case 1- The Splitting Lemma

M. Barkatou (CRM, Pisa 2017) 98 / 180



Splitting Lemma

Splitting Lemma
Theorem: Consider a system [A] : Y ′ = A(x)Y

A(x) = x−p−1
∞∑
i=0

Aix
i , A0 6= 0, p > 0 and assume that A0 is

block-diagonal

A0 =

(
A11

0 0
0 A22

0

)
with spec(A11

0 ) ∩ spec(A22
0 ) = ∅.

Then there exists a gauge transformation of the form

T (x) =
∞∑
j=0

Tjx
j (T0 = In)

such that the matrix B := T [A] is block-diagonal matrix with the same
block partition as in A0

B = x−p−1
(

B11(x) 0
0 B22(x)

)
.
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Splitting Lemma

Sketch of Proof

• Put T0 = In and B0 = A0

• Look for matrices Ti of the special form

Ti =

(
0 T 12

i

T 21
i 0

)
, Bi =

(
B11
i 0
0 B22

i

)
.

• Then for i ≥ 1 the coefficients Ti and Bi can be obtained by successively
solving Sylvester linear equations of the form

A11
0 X − XA22

0 = Ui or A22
0 Y − YA11

0 = Vi

where Ui and Vi depend only on Aj ,Bj ,Tj for j = 0, . . . , i − 1.
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Splitting Lemma

A very simple situation
A(x) = xp−1

∞∑
i=0

Aix
i , A0 6= 0, p > 0.

Corollary. If A0 has all distinct eigenvalues, then there exists
T ∈ GL(n,C[[x ]]) such that T [A] is a diagonal matrix.

If B0 := P−1A0P = diag(β1, . . . , βn) with βi 6= βj for i 6= j

for some P ∈ GL(n,C), then there exists a formal transformation

T (x) =
∑
j≥0

Tjx
j (T0 = P)

such that

T [A] =


β1

xp+1 + O( 1
xp ) 0

. . .
0 βn

xp+1 + O( 1
xp )
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Splitting Lemma

Case 2- The Nilpotent Case
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Splitting Lemma

Reduction to the Case where A0 is Nilpotent
Let

A(x) =
1

xp+1

∞∑
i=0

Aix
i , A0 6= 0, p > 0.

I Apply the Splitting Lemma to decouple [A] along the spectral
subspaces of A0:

A = A(1) ⊕ · · · ⊕ A(k)

The leading matrix of each subsystem has only one eigenvalue.

I If A0 = αI⊕ N , with N nilpotent then apply the substitution
Y = exp (−αpxp )Z which replace A by A− α

xp+1 I .

This makes A0 nilpotent.

I If necessary, apply the Moser algorithm to replace the system by an
equivalent one with minimal Poincaré rank p.
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Splitting Lemma

The case A0 nilpotent and p > 0 minimal

I In this case we need algebraic extension of K :
Gauge transformations in C((x1/m)), for suitable integer m ≥ 2, are
applied to get an equivalent system [Ã] with leading coefficient Ã0
having distinct eigenvalues.

I How to choose m?

Compute κ, the Katz invariant of [A] (see below) and let m be the
smallest positive integer such that mκ is an integer.

I Using Moser Algorithm yields a system with Poincaré rank equal to
mκ and leading matrix A0 with at least two eigenvalues.

I So we can again split the problem into problems of lower size, and so
on.
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Katz Invariant

Katz Invariant
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Katz Invariant

Katz Invariant
Definition: The Katz Invariant of [A] is the rational number

κ(A) = max
1≤j≤n

deg1/x (qj)

where the qj are the entries of the exponential part Q of [A].

Fact: κ(A) ≤ p(A) with equality iff A0 is non-nilpotent.

If [A] is Moser-reduced and its leading coefficient A0 is nilpotent then κ(A)
is not an integer.

Theorem[Bark05] Suppose A Moser reduced and A0 nilpotent. Then

p(A)− 1 +
r

n − d
≤ κ(A) ≤ p(A)− 1

r + 1

where r = rank(A0) and d = degΘA(λ).
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Katz Invariant

Example 1

A(x) =
1
x4


0 0 x 0

1 −x2 x2 −x2

0 1 x2 0

x2 x2 0 −x2

 has Poincaré rank p(A) = 3.

A0 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0

 is nilpotent and has rank r = 2.

ΘA(λ) = λ is not zero and has degree d = 1.

The above theorem tells us:
2 + 2/3 = p(A)− 1 +

r

n − d
≤ κ(A) ≤ p(A)− 1

r + 1
= 3− 1/3.

