Symbolic Methods for Solving Systems of Linear Ordinary Differential Equations

Moulay Barkatou
University of Limoges; CNRS; XLIM ; UMR 7252

Workshop Asymptotic and computational aspects of complex differential equations
CRM, Pisa, Italy, 13-17 February 2017.

Introduction

What are these lectures about?

\diamond Main objective: introduce symbolic methods for studying matrix linear ordinary differential equations in the complex domain with rational function coefficients.
\diamond Main topics:

- Local Problems: Classification of Singularities, Computing Formal Invariants, Computing Formal Solutions.
- Global Problems: Finding Closed Form Solutions (Polynomial, Rational, Exponential Solutions ...), Factorization.
\diamond General strategy:
- Develop and use appropriate tools of local analysis to compute efficiently local data (around singularities).
- Global problems are solved by piecing together the local information around the different singularities.

Linear ODE's

- Linear differential equations of arbitrary order n :

$$
\text { (E) } \quad y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x) \ldots+a_{0}(x) y(x)=b(x)
$$

where b and the coefficients a_{i} 's are in some differential field K, e.g. $K=\mathbb{C}(x)$.

- Systems of first order linear differential equations:

$$
\left\{\begin{aligned}
\frac{d y_{1}}{d x} & =a_{11}(x) y_{1}(x)+\ldots+a_{1 n}(x) y_{n}(x)+b_{1}(x) \\
& \vdots \\
\frac{d y_{n}}{d x} & =a_{n 1}(x) y_{1}(x)+\ldots+a_{n n}(x) y_{n}(x)+b_{n}(x)
\end{aligned}\right.
$$

Or in matrix notation:

$$
Y^{\prime}=A Y+B
$$

with $Y={ }^{t}\left(y_{1}, \ldots, y_{n}\right), \quad A=\left(a_{i j}\right) \in M_{n}(K), B={ }^{t}\left(b_{1}, \ldots, b_{n}\right) \in K^{n}$.

Differential Fields

A differential field (K, ∂) is a field K with a map (derivation) $\partial: K \rightarrow K$, satisfying $\partial(a+b)=\partial(a)+\partial(b), \quad \partial(a b)=\partial(a) b+a \partial(b)$ for all $a, b \in K$.
Notation: $\partial(a)=a^{\prime}$

Examples:

- $\left(\mathbb{C}(x), \partial=\frac{d}{d x}\right)=$ field of rational functions
- $\left(\mathbb{C}\left(x, e^{x}\right), \partial=\frac{d}{d x}\right)$
- $\mathbb{C}[[x]]=$ ring of formal power series

$$
\left(\mathbb{C}((x)), \frac{d}{d x}\right)=\text { quotient field of } \mathbb{C}[[x]]=\mathbb{C}[[x]]\left[\frac{1}{x}\right]
$$

- $\left(\mathcal{M}(\Omega), \frac{d}{d x}\right)=$ field of fncs merom on Ω open, connected $\subset \mathbb{C}$

Solutions

Consider a differential system of dimension n with coefficients in K :

$$
[A]: \quad Y^{\prime}=A Y, \quad A \in M_{n}(K)
$$

- We should describe the class of functions in which the solutions are to be found.
- A (rational) solution: a vector $Y \in K^{n}$ such that $Y^{\prime}=A Y$.
- The set $\mathcal{S}_{K}=\left\{Y \in K^{n} \mid Y^{\prime}=A Y\right\}$ is a vector-space of $\operatorname{dim} \leq n$ over the field of constants.
- In general, $\operatorname{dim} \mathcal{S}_{K}<n$. However, there always exists a differential field extension $K \subset L$ such that over L the solution space has dimension n.
- Fundamental solution matrix of $[A]$: an n by n invertible matrix W (with entries in some extension L of K) satisfying $W^{\prime}=A W$.

Closed Form Solutions of Linear Differential Equations

- Rational solutions: Functions lying in K.
- Algorithm by Liouville (1833) for $K=\mathbb{Q}(x)$ in the scalar case
- Singer (1991) for more general fields.
- Barkatou (1997) for the matrix case, $K=\mathbb{C}(x)$, Barkatou-Raab (2012) for more general fields.
- Algebraic solutions: Functions lying in an algebraic extension of K.
- Investigated by Pépin (1881), Fuchs(1875), Klein, Jordan(1878), ...
- Algorithms by Singer (1979, 1993).

Liouvillian Solutions

Functions that can be generated from the rational functions by successively substituting nested algebraic functions, integrals and exponential of integrals.

An example of such a construction is

$$
\frac{1}{x^{2}-1} \xrightarrow{\sqrt{ }} \frac{1}{\sqrt{x^{2}-1}} \xrightarrow{e^{\int}} \exp \left(\int \frac{d x}{\sqrt{x^{2}-1}}\right)
$$

- Algorithm for second-order equations by Kovacik (1986)
- Singer (1991) using differential Galois theory: the problem of finding Liouvillian solutions is decidable, in theory, for equations of arbitrary order. However no practical algorithm.

Exponential Solutions

- Any function f whose logarithmic derivative $\frac{f^{\prime}}{f}$ lies in K.
- They form a subclass of Liouvillian solutions.
- Algorithms for exponential solutions are used in all known methods for finding Liouvillian solutions.
- Algorithm by Beke (1894).
- van Hoeij (1997) for $K=\overline{\mathbb{Q}}(x)$.
- Pflügel, Barkatou (1997) for matrix equations.

Examples of Closed Form Solutions

Closed form solutions: can be written in terms of functions in some differential field K using: field operations (,,$+- \times, /$), algebraic extensions $\sqrt{ }$, composition \circ, differentiation ${ }^{\prime}$, integration $\int d x$

- What are the solutions of

$$
y^{\prime \prime}+\frac{3\left(x^{2}+x+1\right)}{16(x-1)^{2} x^{2}} y=0 ?
$$

Answer:

$$
y=c_{1} \sqrt[4]{x-x^{2}} \sqrt{1+\sqrt{x}}+c_{2} \sqrt[4]{x-x^{2}} \sqrt{1-\sqrt{x}}
$$

Algebraic function: root of a polynomial with coefficients in $\mathbb{C}(x)$.

Examples

- What are the solutions of

$$
y^{\prime \prime}+\frac{x}{x^{2}-1} y^{\prime}-\frac{1}{2 \nu^{2}\left(x^{2}-1\right)} y=0 ?
$$

Answer:

$$
y=c_{1} \exp \left(\int \frac{d x}{2 \nu \sqrt{x^{2}-1}}\right)+c_{2} \exp \left(\int \frac{-d x}{2 \nu \sqrt{x^{2}-1}}\right)
$$

Liouvillian function.

$$
\begin{gathered}
y=c_{1} \mathrm{e}^{\frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{2 \nu}}+c_{2} \mathrm{e}^{-\frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{2 \nu}} \\
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\frac{1}{2 \nu}}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{\frac{-1}{2 \nu}}
\end{gathered}
$$

Solutions are algebraic when ν is rational.

- What are the solutions of

$$
y^{\prime \prime}+\frac{x}{x^{2}-1} y^{\prime}-\frac{1}{2 \nu^{2}\left(x^{2}-1\right)} y=0 ?
$$

- The answer given by the Maple dsolve command is:

$$
y(x)=c_{1} \sin \left(1 / 2 \frac{\sqrt{2} \arcsin (x)}{\nu}\right)+c_{2} \cos \left(1 / 2 \frac{\sqrt{2} \arcsin (x)}{\nu}\right)
$$

Airy Equation

- What are the solutions of

$$
y^{\prime \prime}-x y=0 ?
$$

- Answer:

$$
y(x)=c_{1} \operatorname{Ai}(x)+c_{2} \operatorname{Bi}(x)
$$

Special functions.

- If we ask for Power series solutions, we get

$$
y=c_{1} \sum_{n=0}^{\infty} \frac{(1 / 9)^{n} x^{3 n}}{\Gamma(n+1) \Gamma(n+2 / 3)}+c_{2} \sum_{n=0}^{\infty} \frac{(1 / 9)^{n} x^{3 n+1}}{\Gamma(n+4 / 3) \Gamma(n+1)}
$$

More General Closed Form Solutions

- A function is in closed form if it can be expressed in terms of well know special functions: Airy, Bessel, Hermite, Legendre, Laguerre, Kummer, Whittaker, ${ }_{2} F_{1}$-hypergeometric functions, etc.
- These special functions satisfy a second order differential equation
- A lot of information is known about these functions [Abramowitz and Stegun: Handbook of Mathematical Functions (1972)].
- Open Problem: Given any linear differential equation with rational function coefficients, decide if it is solvable in closed form, and if so, find its closed form solutions.
- It is possible to decide with the help of differential Galois theory wheteher or not Liouvillian solutions exist (Singer 1991).

Example

- What are the solutions of

$$
y^{\prime \prime}+\frac{2}{3 x} y^{\prime}-\frac{1}{9 x} y=0 ?
$$

Answer:

$$
y(x)=c_{1} x^{1 / 6} \mathrm{I}_{1 / 3}(2 / 3 \sqrt{x})+c_{2} x^{1 / 6} \mathrm{~K}_{1 / 3}(2 / 3 \sqrt{x})
$$

where $\mathrm{I}_{\nu}, \mathrm{K}_{\nu}$ are Bessel functions.

- If we ask for Generalized series solutions, we get

$$
y=c_{1} \sum_{n=0}^{\infty} \frac{(1 / 9)^{n} x^{n}}{\Gamma(n+1) \Gamma(n+2 / 3)}+c_{2} x^{1 / 3} \sum_{n=0}^{\infty} \frac{(1 / 9)^{n} x^{n}}{\Gamma(n+4 / 3) \Gamma(n+1)}
$$

(Frobenius series)

Example

- What are the solutions of

$$
y^{\prime \prime \prime}-4 x y^{\prime}-2 y=0 ?
$$

Answer:

$$
y=c_{1}\left(A_{1}(x)\right)^{2}+c_{2} A_{1}(x) A_{2}(x)+c_{3}\left(A_{2}(x)\right)^{2}
$$

where A_{1}, A_{2} are two linearly independent solutions of

$$
y^{\prime \prime}-x y=0 \quad \text { (Airy Equation) }
$$

- Problem: Given any linear differential equation with rational function coefficients, decide if it is solvable in terms of solutions of linear equations of lower order.

Formal Solutions

- Formal (or asymptotic) solution describe the behavior of the actual solutions in in the neighborhood of a given point.
- At an ordinary point x_{0}, Taylor series are sufficient : $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$
- At singular points more general expansions must be used: Frobenius series, log-exp expansions)

$$
\begin{gathered}
e^{q\left(\frac{1}{t}\right)} t^{\lambda}\left(\phi_{0}(t)+\phi_{1}(t) \log t+\cdots+\phi_{s}(t)(\log t)^{s}\right) \\
t=\left(x-x_{0}\right)^{1 / r}, \quad r \in \mathbb{N}^{*} \quad(\text { ramification }), \\
q \in \mathbb{C}[X], \quad \lambda \in \mathbb{C}, \quad \quad \quad \leq \in \mathbb{N} \\
\text { and } \phi_{j} \in \mathbb{C}[[t]] .
\end{gathered}
$$

- local-to-global approach: global problems are solved by piecing together the local information around the different singularities.