Hence κ(A) = 8/3.
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Katz Invariant

How to obtain Katz Invariant?
• If D(y) = ∂ny + cn−1(x)∂n−1y + · · ·+ c1(x)∂y + c0(x)y = 0
is an equation obtained from the system [A] via a cyclic vector, then

κ(A) = max
(
0, max

0≤j<n

(−n + j − val(cj)
n − j

))
Theorem[Bark05] Let A be Moser-reduced, put r = rank(A0),
d = deg(ΘA(λ)) and write

det (λI − A(x)) = λn + an−1(x)λn−1 + · · ·+ a0(x).

Suppose
(C) p(A) ≥ (1− r

n − d
)(r + 1).

Then

κ(A) = max
(
0, max

0≤j<n

(−n + j − val(aj)
n − j

))
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Katz Invariant

Back to Example 1
[A] is Moser-reduced, p = 3, r = 2, d = 1.

Condition (C ) in the above theorem is satisfied.

One can compute κ(A) using the above formula:

det (λI − A(x)) = λ4 +
λ3

x2 −
λ2

x6 +

(
−2 x7 − x2 − x5)λ

x13 +
x2 − 1
x13 .

One has

val(a3) = −2, val(a2) = −6, val(a1) = −11, val(a0) = −13.

Hence

κ(A) = max
(
0, max

0≤j<n

(−n + j − val(aj)
n − j

))
= max

{
0, 1, 2,

8
3
,
9
4
}

=
8
3
.

M. Barkatou (CRM, Pisa 2017) 109 / 180



Katz Invariant

Remarks

• It is always possible to come down to the case where Condition (C) is
fulfilled.

Idea: If p(A) < (1− r

n − d
)(r + 1), use a ramification x = ts where

s ≥ n − r − d

p − 2 + r/(n − d)
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Katz Invariant

What do we gain by computing Katz invariant?

Suppose [A] be Moser-reduced and A0 nilpotent and let κ(A) = `
m with

(`,m) ∈ N× N with gcd(`,m) = 1.

Put t = x1/m and let [Ã] denote the resulting system:

dY

dt
= ÃY , Ã(t) = mtm−1A(tm).

Then there is a T ∈ GL(n,C((t))) such that
I B̃ := T [Ã] has Poincaré rank equal to `
I its leading matrix B̃0 has at least m distinct eigenvalues.

Remark The transformation T is in fact polynomial in t and can be
computed using Moser Algorithm.
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Katz Invariant

Back to our example
We have

κ(A) =
8
3
.

The change of variable
x = t3

yields
dY

dt
= Ã(t)Y

where

Ã(t) =
3
t10


0 0 t3 0

1 −t6 t6 −t6

0 1 t6 0

t6 t6 0 −t6

 .
One can check that this system is not Moser-reduced.
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Katz Invariant

Moser Algorithm produces the gauge transformation

Y = SZ

where
S = diag(t2, t, 1, 1),

and the equivalent system

dZ

dt
= B̃(t)Z , B̃(t) =

1
t9


−2 t8 0 3 0

3 −3 t5 − t8 3 t4 −3 t4

0 3 3 t5 0

3 t7 3 t6 0 −3 t5


Its Poincaré rank is equal to 8 as expected.
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Katz Invariant

The leading matrix is

B̃0 =


0 0 3 0

3 0 0 0

0 3 0 0

0 0 0 0


is non nilpotent and has 4 distinct eigenvalues

0, 3, 3j , 3j2

with j3 = 1.

The system can be then decoupled into 4 scalar equations.
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Katz Invariant

One fundamental formal solution can be written as

Ŷ (x) = F̂ (x)

[
e1/x 0
0 xJUeQ(1/x)

]
where F̂ (x)is a meromorphic formal series in x ,

J = −1
3

1 0 0
0 1/3 0
0 0 2/3

 , U =

1 1 1
1 j j2

1 j2 j4


and

Q(1/x) =

q(1/t) 0
0 q(1/(jt)) 0
0 0 q(1/(j2t))


with

t = x1/3 q
(1
t

)
=
−3
8t8
− 1

4t4
.
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Katz Invariant

An Important Question

Given a matrix

A(x) = x−p−1(A0 + A1x + · · · ), p > 0

• Question: How many terms in
∑∞

i=0 Aix
i−p−1 are necessary for

computing the exponential part Q(x−1/s) of the system[A]?

• The answer can be found in Lutz-Schäfke (1986) or Babbit-Varadarajan
(1983):
The exponential part Q(x−1/s) is determined by the coefficients

A0,A1, · · · ,Anp−1
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Katz Invariant

Example

A =


− 5

x2
5
x2

−x−3 4
x2

0 1−4 x
x3

−x−2 − 2
x2

2 x+1
x3

1−5 x
x3

2−3 x
x3

1−4 x
x3

0 4
x2

x−2 1+x
x3



> Rational_Exponential_Part(A, x);

[x = αt2,
−9

8 + 7α
4

t
+
−1/4− 11α

4
t2

+
2α
3 t3

+
1

2 t4
]

where

α = RootOf (_Z 2 + 1)
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Introductory examples