Examples

- Euler Equation: $x^{2} y^{\prime}+y=x$

Formal solutions at $x=0: \hat{f}+c e^{-1 / x}, c \in \mathbb{C}$,

$$
\hat{f}=\sum_{n=0}^{\infty}(-1)^{n} n!x^{n+1}
$$

- Airy Equation: $y^{\prime \prime}=x y$

Formal solutions at $x=\infty$:

$$
\begin{gathered}
\hat{A}_{1}(x)=\left(\sum_{n=0}^{\infty}(-1)^{n} a_{n} t^{-3 n}\right) t^{-1 / 2} e^{-2 t^{3} / 3} \\
\hat{A}_{2}(x)=\left(\sum_{n=0}^{\infty} a_{n} t^{-3 n}\right) t^{-1 / 2} e^{2 t^{3} / 3}
\end{gathered}
$$

where $t=x^{1 / 2}, a_{0}=1, a_{n}=\frac{1}{2 \pi} \frac{1}{n!} \Gamma\left(n+\frac{5}{6}\right) \Gamma\left(n+\frac{1}{6}\right)$
M. Barkatou (CRM, Pisa 2017)

Example: Euler Equation

- What are the solutions of

$$
\begin{equation*}
x^{2} \frac{d y}{d x}+y=x \tag{1}
\end{equation*}
$$

at the singular point $x=0$?

- Answer $y=\hat{f}+c e^{-1 / x}, c \in \mathbb{C}$ where

$$
\hat{f}=\sum_{n=0}^{\infty}(-1)^{n} n!x^{n+1}
$$

- This is a divergent series!
- It cannot be "summed" in the usual sense to a function which is a solution of (1) in the neighborhood of $x=0$.
- What does this formal solution represent exactly? What can it tell us about the actual solutions?

Example: Euler Equation

- Using the method of variation of parameter, we get the particular actual solution:

$$
f(x)=e^{1 / x} \int_{0}^{x} \frac{e^{-1 / t}}{t} d t
$$

- Which can be rewritten (for $\operatorname{Re}(x)>0)$ as:

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} \frac{e^{-\frac{z}{x}}}{1+z} d z \tag{2}
\end{equation*}
$$

- One can prove the following inequalities (for $\operatorname{Re}(x)>0)$:

$$
\left|f(x)-\sum_{n=0}^{N-1}(-1)^{n} n!x^{n+1}\right| \leq N!|x|^{N+1}
$$

- This proves that \hat{f} is an asymptotic expansion of $f(x)$ as $x \rightarrow 0$ in the half-plane $\operatorname{Re}(x)>0$ (Poincaré 1886).

Organization of the lectures

\diamond Main objective: to present symbolic methods for manipulating, in the broad sense, systems $Y^{\prime}=A Y$ with rational function coefficients.
\diamond Main Focus: Formal aspects of Local Analysis and Related Computer Algebra Algorithms.
\diamond Not Discussed: Analytic aspects: Asymptotic and Summability Theory (see R. Schäfke's lectures).
\triangleright These lectures are divided into three parts:

- Part 1: Basic Tools for Local Analysis - Systems of First Kind.
- Part 2: Systems of Second Kind - Fundamental Algorithms.
- Part 3: Applications to Solving Systems with Rational Function Coefficients.

Part 1: Basic Tools of Local Analysis- Systems of First Kind

Outline

- Correspondance Matrix/Scalar Equations
- Classification of Singularities
- Systems of First Kind

Correspondance Matrix/Scalar Equations

Linear Differential Equations over (K, I)

Three equivalent forms:

- a scalar linear differential equation:

$$
D(y)=a_{n} y^{(n)}+\ldots+a_{0} y=0, \quad a_{i} \in K
$$

- a matrix linear differential equation:

$$
Y^{\prime}=A Y, A \in M_{n}(K)
$$

- a differential module of dimension n :
an $n \operatorname{dim}$. K-vector space V with an additive map $\partial: V \rightarrow V$ satisfying

$$
\partial(\alpha v)=\alpha^{\prime} v+\alpha \partial v
$$

for all $\alpha \in K, v \in V$.
M. Barkatou (CRM, Pisa 2017)

Linear Differential Systems

We consider a system of first order linear differential equations of the form

$$
[A] \quad Y^{\prime}=A Y,
$$

where Y is column-vector of length n,
A is an $n \times n$ matrix with entries in K,
K is a differential field of characteristic zero with constant field $\mathcal{C} \supset \mathbb{Q}$. In this talk

$$
K=\mathcal{C}((x))=\mathcal{C}[[x]]\left[x^{-1}\right], \quad \text { or } \quad K=\mathcal{C}(x)
$$

with ${ }^{\prime}=\frac{d}{d x}$ the standard derivation.

Equivalent Systems

Consider a system $[A] \quad Y^{\prime}=A Y, A \in M_{n}(K)$.
Gauge transformation: $Y=T Z, T \in G L(n, K)$, leads to

$$
\begin{gathered}
{[B] \quad Z^{\prime}=B Z,} \\
B=T[A]:=T^{-1} A T-T^{-1} T^{\prime} .
\end{gathered}
$$

Systems $[A]$ and $[B]$ are called equivalent (over K).
If $T \in G L(n, L)$ for some differential field extension L of K then $[A]$ and $[B]$ are called equivalent over L.

Correspondance Systems/Equations

Scalar \longrightarrow Matrix

Consider a scalar linear differential equation:

$$
D(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{1} y^{\prime}+a_{0} y=0, \quad a_{i} \in K
$$

Let

$$
Y=\left(y, y^{\prime}, \ldots, y^{(n-1)}\right)^{T}
$$

Then

$$
Y^{\prime}=C Y
$$

where

$$
C=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right)
$$

Notation: $C=$ companion $\left(a_{i}\right)_{0 \leq i \leq n-1}$
M. Barkatou (CRM, Pisa 2017)

Matrix \longrightarrow Scalar

Thm: (Cyclic Vector Lemma) Assume $\exists a \in K, a^{\prime} \neq 0$. Then every system $Y^{\prime}=A Y$ is equivalent to a scalar equation $D(y)=0$.

In other words, given a system $Y^{\prime}=A Y$ over K, one can always construct a gauge transformation $T \in G L(n, K)$ such that

$$
T[A]:=T^{-1} A T-T^{-1} T^{\prime}=\left(\begin{array}{ccccc}
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right)
$$

- Many proofs : Loewy 1918, Cope 1936, Deligne 1970, Ramis 1978, Katz 1989, Barkatou 1993, Churchill-Kovacic 2002 ...

Cyclic Vectors

Consider a system $[A]: \quad \partial Y=A Y$ over a differential field (K, ∂).
Let $\Lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in K^{n}$.
Put

$$
y=\Lambda Y=\lambda_{1} y_{1}+\cdots+\lambda_{n} y_{n}
$$

Computing successively $\partial y, \cdots, \partial^{n} y$ and using the equation $\partial Y=A Y$ we obtain

$$
\begin{equation*}
\partial^{i} y=\Lambda_{i} Y \quad \text { for } i=0, \cdots, n \tag{3}
\end{equation*}
$$

where the sequence of row vectors $\left\{\Lambda_{i}\right\}$ is defined inductively as:

$$
\Lambda_{0}=\Lambda, \quad \Lambda_{i}=\partial \Lambda_{i-1}+\Lambda_{i-1} A \text { for } i=1, \cdots, n
$$

Let

$$
P=\left(\begin{array}{c}
\Lambda_{0} \\
\Lambda_{1} \\
\vdots \\
\Lambda_{n-1}
\end{array}\right), Z=\left(\begin{array}{c}
y \\
\partial y \\
\vdots \\
\partial^{n-1} y
\end{array}\right), B=\left(\begin{array}{c}
\Lambda_{1} \\
\Lambda_{2} \\
\vdots \\
\Lambda_{n}
\end{array}\right) .
$$

Then (3) can be written as

$$
\begin{equation*}
Z=P Y \quad \text { and } \quad \partial Z=B Y \tag{4}
\end{equation*}
$$

Note that $B=\partial(P)+P A$.
Def: The vector Λ is said to be a cyclic vector for system $[A]$ if the matrix P is nonsingular (i.e. $\operatorname{det} P \neq 0$).

If Λ is a cyclic vector then equation (4) can be written

$$
Y=P^{-1} Z \quad \text { and } \quad \partial Z=C Z
$$

$C:=B P^{-1}=\partial(P) P^{-1}+P A P^{-1}$ is a companion matrix
$C=$ companion $\left(a_{i}\right)_{0 \leq i \leq n-1}$.

- Hence it follows that the system $\partial Y=A Y$ is equivalent to the scalar differential equation :

$$
D_{\Lambda}(y)=\partial^{n} y+a_{n-1} \partial^{n-1} y+\cdots+a_{1} \partial y+a_{0} y=0
$$

- Note that this equation is by no means uniquely determined by the system $\partial Y=A Y$. It depends on the choice of the cyclic vector Λ.
- It is always possible (Cope, Ramis) to choose a cyclic vector Λ whose components are polynomials in x of degree $\leq n-1$.

Example

Let

$$
A:=\left[\begin{array}{ccc}
-x+2 x^{-1} & x^{3}+x^{2} & 4 x^{-1} \\
x^{-3}+2 x^{-2} & 1-x & 4 x^{-1} \\
x & 3 x^{2} & 2 x^{-1}+x^{2}
\end{array}\right]
$$

Take $\Lambda=[1,0,0]$. Then

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{x^{2}-2}{x} & x^{3}+x^{2} & 4 x^{-1} \\
\frac{2 x^{2}+2+x^{4}+2 x^{3}+x}{x^{2}} & -x\left(-6 x-16+2 x^{3}+x^{2}\right) & 4 \frac{3-x^{2}+x^{4}+2 x^{3}}{x^{2}}
\end{array}\right]
$$

$\operatorname{det} P=-12 x+12 x^{3}+4 x^{5}+12 x^{4}-52 \neq 0$. Hence $\Lambda=[1,0,0]$ is a cyclic vector.

Example

Compute $T:=P^{-1}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{-2 x^{4}-2 x^{3}+7 x^{2}-4+2 x^{5}+x+x^{6}}{x^{3}\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)} & \frac{3-x^{2}+x^{4}+2 x^{3}}{x^{2}\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)} & -\frac{1}{x\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)} \\
1 / 4 \frac{-14 x^{3}-21 x^{2}+x^{5}-2 x^{4}+9 x+30}{3 x^{4}+3 x^{3}-3 x-13+x^{5}} & 1 / 4 \frac{x\left(-6 x-16+2 x^{3}+x^{2}\right)}{3 x^{4}+3 x^{3}-3 x-13+x^{5}} & 1 / 4 \frac{x^{2}(x+1)}{3 x^{4}+3 x^{3}-3 x-13+x^{5}}
\end{array}\right]
$$

Compute

$$
\begin{gathered}
C:=T[A]=T^{-1} A T-T^{-1} T^{\prime}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
c_{0} & c_{1} & c_{2}
\end{array}\right] \\
c_{0}=\frac{-156+269 x^{4}-146 x^{5}-215 x^{6}+38 x^{9}+15 x^{10}+16 x^{8}+4 x^{11}-109 x^{7}-243 x+432 x^{3}}{x^{3}\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)} \\
c_{1}=\frac{130-156 x^{4}-24 x^{5}+67 x^{6}+4 x^{9}+2 x^{10}+10 x^{8}+42 x^{7}+65 x-311 x^{3}-124 x^{2}}{x^{2}\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)} \\
c_{2}=\frac{-52+24 x^{4}+6 x^{5}-2 x^{6}+x^{8}+23 x^{2}+x^{7}-28 x+14 x^{3}}{x\left(3 x^{4}+3 x^{3}-3 x-13+x^{5}\right)}
\end{gathered}
$$

Algebraic complexity

\diamond Arithmetic (operations in C) complexity estimate:

- Computation of a cyclic vector and the corresponding scalar equation: $\mathcal{O}\left(n^{5}\right)$
\diamond Bounds on degrees and arithmetic sizes:
- Degree of the coefficients c_{i} 's: $n \operatorname{deg} \Lambda+\frac{n(n+1)}{2} \operatorname{deg} A$
- Size of the coefficients $c_{i}{ }^{\prime}$ s: $n^{2} \operatorname{deg} \Lambda+n^{3} \operatorname{deg} A$

Comments on use of cyclic vectors

\diamond Interest: Many algorithmic problems are easily solvable for scalar equations.
\diamond Drawbacks:

- for systems with "large" dimension n (in practice $n \geq 10$), the construction of an equivalent scalar equation may take a "long time";
- the scalar equation (when it can be computed) has often "too complicated" coefficients compared with the entries of the input system (even for small dimensions) and in consequence solving this equation can be costly.
- The reduction to a scalar equation may destroy the symmetries or structure of the input matrix equation (e. g. Linear Hamiltonian systems)
\diamond Direct methods are to be preferred.
M. Barkatou (CRM, Pisa 2017)

Singularities

Singularities

Consider a linear differential equation in the complex plane \mathbb{C} with analytic (e.g. meromorphic or rational function) coefficients:

$$
[A] \quad \frac{d Y}{d x}=A(x) Y
$$

Def: $x_{0} \in \mathbb{C}$ is an ordinary point if all the entries of $A(x)$ are holomorphic in some nbhd of x_{0}, otherwise x_{0} is a singular point.

- x_{0} is an ordinary point \Rightarrow there exists a fund soln matrix W whose entries are holomorphic in in some nbhd of x_{0}.

Classification of Singularities

\diamond Suppose that $A(x)$ is holomorphic in a punctured nbhd of x_{0}, $\Omega=\left\{x \in \mathbb{C}\left|0<\left|x-x_{0}\right|<\rho\right\}\right.$, with at most a pole at the point x_{0}.
\diamond Since Ω is not simply connected, the solutions of Eqn $[A]$ need not be single-valued, but we have the following result (cf. Wasow):

Every fund soln matrix W of $[A]$ has the form:

$$
W(x)=\Phi(x)\left(x-x_{0}\right)^{\wedge}
$$

where $\Phi(x)$ is holomorphic on Ω, and Λ is a constant matrix.
Def: The point x_{0} is called a regular singular point for $[A]$ if $\Phi(x)$ has at most a pole at the point x_{0}, otherwise x_{0} is called an irregular singular point.

Examples

- $\frac{d y}{d x}=\frac{\alpha}{x} y, \alpha \in \mathbb{C}$
fund soln: x^{α} so $x=0$ is a regular singular point
- $\frac{d y}{d x}=\frac{-a}{p x^{p+1}} y, a \in \mathbb{C}^{*}, p \in \mathbb{N}^{*}$
fund soln: $e^{\frac{a}{x^{D}}}$ so $x=0$ is an irregular singular point.
- $\frac{d Y}{d x}=\frac{\Lambda}{x} Y, \Lambda \in M_{n}(\mathbb{C})$
fund soln matrix x^{\wedge} so $x=0$ is a regular singular point.

Classification of the point at ∞

The change of variable $x \mapsto \frac{1}{x}$ permits to classify the point $x=\infty$ as an ordinary, regular singular or irregular singular point for $[A]$:

Let $z=\frac{1}{x} \frac{d Y}{d x}=A(x) Y \Rightarrow \frac{d Y}{d z}=-\frac{1}{z^{2}} A\left(\frac{1}{z}\right) Y$
Type of $x=\infty$ for $\frac{d Y}{d x}=A(x) Y$

$$
=\text { Type of } z=0 \text { for } \frac{d Y}{d z}=-\frac{1}{z^{2}} A\left(\frac{1}{z}\right) Y
$$

Examples
$\frac{d y}{d x}=\frac{1}{3 x} y, z=\frac{1}{x} \Rightarrow \frac{d y}{d z}=-\frac{1}{3 z} y$
$z=0$ is a regular singular point $\Rightarrow x=\infty$ is a regular singular point
$y^{\prime}=\frac{2}{x^{3}} y z=\frac{1}{x} \Rightarrow \frac{d y}{d z}=-2 z y$
$z=0$ is an ordinary point $\Rightarrow x=\infty$ is an ordinary point.

The scalar case

Newton Polygon of a Scalar Equation

Let

$$
D=\sum_{i=0}^{n} a_{i}\left(\frac{d}{d x}\right)^{i}, \quad a_{i} \in \mathbb{C}[[x]] .
$$

Def: $N(D):=$ Newton polygon of $D=$ Convex hull with nonnegative slopes of the points $\left(i, v\left(a_{i}\right)-i\right)$

$0 \neq f=\sum_{j} f_{j} x^{j} \in \mathbb{C}((x)), v(f)=\min \left\{j \mid f_{j} \neq 0\right\}, v(0)=+\infty$.
M. Barkatou (CRM, Pisa 2017)

Fuchs Criterion for Scalar Equations

The point $x=0$ is regular singular $\Longleftrightarrow v\left(a_{i}\right)-i \geq v\left(a_{n}\right)-n$ for all i (Fuchs criterion).

Formal solutions: Scalar case

Let

$$
D(y)=a_{n}(x) y^{(n)}+\cdots+a_{0}(x) y=0
$$

where the $a_{j}(x) \in \mathbb{C}[[x]]$ (formal power series).
There exists n linearly independent formal solutions of the form:

$$
\begin{gathered}
y_{i}=e^{q_{i}\left(\frac{1}{t}\right)} t^{\lambda_{i}}\left(\phi_{i 0}+\phi_{i 1} \log t+\cdots+\phi_{i s_{i}}(\log t)^{s_{i}}\right) \\
x=t^{r_{i}}, \quad r_{i} \in \mathbb{N}^{*} \quad(\text { ramification }) \\
q_{i} \in \mathbb{C}[X], \quad \lambda_{i} \in \mathbb{C}, \quad s_{i} \in \mathbb{N} \\
\quad \text { and } \phi_{i j} \in \mathbb{C}[[t]] .
\end{gathered}
$$

Existence: Fabry, Poincaré, Malgrange, etc.

The regular case

$x=0$ is regular singular \Longleftrightarrow all the q_{i} 's are zero.

$$
y_{i}=x^{\lambda_{i}}\left(\phi_{i 0}+\phi_{i 1} \log x+\cdots+\phi_{i s_{i}}(\log x)^{s_{i}}\right)
$$

In that case:

- no need of ramification: $t=x\left(r_{i}=1\right)$
- $\phi_{i j} \in \mathbb{C}\{x\}$ whenever the a_{i} 's are convergent,
- λ_{i} called local exponent (at $x=0$) $=$ root of indicial equation,

Construction: Frobenius method.

The irregular case

$x=0$ is Irregular singular \Longleftrightarrow at least one of the q_{i} 's is not zero.

$$
y_{i}=e^{q_{i}\left(\frac{1}{t}\right)} t^{\lambda_{i}}\left(\phi_{i 0}+\phi_{i 1} \log t+\cdots+\phi_{i s_{i}}(\log t)^{s_{i}}\right)
$$

In that case:

- the "degree" of q_{i} in $x^{-1}=$ slope of the Newton polygon of D and its leading coefficient $=$ a root of the corresponding Newton polynomial.
- may need ramification: $t=x^{1 / r_{i}}, r_{i}>1$
- the involved power series are in general divergent.

Construction : Newton Algorithm based on Newton polygon calculations.

Matrix Case: Another Classification of Singularities

- In the scalar case, the nature of a singular point x_{0} can be read off from the leading terms of the coefficients of the equation (Fuchs' Criterion).
- In the matrix case, there is no analogue of the Fuchs' Criterion.
- The nature of a singular point x_{0} is based upon the knowledge of fundamental matrix solution and hence is not immediately checkable for a given system.
- Important Problem: Give an algorithm to decide for any system whether it has regular singularity.
- First step: Give a characterization of regular singularities which is not based on a prior knowledge of solutions.
From now we will assume that $x_{0}=0$ (unless otherwise specified).

A Classification easier to check

Consider a linear differential system with a singularity at $x=0$:

$$
\begin{gathered}
{[A]: \quad Y^{\prime}=A(x) Y,} \\
A(x)=\frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0, p \in \mathbb{N} .
\end{gathered}
$$

The integer $p(A):=p$ is called the Poincaré rank of the system $[A]$.
Def:

- If $p(A)=0$, the point $x_{0}=0$ is called a singularity of first kind for system $[A]$.
- If $p(A)>0$, the point $x_{0}=0$ is called a singularity of second kind for system $[A]$.

Comparison of the two classifications

\diamond The two classifications are not directly comparable. However we have the following

- $x=0$ is a singularity of the first kind $\Rightarrow x=0$ is a regular singularity.
- The converse is false, in general: a singularity of second kind $(p>0)$ may be a regular singularity.
- System $[A]$ has a regular singularity at $x=0$ iff $\exists T \in G L(n, K)$ s.t. $T[A]$ has a singularity of first kind at $x=0$.
\diamond Important Problem: Give an algorithm to decide whether a system of second kind has a regular singularity (Part 2 of this Tutorial).

Singular Differential Systems

$K=\mathbb{C}((x))=\mathbb{C}[[x]]\left[x^{-1}\right]$ field formal Laurent series.

$$
\text { [A] } \quad \frac{d Y}{d x}=A(x) Y,
$$

$A(x)$ an $n \times n$ matrix with entries in K :
$A(x)=x^{-p-1} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{0} \neq 0, p=p(A) \in \mathbb{N}$ Poincaré rank of $[A]$
Gauge transformation: $Y=T Z, T \in G L(n, K)$, leads to

$$
[B] \quad \frac{Z}{d x}=B Z, \quad B=T[A]:=T^{-1} A T-T^{-1} T^{\prime} .
$$

Systems $[A]$ and $[B]$ are called equivalent over K.