Part 3: Applications to Solving Systems with
Rational Function Coefficients
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Introductory examples

1. Polynomial Solutions

2. Rational Solutions

3. Exponential Solutions

4. Factorization Using Eigenrings

5. Implementations in Maple
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Introductory examples

Example (see Phd Thesis of C. Raab (2012))∫
Ai ′(x)2 dx = y0(x)Ai(x)2 + y1(x)Ai(x)Ai ′(x) + y2(x)Ai ′(x)2

with y0, y1, y2 ∈ Q(x)
Differentiate

Ai ′(x)2 = (y ′0(x) + xy1(x))Ai(x)2 +

(y ′1(x) + 2y0(x) + 2xy2(x))Ai(x)Ai ′(x) +

(y ′2(x) + y1(x))Ai ′(x)2

Coefficient comparison y0(x)
y1(x)
y2(x)

′ +
 0 x 0

2 0 2x
0 1 0

 y0(x)
y1(x)
y2(x)

 =

 0
0
1


∫

Ai ′(x)2 dx = 1
3

(
xAi ′(x)2 + 2Ai(x)Ai ′(x)− x2Ai(x)2)
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Introductory examples

Example∫
x(e2x − n2)Jn(ex) dx = y0(x)Jn(ex) + y1(x)Jn+1(ex)

with y = (y0, y1) ∈ C (x , ex)2 s.t.(
y0(x)
y1(x)

)′
+

(
n ex

−ex −(n + 1)

)(
y0(x)
y1(x)

)
=

(
x(e2x − n2)

0

)
Translate to C (x , t) with C = Q(n) and t ′ = t:

y′ +
(

n t
−t −(n + 1)

)
y =

(
x(t2 − n2)

0

)

y =

(
−nx + 1

xt

)
∫

x(e2x − n2)Jn(ex) dx = (−nx + 1)Jn(ex) + xexJn+1(ex)
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Introductory examples

Integration

I

∫
Ai ′(x)2 dx = 1

3

(
xAi ′(x)2 + 2Ai(x)Ai ′(x)− x2Ai(x)2)

I

∫
x(e2x − n2)Jn(ex) dx = (−nx + 1)Jn(ex) + xexJn+1(ex)

I

∫
Pn(x)− xn−1Pn+1(x) dx = xn−1

n (xPn(x)− Pn+1(x))
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Polynomial Solutions

Polynomial Solutions
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Polynomial Solutions

Polynomial Solutions [B99]

Let K = C(x) and ϑ = x d
dx .

• Linear Differential System :

[A] ϑy = A(x)y ,

A(x) is an n × n matrix with entries in K .

• Polynomial Solutions : functions y ∈ C[x ]n such that ϑy = Ay .

• Problem : Given a system [A] to construct the space of polynomial
solutions of [A].

I A first important step consists in computing a bound N on the degree
of polynomial solutions.
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Polynomial Solutions

Bound of The Degree of Polynomial Solutions

I A first important step consists in computing a bound N of the degree
of polynomial solutions.

I Such a bound can be obtained from the so-called indicial equation (at
x =∞) of the system [A].

I But the indicial equation is not immediately apparent for a given
system.

I Need to transform the given system to a suitable form called ‘simple
form’ from which the indicial equation can be immediately obtained.

I Every system can be reduced to an equivalent simple one
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Simple Systems

Simple Systems
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Simple Systems

Simple Systems [B99, BP99]

Consider the system

[A] ϑy = Ay , A = (ai ,j) ∈ Mn(C(x)).

We are interested in Frobenius series solutions in x−1 of the form:

ŷ =
+∞∑
i=0

x−i−λ0 ŷi λ0 ∈ C, ŷi ∈ Cn, ŷ0 6= 0.

• A polynomial solution of degree N can be viewed as a Frobenius series
solution (at x =∞) with exponent λ0 = −N.

• Look for a condition on λ0 in order that ŷ be a solution of system [A].
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Simple Systems

How to do this?
Consider the system

[A] ϑy = Ay , A = (ai ,j) ∈ Mn(C(x)).

Let
D = diag(x−α1 , . . . , x−αn),

where
αi = max

1≤j≤n
(deg (ai ,j), 0), for 1 ≤ i ≤ n

For 0 6= f ∈ C(x), deg(f ) = deg (num(f ))− deg (denom(f )).

Multiplying on the left by D, both sides of Equation [A], we get

D(x)ϑy − C (x)y = 0, C = DA.

where D(x),C (x) ∈ C[[x−1]].
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Simple Systems

Let
L(y) := D(x)ϑy − C (x)y ,

where D(x),C (x) ∈ C[[x−1]].
We are interested in formal solutions of L(y) = 0 of the form:

ŷ =
+∞∑
i=0

x−i−λ0 ŷi λ0 ∈ C, ŷi ∈ Cn, ŷ0 6= 0.