Exp. Parts and Formal Solutions

$[A]$ has a formal fundamental matrix solution of the form

$$
\Phi\left(x^{1 / s}\right) x^{\wedge} \exp \left(Q\left(x^{-1 / s}\right)\right)
$$

$s \in \mathbb{N}^{*}, \Phi \in G L\left(n, \mathbb{C}\left(\left(x^{1 / s}\right)\right)\right)$,
$Q\left(x^{-1 / s}\right)=\operatorname{diag}\left(q_{1}\left(x^{-1 / s}\right), \ldots, q_{n}\left(x^{-1 / s}\right)\right)$ where the q_{i} 's are polynomials in $x^{-1 / s}$ over \mathbb{C} without constant term,
Λ is a constant matrix commuting with Q.

- Q is invariant under all gauge transformations $T \in G L(n, \overline{\mathrm{~K}})$.
$\overline{\mathrm{K}}=\bigcup_{m \in \mathbb{N}^{*}} \mathbb{C}\left(\left(x^{1 / m}\right)\right)$ field of formal Puiseux series in x.

Classification of singularities

- When $Q\left(x^{-1 / s}\right) \not \equiv 0$, the origin is an irregular singular point of the system [A]. In this case the elements of $Q\left(x^{-1 / s}\right)$ determine the main asymptotic behavior of actual solutions as $x \rightarrow 0$ in sectors of sufficiently small angular opening (Asymptotic existence theorem (cf. Wasow)).
- If $Q\left(x^{-1 / s}\right) \equiv 0$, the point $x=0$ is regular singular point of $[A]$. In this case $s=1$ and the formal series $\Phi(x)$ converges whenever the series for $A(x)$ does.
- Existence of Formal Solutions goes back to Turritin, Hukuhara, Levelt, Balser-Jurkat-Lutz
- Efficient computation of Q [Barkatou 1997], [Pflügel 2000], [Barkatou-Pflügel 2007]

Example: $y^{\prime \prime}(z)=z y(z)$ (Airy Equation)

$z=\infty$ is a singular point at ∞
$x=\frac{1}{z} \Rightarrow x^{5} y^{\prime \prime}+2 x^{4} y^{\prime}-y=0$
$\Rightarrow \mathbf{y}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{x^{5}} & -\frac{2}{x}\end{array}\right) \mathbf{y}$
Formal Solution Matrix: $Y=\Phi(x) U x^{J} U^{-1} e^{Q(x)}$

$$
\begin{aligned}
\Phi(x)=\ldots, & U
\end{aligned}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad J=\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & -\frac{3}{4}
\end{array}\right) ~=\left(\begin{array}{cc}
-\frac{2}{3 x^{3 / 2}} & 0 \\
0 & \frac{2}{3 x^{3 / 2}}
\end{array}\right) .
$$

Hukuhara-Turritin's Normal Form

Any differential system $[A]$ is equivalent over \bar{K} to a system $[B]$ of the form:

$$
B=\Gamma_{1} x^{-k_{1}-1}+\Gamma_{2} x^{-k_{2}-1}+\cdots+\Gamma_{m} x^{-k_{m}-1}+\left(\Gamma_{0}+N\right) x^{-1}
$$

where
(a) $k_{1}>k_{2}>\cdots>k_{m}>0$ are rational numbers (k_{1} is Katz-invariant of [A]),
(b) the Γ_{j} 's and N are constant matrices,
(c) the Γ_{j} 's are diagonal and commute with N.

Existence : Hukuhara (1930's), Turritin (1950's), Wasow (1960's), Levelt, Jurkat, Lutz, Balser (1970's) , Babbit\& Varadajan (1980's), etc.

Algorithms: Moser (1960's), Dietrich (1970's), Levelt, Wagenfuhrer, Hilali\&Wazner (1980's), Chen , Barkatou, (1990's), Pflügel (2000)

Efficient computation: [Barkatou 1997], [BP98], [Pflügel 2000]
M. Barkatou (CRM, Pisa 2017)

What's the point of knowing the Exp. Parts?

- Local analysis near a singularity:
- Asymptotic behavior of actual solutions
- Summability problems,
- Stokes multipliers, etc.
- Local data are useful for solving global problems:
- Computing exponential solutions of systems with coefficients in $\mathbb{C}(x)$ or in an extension of $\mathbb{C}(x)$
- Factorisation problems, Computing eigenrings
- Computing Hom(A,B)
- Testing the equivalence of two systems with rational function coefficients

Systems of First Kind

Structure of Solutions

Consider a linear differential system of first kind: $[A]: \quad Y^{\prime}=A(x) Y$,

$$
A(x)=\frac{1}{x} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0
$$

Thm Any system of first kind has a formal fundamental matrix solution of the form

$$
S(x) x^{\wedge}
$$

where Λ is a constant matrix and $S \in G L(n, \mathbb{C}((x)))$.
Moreover, the formal series $S(x)$ converges whenever the series for $A(x)$ does.

- Many Proofs: Sauvage (1886) developed a method, analogous to Frobenius method for the scalar case.

Sauvage's method

It constructs n linearly independent vector solutions $\mathbf{y}_{1}, \cdots, \mathbf{y}_{n}$ of the form

$$
\begin{equation*}
\mathbf{y}_{j}=x^{\lambda_{j}} \sum_{k=0}^{n_{j}-1} \mathrm{f}_{k, j}(x) \frac{\log ^{k} x}{k!} \tag{5}
\end{equation*}
$$

where $\lambda_{j} \in \mathbb{C}, n_{j}$ is a positive integer and the $\mathbf{f}_{k j}$'s are vectors of power series in x.

- the characteristic polynomial of the matrix A_{0} plays the role of the indicial equation,
- each exponent λ_{j} is an eigenvalue of A_{0},
- the integer n_{j} is the dimension of a Jordan block corresponding to λ, $\mathbf{f}_{0, j}(0), \mathbf{f}_{1, j}(0), \ldots, \mathbf{f}_{n_{j}-1, j}(0)$ is a Jordan chain of generalized eigenvectors of A_{0} associated to λ_{j};
- and the other coefficients in the power series $f_{k, j}$ are given by linear recurrence formulas.

Eulerian systems: $Y^{\prime}=\frac{\wedge}{x} Y, \Lambda \in M_{n}(\mathbb{C})$

- A fundamental solution is given by $x^{\wedge}=\exp (\wedge \log x)$
- The matrix Λ can be brought to its Jordan normal form $J=P^{-1} \wedge P$ by a suitable $P \in G L_{n}(\mathbb{C})$.
- Hence $P X^{J}$ is as well a fundamental solution the system.
- The matrix x^{J} is a block-diagonal matrix, with blocks of the form

$$
x^{\lambda}\left(\begin{array}{cccc}
1 & \log x & & \frac{\log ^{\nu-1} x}{(\nu-1)!} \\
0 & 1 & \ddots & \\
\vdots & \ddots & \ddots & \log x \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

- λ is an eigenvalue of Λ and ν is the size of Jordan block associated with λ.
- The entries of the fundamental matrix $P x^{J}$ are of the form $x^{\lambda} p(x)$ where λ is an eigenvalue of Λ and $p(x)$ is a polynomial in $\log x$ with degree less than the size of a Jordan block associated to λ.

Another proof

- It is possible to construct a formal gauge transformation $S \in G L(n, \mathbb{C}((x)))$ such that the transformed system $S[A]$ has the simple form of a Eulerian system $Y^{\prime}=x^{-1} \wedge Y$.
- Two cases are distinguished:

1. the non-resonant case: the residue matrix A_{0} has no eigenvalues that differ from each other by positive integers,
2. the resonant case: A_{0} has eigenvalues differing by positive integers.

- In the first case, the exponent matrix Λ can be taken equal to the residue matrix A_{0} itself and $S_{0}=\mathrm{I}_{n}$,
- In the second case S_{0} is a singular matrix and Λ depends not only on A_{0} but in all the coefficients $A_{0}, A_{1}, \cdots, A_{\ell}$ where ℓ is the largest positive integer which is the difference of two eigenvalues of A_{0}.

The non-resonant case

$$
[A]: Y^{\prime}=A(x) Y, \quad A(x)=\frac{A_{0}}{x}+\sum_{i=1}^{\infty} A_{i} x^{i-1}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0
$$

Thm 1 If the eigenvalues of A_{0} do not differ by nonzero integers, then there exists $T \in G L(n, \mathbb{C}[[x]])$ with $T(0)=I_{n}$ such that $T[A]:=T^{-1} A T-T^{-1} T^{\prime}=\frac{A_{0}}{x}$

Proof: Look for $T=\sum_{i=0}^{\infty} T_{i} x^{i}$ satisfying: $x T^{\prime}=x A T-T A_{0}$. Inserting the series of A and T in the above equation yields:

$$
\begin{equation*}
A_{0} T_{0}-T_{0} A_{0}=0, \quad\left(A_{0}-j I_{n}\right) T_{j}-T_{j} A_{0}=-\sum_{i=0}^{j-1} A_{j-i} T_{i}, \quad j \geq 1 \tag{6}
\end{equation*}
$$

By choosing $T_{0}=I_{n}$, the T_{j} 's are determined recursively by (6) which has a unique solution since $A_{0}-j I_{n}$ and A_{0} have no common eigenvalues for $j \geq 1$ (see next slide).

Sylvester Equation

\diamond Uniqueness of solution of (6) follows from the following well-known Linear Algebra result :

- Let M and N be two square matrices of order m and n with entries in a field \mathcal{C} and having no common eigenvalues (in the algebraic closure of \mathcal{C}). Then for every matrix $L \in \operatorname{Mat}_{m, n}(\mathcal{C})$ there exists a unique matrix $X \in \operatorname{Mat}_{m, n}(\mathcal{C})$ such that $M X-X N=L$.
\diamond The matrix X can be determined by solving a sparse system of $m n$ linear equations in $m n$ unknowns (More efficient algorithms exist).

Systems of First Kind: The resonant case

$$
[A]: Y^{\prime}=A(x) Y, \quad A(x)=\frac{A_{0}}{x}+\sum_{i=1}^{\infty} A_{i} x^{i-1}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0 .
$$

Thm 2 There exists $T \in G L(n, \mathbb{C}[x])$ with $\operatorname{det} T(x) \neq 0$ for $x \neq 0$ such that $B=T[A]=x^{-1}\left(B_{0}+x B_{1}+\ldots\right)$ where the eigenvalues of B_{0} do not differ by nonzero integers.

Proof of Thm 2.

- Arrange eigenvalues of A_{0} in disjoint sets so that the elements in each set differ only by integers.
- Let μ_{1}, \ldots, μ_{s} the elements of such a set:

$$
\Re \mu_{1}>\Re \mu_{2}>\ldots>\Re \mu_{s}, \quad \mu_{i}-\mu_{i+1}=\ell_{i} \in \mathbb{N}^{*}, \quad i=1, \ldots, s-1 .
$$

- Let $\mu_{s+1}, \ldots, \mu_{r}$ denote the other eigenvalues of A_{0}.
- For $i=1, \ldots, r$, denote by m_{i} the multiplicity of μ_{i}.
- By applying a constant gauge transformation we can assume that:

$$
A_{0}=\left(\begin{array}{cc}
A_{0}^{11} & 0 \\
0 & A_{0}^{22}
\end{array}\right)
$$

where A_{0}^{11} is an m_{1} by m_{1} matrix having one single eigenvalue μ_{1} :

$$
A_{0}^{11}=\mu_{1} I_{m_{1}}+N_{1}
$$

N_{1} being nilpotent matrix.

- Apply the gauge transformation $U=\operatorname{diag}\left(x I_{m_{1}}, I_{n-m_{1}}\right)$ yields the new system:

$$
Z^{\prime}=x^{-1} B(x) Z, \quad B(x)=x U^{-1} A(x) U-x U^{-1} U^{\prime}
$$

with the leading matrix:

$$
B(0)=\left(A_{0}+x U^{-1} A_{1} U-x U^{-1} U^{\prime}\right)_{\mid x=0} .
$$

- Let A_{1} be partitioned as A_{0} :

$$
A_{1}=\left(\begin{array}{ll}
A_{1}^{11} & A_{1}^{12} \\
A_{1}^{21} & A_{1}^{22}
\end{array}\right), \quad A_{1}^{11} \in \mathbb{C}^{m_{1} \times m_{1}}
$$

Then

$$
B(0)=\left(\begin{array}{cc}
A_{0}^{11}-I_{m_{1}} & A_{1}^{12} \\
0 & A_{0}^{22}
\end{array}\right)
$$

Hence the eigenvalues of $B(0)$ are: $\mu_{1}-1, \mu_{2}, \ldots, \mu_{s}, \ldots, \mu_{r}$, each with the same initial multiplicity m_{i}.
M. Barkatou (CRM, Pisa 2017)

- By repeating this process ℓ_{1} times, the eigenvalues become:

$$
\mu_{1}-\ell_{1}=\mu_{2}, \mu_{2}, \ldots, \mu_{s}, \ldots, \mu_{r}
$$

- Thus, after $\ell_{1}+\ldots+\ell_{s-1}$ steps, the eigenvalues μ_{1}, \ldots, μ_{s} are reduced to one single eigenvalue μ_{s} of multiplicity $m_{1}+\ldots+m_{s}$.
- By applying the same process to the other groups of eigenvalues, one obtains a matrix B_{0} whose eigenvalues do not differ by positive integer.

The matrix T in Thm2 is obtained as a product of invertible constant matrices or matrices of type U. Hence T is a polynomial matrix whose determinant is nonzero.

- The degree of $T(x)$ is bounded by ℓ the largest integer difference between the eigenvalues of the residue matrix A_{0}.

Example

$$
A(x)=\left(\begin{array}{ccc}
2 x^{-1}-2 & -2+x^{-1} & 0 \\
2 & 2 x^{-1}+2 & x \\
3 & 3 & x^{-1}
\end{array}\right) \quad A_{0}=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Put $U=\operatorname{diag}(x, x, 1)$ and let $B:=x U[A]$

$$
\begin{gathered}
B(x)=x U^{-1} A U-x U^{-1} U^{\prime}=\left(\begin{array}{ccc}
-2 x+1 & -2 x+1 & 0 \\
2 x & 1+2 x & x \\
3 x^{2} & 3 x^{2} & 1
\end{array}\right) \\
B_{0}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

which has 1 as eigenvalue of multiplicity 3 .

Part 2 : Systems of Second Kind - Fundamental Algorithms

Outline

1. Formal Solutions
2. How to recognize a regular singularity? Moser Algorithm
3. Splitting Lemma
4. Formal Reduction
5. Katz Invariant
6. Formal Solutions

Formal Solutions of a Singular Differential System

Formal Solutions

A differential equation

$$
Y^{\prime}=A Y, \quad A \in M_{n}\left(\mathbb{C}[[x]]\left[x^{-1}\right]\right)
$$

has a formal fundamental matrix solution of the form

$$
\Phi\left(x^{1 / s}\right) x^{\wedge} \exp \left(Q\left(x^{-1 / s}\right)\right)
$$

$$
\begin{aligned}
& s \in \mathbb{N}^{*}, \Phi \in G L\left(n, \mathbb{C}\left[\left[x^{1 / s}\right]\right]\right) \\
& Q\left(x^{-1 / s}\right)=\operatorname{diag}\left(q_{1}\left(x^{-1 / s}\right), \ldots, q_{n}\left(x^{-1 / s}\right)\right)
\end{aligned}
$$

the q_{i} 's are polynomials in $x^{-1 / s}$
Λ is a constant matrix commuting with Q.

Exponential Part

- Q is invariant under gauge transformations $T \in G L(n, \overline{\mathbb{C}((x))})$.
- $x=0$ is regular singular $\Longleftrightarrow Q\left(x^{-1 / s}\right) \equiv 0$. In this case $s=1$ and the formal series $\Phi(x)$ converges whenever the series for $A(x)$ does.
- When $Q\left(x^{-1 / s}\right) \not \equiv 0$, the origin is an irregular singular point of the system. In this case $\Phi(x)$ need not be convergent even if the series for $A(x)$ does.
- The elements of $Q\left(x^{-1 / s}\right)$ determine the main asymptotic behavior of actual solutions as $x \rightarrow 0$ in sectors of sufficiently small angular opening (Asymptotic existence theorem (cf. Wasow)).
- Existence :
- Matrix Case: Hukuhara (1930's), Turritin (1950's) , Wasow (1960's), Levelt , Jurkat, Lutz, Balser (1970's), Babbit\& Varadajan (1980's), . . .
- Scalar Case: Fabry (1885), Poincaré (1886), Malgrange (1978), . . .
- Algorithms (for related problems):
- Matrix Case: Moser (1960's), Dietrich (1970's), Levelt, Wagenfuhrer, Hilali\&Wazner (1980's), Chen, Barkatou, (1990's), Pflügel (2000), Barkatou (2004), Barkatou-Pflügel (2007)
- Scalar Case: Frobenius method- Newton Algorithm : Della-Dora et al. (1986), Dietrich (1986), Barkatou (1988), ...
- Efficient computation (Matrix case): [Barkatou 1997], [Barkatou-Pflügel 1999], [Pflügel 2000], [Barkatou-Pflügel 2007]

Examples

- Euler Equation: $x^{2} y^{\prime}+y=x$

It has a formal power series solution $\hat{f}=\sum_{n=0}^{\infty}(-1)^{n} n!x^{n+1}$
Homogeneous Equation: $x^{3} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}-y=0$
$\Rightarrow \frac{d Y}{d x}=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{x^{3}} & -\left(\frac{1}{x}+\frac{1}{x^{2}}\right)\end{array}\right) Y, \quad Y=\binom{y}{y^{\prime}}$
Formal Solution Matrix: $Y=\Phi(x) e^{Q}$
$Q=\left(\begin{array}{cc}\frac{1}{x} & 0 \\ 0 & 0\end{array}\right) \quad \Phi(x)=\left(\begin{array}{cc}1 & \hat{f} \\ -\frac{1}{x^{2}} & \hat{f}^{\prime}\end{array}\right)$

Systems of Second Kind

A matrix linear differential equation with Poincaré rank $p>0$:

$$
[A] \quad Y^{\prime}=A Y
$$

$$
A(x)=\frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0
$$

- System $[A]$ has a regular singularity at $x=0$ if it is equivalent to a system of the first kind (for which $\mathrm{p}=0$).
- Problem: Give an algorithm to decide for any system of second kind whether it has regular singularity.

Systems of Second Kind with Regular Singularity

How to recognize a regular singular system?
Problem 1: Given a system $[A]$ of second kind, i.e. with Poincaré rank $p(A)>0$, to decide whether it is regular singular or not.

In other words, to decide if the Poincaré rank of the given system can be reduced to 0 or not?

Problem 2: Given a system $[A]$ with Poincaré rank $p(A)>0$, to decide whether there exists $T \in G L(n, K)$ such that $p(T[A])<p(A)$.

There is an algorithm due to Moser (1960) which transforms a given system $[A]$ to an equivalent one with minimal Poincaré rank.

Other methods for reducing Poincaré rank (to its minimal value): Levelt (1992), Wagenfurer (1989), ... , Barkatou \&EI Bacha (2012).

Moser Reduced Systems

$A(x)=\frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0, p \in \mathbb{Z}$.
Moser rank: $m(A)=p+\frac{\operatorname{rank}\left(A_{0}\right)}{n}$ if $p>0$, otherwise $m(A)=1$.
Moser invariant: $\mu(A)=\min \{m(T[A]) \mid T \in G L(n, \mathbb{C}((x)))\}$
Definition. [A] is said to be Moser-reducible if $m(A)>\mu(A)$.

- $[A]$ is Moser-reducible $\Longleftrightarrow \exists T \in G L(n, \mathbb{C}((x)))$ such that $m(T[A])<m(A)$.
- $x=0$ is regular singular for $[A] \Longleftrightarrow \mu(A)=1$.

A Criterion for Moser-reducibility

Theorem. [Moser 1960]

1. If $p>0$ then A is Moser-reducible iff the polynomial

$$
\Theta_{A}(\lambda):=x^{\operatorname{rank}\left(A_{0}\right)} \operatorname{det}\left(\lambda I-A_{0} / x-A_{1}\right)_{\left.\right|_{x=0}} \equiv 0 .
$$

2. If A is Moser reducible then the reduction can be carried out with a transformation of the form
$T=\left(P_{0}+x P_{1}\right) \operatorname{diag}(1, \ldots, 1, x, \ldots, x), \quad P_{i} \in \mathbb{C}^{n \times n}, \operatorname{det} P_{0} \neq 0$.

- Applying Moser's Theorem several times, if necessary, $\mu(A)$ can be determined.
- Further, a matrix polynomial $T \in G L(n, K)$ such that $m(T[A])=\mu(A)$ can be computed in this way

Remarks

- Moser's initial intention: classification of singularity
- Barkatou (1997): also useful for computing formal solutions in the irregular singular case.
- Moser's Theorem can be applied to a system [A] for diminishing the number $p(A)$, when it is possible.
- A necessary condition that there exist a gauge transformation $T \in G L(n, \mathbb{C}((x)))$ such that $T[A]=\frac{1}{x^{p^{\prime}+1}}\left(B_{0}+B_{1} x+\cdots\right)$ with $p^{\prime}<p\left(B_{0} \neq 0\right)$, is that A_{0} is nilpotent.

Review: Moser Reduction Algorithms

- There are various algorithms to compute T such that $T[A]$ is Moser-reduced.
- Moser's paper: no constructive algorithm given
- Dietrich (1978), Hilali/Wazner (1987): first efficient algorithms,
- Barkatou (1995): version for rational function coefficients, implemented in ISOLDE
- Barkatou-Pflügel (2007): New reduction algorithm + complexity analysis.