Put
C = C0 + O(x−1), D = D0 + O(x−1).

Then
L(ŷ) = −x−λ0

(
(λ0D0 + C0)ŷ0 + O(x−1)

)
.

If L(ŷ) = 0 then (λ0D0 + C0)ŷ0 = 0
wich implies

det (C0 + λD0) = 0.
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Simple Systems

Indicial Equation of a Simple System
♦ To system [A] we associate the polynomial

E∞(λ) := det (C0 + λD0).

I If y is a nonzero polynomial solution of [A] of degree N then
E∞(−N) = 0.

I The degree of polynomial solution can be bounded by the biggest
nonnegative integer root of E∞(−λ).

♦ It may happen that E∞(λ) vanishes identically, in which case it is quite
useless for our initial purpose. This motivates the following definition

Definition
The system [A] is called simple at x =∞ if det (C0 + λD0) 6= 0 (as a
polynomial in λ).
In this case E∞(λ) is called the indicial polynomial of [A] at x =∞.
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Simple Systems

Example: Systems of First Kind

[A] x
d

dx
y = A(x)y ,

A(x) =
∞∑
i=0

Aix
−i .

In this case x =∞ is at worst a singularity of the first kind.

I In this case D0 = In and C0 = A0. Hence

E∞(λ) = det (A0 + λIn) 6= 0.

I The system [A] is simple and its indicial polynomial is the
characteristic polynomial of the matrix −A0.
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Simple Systems

Systems Associated with a Scalar Differential Equation

A =


0 1 0 0
0 0 1 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . an−1

 , ai ∈ C(x)

Here D0 = diag(1, . . . , 1, ε) where ε = 1 or 0.
The matrix C0 is given by

C0 =


0 1

0 1

1
ā0 ā1 ān−1


with āj = `c∞(aj) if ord∞aj = min0≤i≤n ord∞ai , and 0 otherwise.
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Simple Systems

• It then follows that

det (C0 + λD0) =
∑

ord∞aj=min0≤i≤n ord∞ai

āj(−λ)j ,

which is a nonzero polynomial in λ.

• Any companion differential system is simple.

• Consequence: Any differential system can be reduced to an equivalent
simple one (Use cyclic vector lemma)
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Simple Systems

An Example of a Non Simple System

x
dy

dx
= Ay , A =

[
1 x3

2x−1 1

]
.

One has

D =

[
x−3 0

0 1

]
and C = DA =

[
x−3 1

2x−1 1

]
.

Thus

D0 =

[
0 0

0 1

]
and C0 =

[
0 1

0 1

]
One has

det (C0 + λD0) = 0.

Hence [A] is not simple at ∞.
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Simple Systems

Is it possible to make it simple, and if yes how?
♦ The answer is ’YES’: any differential system can be reduced to an
equivalent simple one.
♦ It can be done by using polynomial gauge transformations
♦ In this example, we put

w = Ty

where

T =

[
0 x2

1 0

]
Then w satisfies the equivalent differential system

x
dw

dx
= Ãw

where

Ã =

(
TA + x

dT

dx

)
T−1 =

[
3 2 x

x 1

]
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Simple Systems

x
dy

dx
= Ãy , Ã =

[
3 2 x

x 1

]
.

One has

D̃ =

[
x−1 0

0 x−1

]
and C̃ = D̃Ã =

[
3x−1 2

1 x−1

]
.

Thus

D̃0 = 0 and C̃0 =

[
0 2

1 0

]
One has

det (C̃0 + λD̃0) = det(C̃0) = −2.

Hence [Ã] is simple at ∞.

Remark: The indicial polynomial at ∞ is constant, hence system [A] has
no nonzero polynomial solution.
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Simple Systems

Simple forms can be computed effeciently

Theorem (Bark1997)
Given a differential system [A] ϑy = Ay , one can construct a nonsingular
matrix T polynomial in x such that the gauge transformation w = Ty

takes [A] into an equivalent system [Ã] ϑw = Ãw which is simple at ∞.

• Such a transformation T can be constructed using the super-reduction
algorithm (Hilali and Wazner (1987), Barkatou-Pflügel 2007) or a more
recent algorithm by Barkatou and C. El Bacha (2012).

Remark. The fact that the transformation T can be chosen polynomial is
important: if y is a polynomial solution of [A] w = Ty is a polynomial
solution of the equivalent system [Ã].
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Simple Systems

Remarks

I This notion of simple systems extends to the case of finite singularities
→ useful for computing denominators of rational solutions.

I Another application: computation of regular formal solution
(Barkatou-Pflügel 1997), (El Bacha 2011).
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Rational Solutions

Rational Solutions
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Rational Solutions

Rational Solutions [B99]

Let K = C(x) and ϑ = x d
dx .

• Linear Differential System :

[A] ϑy = A(x)y ,

A(x) is an n × n matrix with entries in K .