Description of Moser Algorithm

- By a constant gauge transformation we can put A_{0} in the form:

$$
A_{0}=\left(\begin{array}{ll}
A_{0}^{11} & 0 \\
A_{0}^{21} & 0
\end{array}\right), \quad A_{0}^{11} \in \mathbb{C}^{r \times r} r=\operatorname{rank}\left(A_{0}\right) .
$$

- Let A_{1} be partitioned so that A_{1}^{11} is a square matrix of order r :

$$
A_{1}=\left(\begin{array}{ll}
A_{1}^{11} & A_{1}^{12} \\
A_{1}^{21} & A_{1}^{22}
\end{array}\right),
$$

- Consider

$$
G_{\lambda}(A)=\left(\begin{array}{cc}
A_{0}^{11} & A_{1}^{12} \\
A_{0}^{21} & A_{1}^{22}+\lambda I_{n-r}
\end{array}\right) .
$$

- Then $\left.\operatorname{det} G_{\lambda}(A)\right)=\Theta_{A}(\lambda)$.
- A is Moser-reducible $\Longleftrightarrow \operatorname{det} G_{\lambda}(A) \equiv 0$.

Case 1: $\operatorname{rank}\left(A_{0}^{11} A_{1}^{12}\right)<r$
A is Moser-reducible $\Longleftrightarrow\left|\begin{array}{cc}A_{0}^{11} & A_{1}^{12} \\ A_{0}^{21} & A_{1}^{22}+\lambda I_{n-r}\end{array}\right|=0$.
Proposition 1 If $m(A)>1$ and $\operatorname{rank}\left(A_{0}^{11} A_{1}^{12}\right)<r$, then A is reducible and the reduction can be carried out with the gauge transformation

$$
T=\operatorname{diag}\left(x I_{r}, I_{n-r}\right) .
$$

Proof: Let $B=T[A]=T^{-1} A T-T^{-1} \frac{d T}{d x}$.

$$
B=x^{-p-1}\left[B_{0}+x B_{1}+\cdots\right]+x^{-1} \operatorname{diag}\left(I_{r}, 0\right)
$$

where

$$
B_{0}=\left(\begin{array}{cc}
A_{0}^{11} & A_{1}^{12} \\
0 & 0
\end{array}\right),
$$

Since $p>0$, then $m(B)=p+\operatorname{rank}\left(B_{0}\right) / n<m(A)=p+r / n$.
M. Barkatou (CRM, Pisa 2017)

Example

$A=x^{-2}\left(\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right)+x^{-1}\left(\begin{array}{cc}4 & 0 \\ 0 & -3\end{array}\right)+\left(\begin{array}{cc}0 & -4 \\ 0 & 0\end{array}\right)$.
Here $p=1, r=1 \Rightarrow m(A)=1+1 / 2=3 / 2>1$.
$\operatorname{det} G_{\lambda}(A)=\left|\begin{array}{cc}0 & 0 \\ 2 & -3+\lambda\end{array}\right|=0 \Rightarrow A$ is Moser-reducible.
Let

$$
\begin{gathered}
T=\left(\begin{array}{cc}
x & 0 \\
0 & 1
\end{array}\right) \\
B:=T[A]=T^{-1} A T-T^{-1} T^{\prime}=\frac{1}{x}\left(\begin{array}{cc}
3 & -4 \\
2 & -3
\end{array}\right) .
\end{gathered}
$$

The system $Z^{\prime}=B Z$ has a singularity of first kind at $x=0$. Hence $Y^{\prime}=A Y$ has a regular singularity at $x=0$.

To solve $Y^{\prime}=A Y$, it suffices to solve $Z^{\prime}=B Z$ whose solution can be obtained immediately since $B=x^{-1} B_{0}$ where B_{0} is the constant matrix:

$$
B_{0}=\left(\begin{array}{ll}
3 & -4 \\
2 & -3
\end{array}\right)
$$

The matrix B_{0} is diagonalizable:

$$
B_{0}=P^{-1} J P, \quad \text { où } \quad P=\left(\begin{array}{cc}
-1 & 2 \\
-1 & 1
\end{array}\right) \quad \text { et } \quad J=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

$\Rightarrow P X^{J}$ is a fundamental matrix solution for $Z^{\prime}=B Z$.
It follows that

$$
W=T P_{x}^{J}=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
x^{-1} & 0 \\
0 & x
\end{array}\right)=\left(\begin{array}{cc}
-1 & 2 x^{2} \\
-x^{-1} & x
\end{array}\right)
$$

is a fundamental matrix solution of $Y^{\prime}=A Y$.
M. Barkatou (CRM, Pisa 2017)

Case 2: $\operatorname{rank}\left(A_{0}^{11} A_{1}^{12}\right)=r$

Proposition 2 If A is reducible and $\operatorname{rank}\left(A_{0}^{11} A_{1}^{12}\right)=r$, then there exists a constant matrix Q such that the matrix $G_{\lambda}(Q[A])$ has the form has the following particular form:

$$
G_{\lambda}(A)=\left(\begin{array}{ccc}
A_{0}^{11} & U_{1} & U_{2} \tag{7}\\
V_{1} & W_{1}+\lambda I_{n-r-h} & W 2 \\
0 & 0 & W_{3}+\lambda I_{h}
\end{array}\right),
$$

where $1 \leq h \leq n-r, W 1, W 3$ are square matrices of order $(n-r-h)$ and h respectively, W_{3} is upper triangular with zero diagonal with the condition

$$
\begin{equation*}
\operatorname{rank}\left(A_{0}^{11} \quad U_{1}\right)<r \tag{8}
\end{equation*}
$$

Proposition 3 If $m(A)>1$ and $G_{\lambda}(A)$ has the form (7) with the condition (8), then A is reducible and the reduction can be carried out with the transformation

$$
T=\operatorname{diag}\left(x I_{r}, I_{n-r-h}, x I_{h}\right)
$$

Proof: Put $B=T[A]=T^{-1} A T-T^{-1} \frac{d T}{d x}$. One has

$$
B=x^{-p-1}\left[B_{0}+x B_{1}+\cdots\right]+x^{-1} \operatorname{diag}\left(I_{r}, 0, I_{h}\right)
$$

where

$$
B_{0}=\left(\begin{array}{ccc}
A_{0}^{11} & U_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and then $\operatorname{rank}\left(B_{0}\right)=\operatorname{rank}\left(A_{0}^{11} \quad U_{1}\right)<r=\operatorname{rank}\left(A_{0}\right)$. On the other hand since $p>0$, then $m(B)=p+\operatorname{rank}\left(B_{0}\right) / n$. Hence $m(B)<m(A)$.

Summary

If A is Moser-reducible and $m(A)>1$ then one can construct a matrix polynomial S of the form :

$$
S=U \operatorname{diag}(x, x, \cdots, x, 1,1, \cdots, 1)
$$

where $U \in G L(n, \mathbb{C})$, such that $m(S[A])<m(A)$.

- Moser's Theorem allows us to check whether A is Moser-reducible.
- If A is Moser-reducible then by the above theorem we can find a matrix S such that $m(S[A])<m(A)$.
- After this reduction has been carried out we can apply Moser's Theorem to check whether further reduction is possible and so on.
- After a finite number of steps we obtain at most $n p$ an equivalent matrix B such that $m(B)=\mu(A)$.
- The nature of the singularity depends on the first np coefficients in the series expansion of A

Example

Consider the system $[A] \frac{d Y}{d x}=A(x) Y$

$$
A(x)=\left[\begin{array}{cccc}
-2 x^{-1} & 0 & x^{-2} & 0 \\
x^{2} & -\frac{-1+x^{2}}{x} & x^{2} & -x^{3} \\
0 & x^{-2} & x & 0 \\
x^{2} & x^{-1} & 0 & -\frac{x^{2}+1}{x}
\end{array}\right]
$$

Here

$$
p=1, \quad r=\operatorname{rank}\left(A_{0}\right)=2
$$

Hence

$$
m(A)=1+2 / 4=3 / 2>1 .
$$

One can check that

$$
\Theta_{A}(\lambda):=x^{\operatorname{rank}\left(A_{0}\right)} \operatorname{det}\left(\lambda I-A_{0} / x-A_{1}\right)_{\left.\right|_{x=0}} \equiv 0
$$

Hence A is Moser reducible.
M. Barkatou (CRM, Pisa 2017)

The equivalent matrix B computed by our implementation is

$$
B(x)=\left[\begin{array}{cccc}
-\frac{x^{2}+1}{x} & x & 1 & -x \\
x^{-1} & \frac{-1+x^{2}}{x} & 0 & 0 \\
0 & x^{-1} & -2 x^{-1} & 0 \\
x & 0 & x^{2} & -\frac{x^{2}+1}{x}
\end{array}\right]
$$

The transformation T is

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
x^{2} & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hence $[A]$ is singular regular.

Consider the system $\frac{d Y}{d x}=x^{-1} A(x) Y$ where

$$
A(x)=\left(\begin{array}{cccc}
4 & x^{3} & -2 x^{6} & -x^{6} \\
0 & -1-x^{-1} & x^{-1} & 0 \\
x^{-7} & 0 & x^{-1}-2 & x^{-1} \\
x^{-5}+x^{-6} & -x^{-2} & x^{2}+x+x^{-2} & -3
\end{array}\right)
$$

Here $m(A)=7+1 / 4=29 / 4$.

$$
x^{-1} B(x)=\left(\begin{array}{cccc}
-2-x^{-1} & 0 & x^{-1} & 0 \\
x^{-2}-x^{-1} & x-1 & x^{3}+x^{2}-2 x+x^{-1} & -3-x \\
0 & x^{-2} & x^{-1}-3 & 0 \\
-x^{-1} & x+1 & x^{3}+x^{2}+x^{-1} & -x-4
\end{array}\right)
$$

The transformation T is

$$
\left(\begin{array}{cccc}
0 & x^{6} & 0 & -x^{6} \\
x & 0 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

One has $\mu(A)=m(B)=2+2 / 4=5 / 2$.
M. Barkatou (CRM, Pisa 2017)

Systems of Second Kind with Irregular Singularity

Formal Solutions

Consider a system $[A] Y^{\prime}=A Y$ with minimal Poincaré rank $p>0$:

$$
A(x)=\frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{i} \in M_{n}(\mathbb{C}), \quad A_{0} \neq 0
$$

System $[A]$ has a formal fundamental matrix solution of the form

$$
\Phi\left(x^{1 / s}\right) x^{\wedge} \exp \left(Q\left(x^{-1 / s}\right)\right)
$$

$$
\begin{aligned}
& s \in \mathbb{N}^{*}, \Phi \in G L\left(n, \mathbb{C}\left(\left(x^{1 / s}\right)\right)\right), \\
& Q\left(x^{-1 / s}\right)=\operatorname{diag}\left(q_{1}\left(x^{-1 / s}\right), \ldots, q_{n}\left(x^{-1 / s}\right)\right)
\end{aligned}
$$

the q_{i} 's are polynomials in $x^{-1 / s}$ over \mathbb{C} without constant term Λ is a constant matrix commuting with Q.

How to compute the formal solutions of $[A]$?

Formal Reduction : an algorithmic procedure that allows construction of formal solutions.

Main idea: Transformation of system into new system with smaller p or n
Important tools: Moser Algorithm, Splitting Lemma, Katz Invariant computation.