• Rational Solutions : functions y ∈ Kn such that ϑy = Ay .

• Problem : Given a system [A], to construct the space SA of rational
solutions of [A].
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Rational Solutions

Let SA be the space of rational solutions of [A].

We proceed in two steps :

STEP 1. Construct a universal denominator for [A], i.e. a polynomial (or
rational function) u(x) such that

for all y ∈ C(x), if y ∈ SA then uy is a polynomial.

STEP 2. If u is a universal denominator for [A] then set

w = uy

and search for polynomial solutions of the resulting system in w :

ϑw = (A(x) + u−1ϑu In)w .
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Rational Solutions

Computing Denominators of Rational Solutions
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Rational Solutions

Universal Denominator
The problem: Given a differential system

[A] ϑy = A(x)y ,

to find a rational function u such that
for all y ∈ C(x), if y ∈ SA then uy is a polynomial.

Some Facts:

I If y ∈ SA then the finite poles of y are poles of A.

I Given a pole x0 of A, one can reduce the system [A] to an equivalent
system which is simple at x = x0.

I The reduction can be achieved by a polynomial gauge transformation.
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Rational Solutions

I To each point x0 corresponds an indicial polynomial Ex0(λ) ∈ C[λ]

I If y is a nonzero rational solution with a pole of order m at x0 then
Ex0(−m) = 0.

I If for some pole x0 of A the corresponding indicial polynomial has no
integer root then SA = {0}.

I For each pole x0 of A put:

mx0 = min{µ ∈ Z : Ex0(µ) = 0}

Then
u(x) =

∏
(x − x0)−mx0

is a universal denominator for [A].
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Rational Solutions

Complexity Estimate
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Rational Solutions

Rational solutions of Differential systems

� C computable field of char. zero, K = C (x)

Y ′ = AY , A ∈ Mn(K ), denom(A) =
s∏

i=1

qi (x)ri+1

� Algorithm for computing rational solutions (Barkatou’99):

I Compute a universal denominator U =
∏s

i=1 qi (x)mi :

if Y is a rational solution then Z = UY is a polynomial vector.

I Compute polynomial solutions of Z ′ = (A + (U ′/U) In)Z
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Rational Solutions

Complexity estimate
Y ′ = AY , A = (ai ,j)i ,j ∈ Mn(K ), denom(A) =

∏s
i=1 qi (x)ri+1

d :=
s∑

i=1

(ri + 1) deg(qi )

r∞ := max
(
max
i ,j

(1 + deg(num(ai ,j))− deg(den(ai ,j))) , 0
)

� Arithmetic (operations in C ) complexity estimate:
I Universal denominator: simple form at qi , integer roots of the indicial

polynomial: O(n5 maxi (ri ) d)

I Polynomial solutions: degree bound (simple form at ∞), coefficients:
O(n5 r2

∞ + n3 N2)

 rational solutions of Y ′ = AY : O(n5 (maxi (ri ) d + r2
∞) + n3 N2)

� Main tool: simple forms (El Bacha’s PhD’11, Barkatou-El Bacha’12
direct method for computing simple forms, arithmetic complexity.)
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Exponential Solutions

Exponential Solutions
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Exponential Solutions

Exponential solutions

y = exp
(∫

u
)
z

with u ∈ C(x), z ∈ C[x ]n.

For x0 ∈ C ∪ {∞} define the singular part Sx0(u) of u as the principal part
of the Laurent series expansion of u at x = x0.

Idea: there exist local exponential part w such that w = Sx0(u)

1. Compute all exponential parts of ramification 1 at all singularities (Use
algorithms from Part 2)

2. Reconstruct u from
u =

∑
x0

Sx0(u).

Find candidates ũ, do a change of exponential and search for
polynomial solutions.
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Exponential Solutions

Drawbacks

I Exponential number of combinations to be checked,

I Large algebraic extensions possible (splitting field).

I Can be improved using the approach of Cluzeau and van Hoeij, 2004:
reduce mod p to find the “good" combinations!
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Exponential Solutions

Example

−12+3 x+3 x2
(x−1)x2

12
(x−1)x2

3+6 x
x(x−1)

0 0 0 0 0 0 0

2 x−4
(x−1)x2

5 x+4
x2

2 x2+1
x(x−1)

8
(x−1)x2

2+4 x
x(x−1)

0 0 0 0 0

3−x
(x−1)x2

−4
(x−1)x2

−9+x+x2
(x−1)x2

0 8
(x−1)x2

2+4 x
x(x−1)

0 0 0 0

0 4 x−8
(x−1)x2

0 4−5 x+7 x2
(x−1)x2

4 x2+2
x(x−1)

0 4
(x−1)x2

1+2 x
x(x−1)

0 0

0 3−x
(x−1)x2

2 x−4
(x−1)x2

− 4
(x−1)x2

−3 x−1+3 x2
(x−1)x2

2 x2+1
x(x−1)

0 4
(x−1)x2

1+2 x
x(x−1)

0

0 0 6−2 x
(x−1)x2

0 −8
(x−1)x2

−6−x−x2
(x−1)x2

0 0 4
(x−1)x2

1+2 x
x(x−1)

0 0 0 6 x−12
(x−1)x2

0 0 12−9 x+9 x2
(x−1)x2

6 x2+3
x(x−1)

0 0

0 0 0 3−x
(x−1)x2

4 x−8
(x−1)x2

0 − 4
(x−1)x2

7−7 x+5 x2
(x−1)x2

4 x2+2
x(x−1)

0

0 0 0 0 6−2 x
(x−1)x2

2 x−4
(x−1)x2

0 −8
(x−1)x2

2−5 x+x2
(x−1)x2

2 x2+1
x(x−1)

0 0 0 0 0 9−3 x
(x−1)x2

0 0 − 12
(x−1)x2

−3 x2−3 x−3
(x−1)x2
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Exponential Solutions

Our program finds the solution

e
∫
3x−2+2x−1−3(x−1)−1



−x4
−x4
x3

−x4
x3

−x2
−x4
x3

−x2
x
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Factorisation

Factorization Using Eigenring
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Factorisation

Definitions
A system [A] Y ′ = AY , A ∈ Mn(C(x)) is called:
I reducible, if it is equivalent (over C(x)) to a system of the form

Z ′ =

(
A1,1 0
A2,1 A2,2

)
Z . (9)

I decomposable if [A] is equivalent to a system of the form (9) with
A2,1 = 0.

I irreducible (indecomposable) if it is not reducible (decomposable).

I completely reducible, if it is equivalent to a block–diagonal system

T [A] = diag(A1,1, . . . ,As,s)

where each system [Ai ,i ], 1 ≤ i ≤ s, is irreducible.
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Factorisation

The Eigenring Method

This method was introduced by M. Singer (1996) for factoring scalar
differential operators over K = C(x).

Definition: The eigenring E(A) of a system [A] is the finite dimensional
C− algebra of all the matrices T ∈ Mn(C(x)) satisfying the matrix
equation

T ′ = AT − TA.

• A simple way to compute E(A) is to convert the above equation into a
n2–dimensional first order linear differential system and search for rational
solutions of this system.
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Factorisation

Some Properties

I Elements of E(A) map a solution of [A] to a solution of [A].

I If T ∈ E(A) then all its eigenvalues are constant.

I If two systems [A] and [B] are equivalent, their eigenrings E(A) and
E(B) are isomorphic as C−algebras. In particular, one has
dimCE(A) = dimCE(B)

More precisely If B = P−1AP − P−1P ′ with P ∈ GL(n,C(x)) then

E(A) = P−1E(B)P := {P−1TP | T ∈ E(B)}.

I If [A] is decomposable then dimC E(A) > 1.
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Factorisation

Factorization of Systems with Nontrivial Eigenring

Theorem 1 If dimC E(A) > 1 then [A] is reducible and the reduction can
be carried out by a matrix P ∈ GL(n,K ) that can be computed explicitly.

Cor. Given a system [A] one can construct an equivalent matrix equation
[B] having a block-triangular form

B1,1 0 0
B2,1 B2,2
...

. . . 0
Bs,1 . . . Bs,s


where s is the maximal possible, i.e. for each 1 ≤ i ≤ s, the eigenring of
[Bi ,i ] is trivial (having dimension 1).
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Factorisation

Proof of Theorem1
Suppose dim E(A) > 1. Then there is T ∈ E(A) with rank r < n. One can
compute P ∈ GL(n,K ) such that

S := P−1TP =

(
S1,1 0
S2,1 0

)
,

where S1,1 is an r × r matrix and
( S1,1

S2,1

)
has rank r .

Let B = P−1(AP + P ′) then S ∈ E(B), Decompose B in the same form as
S

B =

(
B1,1 B1,2
B2,1 B2,2

)
.

The equation SB − BS = S ′ implies(
S1,1
S2,1

)
B1,2 = 0.

Since
( S1,1

S2,1

)
is of full rank, then B1,2 = 0.
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Factorisation

Factorization of Decomposable Systems

Proposition Suppose that E(A) contains an element T which has s ≥ 2
distinct eigenvalues λ1, . . . , λs ∈ C then [A] is decomposable.

Moreover, if P ∈ GL(n,K ) is such that

J = P−1TP =
s⊕

i=1

Ji with spec(Ji ) = λi

Then the matrix B = P[A] = P−1(AP + P ′) has the form

P[A] =
s⊕

i=1

Bi .