- Discussion depending on structure of A_{0}. We distinguish two cases:

1. Case 1: A_{0} has at least two eigenvalues.
2. Case 2: A_{0} has only one eigenvalue.

Case 1- The Splitting Lemma

Splitting Lemma

Theorem: Consider a system $[A]: Y^{\prime}=A(x) Y$
$A(x)=x^{-p-1} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{0} \neq 0, \quad p>0$ and assume that A_{0} is
block-diagonal

$$
A_{0}=\left(\begin{array}{cc}
A_{0}^{11} & 0 \\
0 & A_{0}^{22}
\end{array}\right) \text { with } \operatorname{spec}\left(A_{0}^{11}\right) \cap \operatorname{spec}\left(A_{0}^{22}\right)=\emptyset .
$$

Then there exists a gauge transformation of the form

$$
T(x)=\sum_{j=0}^{\infty} T_{j} x^{j} \quad\left(T_{0}=\mathrm{I}_{n}\right)
$$

such that the matrix $B:=T[A]$ is block-diagonal matrix with the same block partition as in A_{0}

$$
B=x^{-p-1}\left(\begin{array}{cc}
B^{11}(x) & 0 \\
0 & B^{22}(x)
\end{array}\right) .
$$

Sketch of Proof

- Put $T_{0}=\mathrm{I}_{n}$ and $B_{0}=A_{0}$
- Look for matrices T_{i} of the special form

$$
T_{i}=\left(\begin{array}{cc}
0 & T_{i}^{12} \\
T_{i}^{21} & 0
\end{array}\right), \quad B_{i}=\left(\begin{array}{cc}
B_{i}^{11} & 0 \\
0 & B_{i}^{22}
\end{array}\right) .
$$

- Then for $i \geq 1$ the coefficients T_{i} and B_{i} can be obtained by successively solving Sylvester linear equations of the form

$$
A_{0}^{11} X-X A_{0}^{22}=U_{i} \text { or } A_{0}^{22} Y-Y A_{0}^{11}=V_{i}
$$

where U_{i} and V_{i} depend only on A_{j}, B_{j}, T_{j} for $j=0, \ldots, i-1$.

A very simple situation

$A(x)=x^{p-1} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{0} \neq 0, \quad p>0$.
Corollary. If A_{0} has all distinct eigenvalues, then there exists $T \in G L(n, \mathbb{C}[[x]])$ such that $T[A]$ is a diagonal matrix.

If $B_{0}:=P^{-1} A_{0} P=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)$ with $\beta_{i} \neq \beta_{j}$ for $i \neq j$ for some $P \in G L(n, \mathbb{C})$, then there exists a formal transformation

$$
T(x)=\sum_{j \geq 0} T_{j} x^{j} \quad\left(T_{0}=P\right)
$$

such that

$$
T[A]=\left(\begin{array}{ccc}
\frac{\beta_{1}}{x^{p+1}}+O\left(\frac{1}{x^{p}}\right) & & 0 \\
0 & \ddots & \\
\frac{\beta_{n}}{x^{p+1}}+O\left(\frac{1}{x^{p}}\right)
\end{array}\right)
$$

Case 2- The Nilpotent Case

Reduction to the Case where A_{0} is Nilpotent

 Let$$
A(x)=\frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_{i} x^{i}, \quad A_{0} \neq 0, p>0
$$

- Apply the Splitting Lemma to decouple $[A]$ along the spectral subspaces of A_{0} :

$$
A=A^{(1)} \oplus \cdots \oplus A^{(k)}
$$

The leading matrix of each subsystem has only one eigenvalue.

- If $A_{0}=\alpha \mathrm{I} \oplus N$, with N nilpotent then apply the substitution $Y=\exp \left(\frac{-\alpha}{p x^{p}}\right) Z$ which replace A by $A-\frac{\alpha}{x^{p+1}} I$. This makes A_{0} nilpotent.
- If necessary, apply the Moser algorithm to replace the system by an equivalent one with minimal Poincaré rank p.

The case A_{0} nilpotent and $p>0$ minimal

- In this case we need algebraic extension of K :

Gauge transformations in $\mathbb{C}\left(\left(x^{1 / m}\right)\right)$, for suitable integer $m \geq 2$, are applied to get an equivalent system $[\widetilde{A}]$ with leading coefficient \widetilde{A}_{0} having distinct eigenvalues.

- How to choose m ?

Compute κ, the Katz invariant of $[A]$ (see below) and let m be the smallest positive integer such that $m \kappa$ is an integer.

- Using Moser Algorithm yields a system with Poincaré rank equal to $m \kappa$ and leading matrix A_{0} with at least two eigenvalues.
- So we can again split the problem into problems of lower size, and so on.

Katz Invariant

Katz Invariant

Definition: The Katz Invariant of $[A]$ is the rational number

$$
\kappa(A)=\max _{1 \leq j \leq n} \operatorname{deg}_{1 / x}\left(q_{j}\right)
$$

where the q_{j} are the entries of the exponential part Q of $[A]$.
Fact: $\quad \kappa(A) \leq p(A)$ with equality iff A_{0} is non-nilpotent.
If $[A]$ is Moser-reduced and its leading coefficient A_{0} is nilpotent then $\kappa(A)$ is not an integer.

Theorem[Bark05] Suppose A Moser reduced and A_{0} nilpotent. Then

$$
p(A)-1+\frac{r}{n-d} \leq \kappa(A) \leq p(A)-\frac{1}{r+1}
$$

where $r=\operatorname{rank}\left(A_{0}\right)$ and $d=\operatorname{deg} \Theta_{A}(\lambda)$.
M. Barkatou (CRM, Pisa 2017)

Example 1

$A(x)=\frac{1}{x^{4}}\left[\begin{array}{cccc}0 & 0 & x & 0 \\ 1 & -x^{2} & x^{2} & -x^{2} \\ 0 & 1 & x^{2} & 0 \\ x^{2} & x^{2} & 0 & -x^{2}\end{array}\right]$ has Poincaré rank $p(A)=3$.
$A_{0}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is nilpotent and has rank $r=2$.
$\Theta_{A}(\lambda)=\lambda$ is not zero and has degree $d=1$.
The above theorem tells us:
$2+2 / 3=p(A)-1+\frac{r}{n-d} \leq \kappa(A) \leq p(A)-\frac{1}{r+1}=3-1 / 3$.
Hence $\kappa(A)=8 / 3$.

How to obtain Katz Invariant?

- If $D(y)=\partial^{n} y+c_{n-1}(x) \partial^{n-1} y+\cdots+c_{1}(x) \partial y+c_{0}(x) y=0$ is an equation obtained from the system $[A]$ via a cyclic vector, then

$$
\kappa(A)=\max \left(0, \max _{0 \leq j<n}\left(\frac{-n+j-\operatorname{val}\left(c_{j}\right)}{n-j}\right)\right)
$$

Theorem[Bark05] Let A be Moser-reduced, put $r=\operatorname{rank}\left(A_{0}\right)$, $d=\operatorname{deg}\left(\Theta_{A}(\lambda)\right)$ and write

$$
\operatorname{det}(\lambda I-A(x))=\lambda^{n}+a_{n-1}(x) \lambda^{n-1}+\cdots+a_{0}(x)
$$

Suppose

$$
\text { (C) } \quad p(A) \geq\left(1-\frac{r}{n-d}\right)(r+1) \text {. }
$$

Then

$$
\kappa(A)=\max \left(0, \max _{0 \leq j<n}\left(\frac{-n+j-\operatorname{val}\left(a_{j}\right)}{n-j}\right)\right)
$$

Back to Example 1

$[A]$ is Moser-reduced, $p=3, r=2, d=1$.
Condition (C) in the above theorem is satisfied.
One can compute $\kappa(A)$ using the above formula:

$$
\operatorname{det}(\lambda I-A(x))=\lambda^{4}+\frac{\lambda^{3}}{x^{2}}-\frac{\lambda^{2}}{x^{6}}+\frac{\left(-2 x^{7}-x^{2}-x^{5}\right) \lambda}{x^{13}}+\frac{x^{2}-1}{x^{13}} .
$$

One has

$$
\operatorname{val}\left(a_{3}\right)=-2, \operatorname{val}\left(a_{2}\right)=-6, \operatorname{val}\left(a_{1}\right)=-11, \operatorname{val}\left(a_{0}\right)=-13 .
$$

Hence

$$
\kappa(A)=\max \left(0, \max _{0 \leq j<n}\left(\frac{-n+j-\operatorname{val}\left(a_{j}\right)}{n-j}\right)\right)=\max \left\{0,1,2, \frac{8}{3}, \frac{9}{4}\right\}=\frac{8}{3} .
$$

Remarks

- It is always possible to come down to the case where Condition (C) is fulfilled.

Idea: If $p(A)<\left(1-\frac{r}{n-d}\right)(r+1)$, use a ramification $x=t^{s}$ where

$$
s \geq \frac{n-r-d}{p-2+r /(n-d)}
$$

What do we gain by computing Katz invariant?

Suppose [A] be Moser-reduced and A_{0} nilpotent and let $\kappa(A)=\frac{\ell}{m}$ with $(\ell, m) \in \mathbb{N} \times \mathbb{N}$ with $\operatorname{gcd}(\ell, m)=1$.

Put $t=x^{1 / m}$ and let $[\widetilde{A}]$ denote the resulting system:

$$
\frac{d Y}{d t}=\widetilde{A} Y, \quad \widetilde{A}(t)=m t^{m-1} A\left(t^{m}\right) .
$$

Then there is a $T \in G L(n, \mathbb{C}((t)))$ such that

- $\widetilde{B}:=T[\widetilde{A}]$ has Poincaré rank equal to ℓ
- its leading matrix \widetilde{B}_{0} has at least m distinct eigenvalues.

Remark The transformation T is in fact polynomial in t and can be computed using Moser Algorithm.

Back to our example

We have

$$
\kappa(A)=\frac{8}{3} .
$$

The change of variable

$$
x=t^{3}
$$

yields

$$
\frac{d Y}{d t}=\widetilde{A}(t) Y
$$

where

$$
\widetilde{A}(t)=\frac{3}{t^{10}}\left[\begin{array}{cccc}
0 & 0 & t^{3} & 0 \\
1 & -t^{6} & t^{6} & -t^{6} \\
0 & 1 & t^{6} & 0 \\
t^{6} & t^{6} & 0 & -t^{6}
\end{array}\right]
$$

One can check that this system is not Moser-reduced.

Moser Algorithm produces the gauge transformation

$$
Y=S Z
$$

where

$$
S=\operatorname{diag}\left(t^{2}, t, 1,1\right)
$$

and the equivalent system

$$
\frac{d Z}{d t}=\widetilde{B}(t) Z, \quad \widetilde{B}(t)=\frac{1}{t^{9}}\left[\begin{array}{cccc}
-2 t^{8} & 0 & 3 & 0 \\
3 & -3 t^{5}-t^{8} & 3 t^{4} & -3 t^{4} \\
0 & 3 & 3 t^{5} & 0 \\
3 t^{7} & 3 t^{6} & 0 & -3 t^{5}
\end{array}\right]
$$

Its Poincaré rank is equal to 8 as expected.