M. Barkatou (CRM, Pisa 2017) 158 / 180



Factorisation

Example

A =



9 −6 x−2 0 6 x−2 6 x−2

1−x
x2

4 x2−9 x+4
x2−x3 6 x−1

x2
−3+3 x−4 x2+4 x3

x4
4 x−1

x2

0 5
(
x4 − x3)−1 5−x

x2
−3 x−2 5 x−3

0 (1− x)−1 0 3 x−3 −1

x−2 x2+5 x−4
x3−x2 6 x−1

x2
−3+4 x2

x4
x2−4
x2


A basis of E(A) is (I5,T ) where

T =



0 0 0 0 0

0 −x−1 0 1/2 −2 x+2
x 1/2 −2 x+2

x

0 0 −1 0 0

0 0 0 −1 0

0 −x−1 0 x−1 1/4 −4 x+4
x
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Factorisation

Let

P =



1 −1 0 0 0
x−1
x 0 1+x

x −1 0

0 0 1 0 1

0 0 1 −1 0

−x−1 0 x−1 0 0


Then

J := P−1TP =



0 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1
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Factorisation

As expected

P[A] = B1 ⊕ B2

where

B1 =

[
−5 x−1 x−1

−9 x2+5 x−6
x2

9 x+1
x

]
and

B2 =


−10 x3+8 x4+6 x2−3 x+3

x3(x−1)
− x4+x3+3−3 x

x3(x−1)
6 x−1

x

2 3−3 x+3 x2−4 x3+4 x4
x3(x−1)

−2 x3−6 x+6+x4

x3(x−1)
6 x−1

x

−−7−x+3 x2−9 x3+8 x4
x3(x−1)

x3+3 x2−6 x−2+x4

x3(x−1)
−−5 x−5+6 x2

x2
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More Recent Developpements

More Recent Developments
I Modular Algorithms for Linear Differential Equations: PhD Thesis of

Thomas Cluzeau’2004

I Algorithms for solving directly systems of higher order differential
equations: PhD Thesis of Carole El Bacha’2011

I Reduced Forms of Linear Differential Systems and Applications to
Integrability of Hamiltonian Systems. Specific Reduction Algorithms
for Hamiltonian Systems : PhD Thesis of Ainhoa Aparicio’2010

I Formal reduction of pfaffian systems: PhD Thesis of Nicolas
LeRoux’2006

I Singularly-perturbed linear differential systems, completely integrable
Pfaffian systems : PhD Thesis of Suzy S. Maddah’2015
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Implementation

Implementation
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Implementation

Packages
Computer Algebra team, University of Limoges

I M. Barkatou, E. Pfluegel: ISOLDE (late 90s-2012), a package written
in Maple with algorithms for global solutions (polynomial, rational,
exponentiel solutions, factorization, etc) as well as local analysis
(singularities, formal solutions, formal reduction, . . . ) for both
differential and (q-) difference equations

I Higher order linear differential equations: Carole El-Bacha’2011
I IntegrableConnections : RationalSolutions (& Eigenring),

HyperexponentialSolutions : Thomas Cluzeau
I Linear ordinary first-order differential systems with singularities,

Singularly-perturbed linear differential systems, completely integrable
Pfaffian systems, Apparent and Removable Singularities :
2013 -2015: Mathemagix: Lindalg; Maple: miniISOLDE, ParamInt,
PfaffInt, AppSing : Suzy S. Maddah.
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Pfaffian systems with normal crossings

On Completely Integrable Pfaffian systems with
normal crossings
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Pfaffian systems with normal crossings

Completely Integrable Pfaffian systems with normal crossings

For more details see PhD Thesis of Suzy S. Maddah’2015


x4
1
∂
∂x1

Y =

[
x3
1 + x2

1 + x2 x2
2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
∂
∂x2

Y =

[
x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

Required: Compute solutions in a neighborhood of (x , y) = (0, 0).
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Pfaffian systems with normal crossings

General form

[A]


xp1+1
1

∂
∂x1

Y = A(1)(x1, x2, . . . , xm) Y

xp2+1
2

∂
∂x2

Y = A(2)(x1, x2, . . . , xm) Y
...
xpm+1
m

∂
∂xm

Y = A(m)(x1, x2, . . . , xm) Y

For i , j ∈ {1, . . . ,m},
I pi is an integer and p = (p1, . . . , pm) is called Poincaré rank
I A(i) ∈ R = C[[x1, . . . , xm]] (i th-component), and

I Integrability conditions:

xpi+1
i

∂

∂xi
A(j)(x) − x

pj+1
j

∂

∂xj
A(i)(x) = A(i)(x) A(j)(x) − A(j)(x) A(i)(x).
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Pfaffian systems with normal crossings

Fundamental matrix of formal solutions

Φ(x
1/s1
1 , . . . , x

1/sm
m )

m∏
i=1

xCi
i

m∏
i=1

exp(Qi (x
−1/si
i ))

I Φ is an invertible matrix whose entries are meromorphic series in
(x

1/s1
1 , . . . , x

1/sm
m ) over C;

I Qi (x
−1/si
i ) is a diagonal matrix of polynomials in x

−1/si
i over C

without contant terms.
I Ci is a constant matrix which commutes with Qi (x

−1/si
i ).

I H. Charrière, P. Deligne, R. Gérard, A. H. M. Levelt, Y. Sibuya, A. van
den Essen, . . . (70’s and 80’s)

I Algorithms: Reduction of Poincaré rank, Constructing Solutions of
regular systems - Barkatou and LeRoux (2006), Closed Form Solutions
of Integrable Connections: Barkatou-Cluzeau-ElBacha-Weil’2012
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Pfaffian systems with normal crossings

Example
Poincaré Rank Reduction, Barkatou-LeRoux’2006

x4
1
∂
∂x1

Y = A(1)(x1, x2) Y =

([
x3
1 + x2 x2

2

−1 −x2 + x3
1

])
Y

x2
2
∂
∂x2

F = A(2)(x1, x2) Y =

([
x2 x2

2

−2 −3x2

])
Y

↓ Y =

([
x3
1 −x2

2
0 x2

])
G

x1x2
∂
∂x1

G = Ã(1)(x1, x2) G =

([
−2x2 0
−1 x2

])
G

x3
2
∂
∂x2

G = Ã(2)(x1, x2) G =

([
−x2

2 0
−2x3

1 −2x2
2

])
G .
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Pfaffian systems with normal crossings

Input
system

First
component

Last
component

First
associated

ODS

Last
associated

ODS

Exp. part
in first var.

Exp. part
in last var.

Exp. part

Figure: Computing the exponential part from associated ODS’s
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Pfaffian systems with normal crossings


x4
1
∂
∂x1

Y =

[
x3
1 + x2

1 + x2 x2
2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
∂
∂x2

Y =

[
x2
2 − 2y − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

Associated system:
x4
1

d
dx1
Y =

[
x3
1 + x2

1 0
−1 x3

1 + x2
1

]
Y

x3
2

d
dx2
Y =

[
x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.
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Pfaffian systems with normal crossings


x4
1
dY
dx1

=

[
x3
1 + x2

1 + x2 x2
2

−1 x3
1 + x2

1 − x2

]
Y

x3
2
dY
dx2

=

[
x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6

]
Y

.

With miniISOLDE or Lindalg we compute from the asscoiated system

Φ(x1, x2) xC1
1 xC2

2 exp(

[−1
x1

0
0 −1

x1

]
) exp(

[
3
x22

+ 2
x2

0
0 3

x22
+ 2

x2

]
).

M. Barkatou (CRM, Pisa 2017) 172 / 180



Pfaffian systems with normal crossings

Upon applying

Y = exp(
−1
x1

) exp(
3
x2
2

+
2
x2

) G ,

we have 
x4
1
∂
∂x1

G =

[
x3
1 + x2 x2

2

−1 x3
1 − x2

]
G

x2
2
∂
∂x2

G =

[
x2 x2

2

−2 −3x2

]
G

And so, it is left to obtain:

G (x1, x2) = Φ(x1, x2) xC1
1 xC2

2 .
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Pfaffian systems with normal crossings

For rank-reduction, we apply G = T1H where

T1 =

[
x2x

3
1 −x2

0 1

]
which yields: 

x1
∂
∂x1

H =

[
−2 0
−x2 1

]
H,

x2
∂
∂x2

H =

[
−2 0
−2x3

1 −1

]
H.
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Pfaffian systems with normal crossings

Finally, we compute

T2 =

[
1 0

x2
3 + 2x3

1 −1

]
.

Then H = T2 U yields
x1

∂
∂x1

U = C1 U =

[
−2 0
0 1

]
U,

x2
∂
∂x2

U = C2 U =

[
−2 0
0 −1

]
U.
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Pfaffian systems with normal crossings


x4
1
∂
∂x1

F =

[
x3
1 + x2

1 + x2 x2
2

−1 x3
1 + x2

1 − x2

]
F

x3
2
∂
∂x2

F =

[
x2
2 − 2x2 − 6 x3

2

−2x2 −3x2
2 − 2x2 − 6

]
F

.

A fundamental matrix of formal solutions is given by

T1 T2 xC1
1 xC2

2 exp(

[−1
x1

0
0 −1

x1

]
) exp(

[
3
x22

+ 2
x2

0
0 3

x22
+ 2

x2

]
).
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Pfaffian systems with normal crossings

Input
system

First
component

Last
component

System w.
lower dim.

System w.
lower dim.

≥ 2 distinct
eigenvalues

Unique
eigenvalue

Nilpotent

System w.
lower dim.

System w.
lower dim.

Apply rank
reduction
in first var.

≥ 2 distinct
eigenvalues

Nilpotent
Compute
exp. order
in first var.

Ram.
in
first
var.
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