The leading matrix is

$$
\widetilde{B}_{0}=\left[\begin{array}{llll}
0 & 0 & 3 & 0 \\
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is non nilpotent and has 4 distinct eigenvalues

$$
0,3,3 j, 3 j^{2}
$$

with $j^{3}=1$.
The system can be then decoupled into 4 scalar equations.

One fundamental formal solution can be written as

$$
\widehat{Y}(x)=\widehat{F}(x)\left[\begin{array}{cc}
e^{1 / x} & 0 \\
0 & x^{J} U e^{Q(1 / x)}
\end{array}\right]
$$

where $\hat{F}(x)$ is a meromorphic formal series in x,

$$
J=-\frac{1}{3}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 2 / 3
\end{array}\right], \quad U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & j & j^{2} \\
1 & j^{2} & j^{4}
\end{array}\right]
$$

and

$$
Q(1 / x)=\left[\begin{array}{ccc}
q(1 / t) & 0 & \\
0 & q(1 /(j t)) & 0 \\
0 & 0 & q\left(1 /\left(j^{2} t\right)\right)
\end{array}\right]
$$

with

$$
t=x^{1 / 3} \quad q\left(\frac{1}{t}\right)=\frac{-3}{8 t^{8}}-\frac{1}{4 t^{4}} .
$$

An Important Question

Given a matrix

$$
A(x)=x^{-p-1}\left(A_{0}+A_{1} x+\cdots\right), \quad p>0
$$

- Question: How many terms in $\sum_{i=0}^{\infty} A_{i} x^{i-p-1}$ are necessary for computing the exponential part $Q\left(x^{-1 / s}\right)$ of the system $[A]$?
- The answer can be found in Lutz-Schäfke (1986) or Babbit-Varadarajan (1983):

The exponential part $Q\left(x^{-1 / s}\right)$ is determined by the coefficients

$$
A_{0}, A_{1}, \cdots, A_{n p-1}
$$

Example

$$
A=\left[\begin{array}{cccc}
-\frac{5}{x^{2}} & \frac{5}{x^{2}} & -x^{-3} & \frac{4}{x^{2}} \\
0 & \frac{1-4 x}{x^{3}} & -x^{-2} & -\frac{2}{x^{2}} \\
\frac{2 x+1}{x^{3}} & \frac{1-5 x}{x^{3}} & \frac{2-3 x}{x^{3}} & \frac{1-4 x}{x^{3}} \\
0 & \frac{4}{x^{2}} & x^{-2} & \frac{1+x}{x^{3}}
\end{array}\right]
$$

> Rational_Exponential_Part(A, x);

$$
\left[x=\alpha t^{2}, \frac{-\frac{9}{8}+\frac{7 \alpha}{4}}{t}+\frac{-1 / 4-\frac{11 \alpha}{4}}{t^{2}}+\frac{2 \alpha}{3 t^{3}}+\frac{1}{2 t^{4}}\right]
$$

where

$$
\alpha=\operatorname{Root} O f\left(_Z^{2}+1\right)
$$

Part 3: Applications to Solving Systems with Rational Function Coefficients

1. Polynomial Solutions
2. Rational Solutions
3. Exponential Solutions
4. Factorization Using Eigenrings
5. Implementations in Maple

Example (see Phd Thesis of C. Raab (2012))

$\int A i^{\prime}(x)^{2} d x=y_{0}(x) A i(x)^{2}+y_{1}(x) A i(x) A i^{\prime}(x)+y_{2}(x) A i^{\prime}(x)^{2}$
with $y_{0}, y_{1}, y_{2} \in \mathbb{Q}(x)$
Differentiate

$$
\begin{aligned}
A i^{\prime}(x)^{2}= & \left(y_{0}^{\prime}(x)+x y_{1}(x)\right) A i(x)^{2}+ \\
& \left(y_{1}^{\prime}(x)+2 y_{0}(x)+2 x y_{2}(x)\right) A i(x) A i^{\prime}(x)+ \\
& \left(y_{2}^{\prime}(x)+y_{1}(x)\right) A i^{\prime}(x)^{2}
\end{aligned}
$$

Coefficient comparison

$$
\begin{aligned}
& \left(\begin{array}{l}
y_{0}(x) \\
y_{1}(x) \\
y_{2}(x)
\end{array}\right)^{\prime}+\left(\begin{array}{ccc}
0 & x & 0 \\
2 & 0 & 2 x \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
y_{0}(x) \\
y_{1}(x) \\
y_{2}(x)
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& \int A i^{\prime}(x)^{2} d x=\frac{1}{3}\left(x A i^{\prime}(x)^{2}+2 A i(x) A i^{\prime}(x)-x^{2} A i(x)^{2}\right)
\end{aligned}
$$

Example

$\int x\left(e^{2 x}-n^{2}\right) J_{n}\left(e^{x}\right) d x=y_{0}(x) J_{n}\left(e^{x}\right)+y_{1}(x) J_{n+1}\left(e^{x}\right)$
with $\mathrm{y}=\left(y_{0}, y_{1}\right) \in C\left(x, e^{x}\right)^{2}$ s.t.

$$
\binom{y_{0}(x)}{y_{1}(x)}^{\prime}+\left(\begin{array}{cc}
n & e^{x} \\
-e^{x} & -(n+1)
\end{array}\right)\binom{y_{0}(x)}{y_{1}(x)}=\binom{x\left(e^{2 x}-n^{2}\right)}{0}
$$

Translate to $C(x, t)$ with $C=\mathbb{Q}(n)$ and $t^{\prime}=t$:

$$
\begin{gathered}
\mathbf{y}^{\prime}+\left(\begin{array}{cc}
n & t \\
-t & -(n+1)
\end{array}\right) \mathbf{y}=\binom{x\left(t^{2}-n^{2}\right)}{0} \\
\mathbf{y}=\binom{-n x+1}{x t} \\
\int x\left(e^{2 x}-n^{2}\right) J_{n}\left(e^{x}\right) d x=(-n x+1) J_{n}\left(e^{x}\right)+x e^{x} J_{n+1}\left(e^{x}\right)
\end{gathered}
$$

Integration

$$
\begin{aligned}
& \int A i^{\prime}(x)^{2} d x=\frac{1}{3}\left(x A i^{\prime}(x)^{2}+2 A i(x) A i^{\prime}(x)-x^{2} A i(x)^{2}\right) \\
& \int x\left(e^{2 x}-n^{2}\right) J_{n}\left(e^{x}\right) d x=(-n x+1) J_{n}\left(e^{x}\right)+x e^{x} J_{n+1}\left(e^{x}\right) \\
& \int P_{n}(x)-x^{n-1} P_{n+1}(x) d x=\frac{x^{n}-1}{n}\left(x P_{n}(x)-P_{n+1}(x)\right)
\end{aligned}
$$

Polynomial Solutions

Polynomial Solutions [B99]

Let $K=\mathbb{C}(x)$ and $\vartheta=x \frac{d}{d x}$.

- Linear Differential System :
[A] $\quad \vartheta y=A(x) y$,
$A(x)$ is an $n \times n$ matrix with entries in K.
- Polynomial Solutions : functions $y \in \mathbb{C}[x]^{n}$ such that $\vartheta y=A y$.
- Problem : Given a system $[A]$ to construct the space of polynomial solutions of $[A]$.
- A first important step consists in computing a bound N on the degree of polynomial solutions.

Bound of The Degree of Polynomial Solutions

- A first important step consists in computing a bound N of the degree of polynomial solutions.
- Such a bound can be obtained from the so-called indicial equation (at $x=\infty)$ of the system [A].
- But the indicial equation is not immediately apparent for a given system.
- Need to transform the given system to a suitable form called 'simple form' from which the indicial equation can be immediately obtained.
- Every system can be reduced to an equivalent simple one

Simple Systems

Simple Systems [B99, BP99]

Consider the system

$$
[A] \quad \vartheta y=A y, \quad A=\left(a_{i, j}\right) \in M_{n}(\mathbb{C}(x))
$$

We are interested in Frobenius series solutions in x^{-1} of the form:

$$
\hat{y}=\sum_{i=0}^{+\infty} x^{-i-\lambda_{0}} \hat{y}_{i} \lambda_{0} \in \mathbb{C}, \hat{y}_{i} \in \mathbb{C}^{n}, \hat{y}_{0} \neq 0
$$

- A polynomial solution of degree N can be viewed as a Frobenius series solution (at $x=\infty$) with exponent $\lambda_{0}=-N$.
- Look for a condition on λ_{0} in order that \hat{y} be a solution of system $[A]$.

How to do this?
Consider the system

$$
[A] \quad \vartheta y=A y, \quad A=\left(a_{i, j}\right) \in M_{n}(\mathbb{C}(x))
$$

Let

$$
D=\operatorname{diag}\left(x^{-\alpha_{1}}, \ldots, x^{-\alpha_{n}}\right),
$$

where

$$
\alpha_{i}=\max _{1 \leq j \leq n}\left(\operatorname{deg}\left(a_{i, j}\right), 0\right), \text { for } 1 \leq i \leq n
$$

For $0 \neq f \in \mathbb{C}(x), \operatorname{deg}(f)=\operatorname{deg}(\operatorname{num}(f))-\operatorname{deg}(\operatorname{denom}(f))$.
Multiplying on the left by D, both sides of Equation [A], we get

$$
D(x) \vartheta y-C(x) y=0, \quad C=D A
$$

where $D(x), C(x) \in \mathbb{C}\left[\left[x^{-1}\right]\right]$.
M. Barkatou (CRM, Pisa 2017)

Let

$$
\mathcal{L}(y):=D(x) \vartheta y-C(x) y
$$

where $D(x), C(x) \in \mathbb{C}\left[\left[x^{-1}\right]\right]$.
We are interested in formal solutions of $\mathcal{L}(y)=0$ of the form:

$$
\hat{y}=\sum_{i=0}^{+\infty} x^{-i-\lambda_{0}} \hat{y}_{i} \lambda_{0} \in \mathbb{C}, \hat{y}_{i} \in \mathbb{C}^{n}, \hat{y}_{0} \neq 0
$$

Put

$$
C=C_{0}+\mathrm{O}\left(x^{-1}\right), \quad D=D_{0}+\mathrm{O}\left(x^{-1}\right)
$$

Then

$$
\mathcal{L}(\hat{y})=-x^{-\lambda_{0}}\left(\left(\lambda_{0} D_{0}+C_{0}\right) \hat{y}_{0}+\mathrm{O}\left(x^{-1}\right)\right) .
$$

If $\mathcal{L}(\hat{y})=0$ then $\left(\lambda_{0} D_{0}+C_{0}\right) \hat{y}_{0}=0$ wich implies

$$
\operatorname{det}\left(C_{0}+\lambda D_{0}\right)=0
$$

Indicial Equation of a Simple System

\diamond To system $[A]$ we associate the polynomial

$$
E_{\infty}(\lambda):=\operatorname{det}\left(C_{0}+\lambda D_{0}\right)
$$

- If y is a nonzero polynomial solution of $[A]$ of degree N then $E_{\infty}(-N)=0$.
- The degree of polynomial solution can be bounded by the biggest nonnegative integer root of $E_{\infty}(-\lambda)$.
\diamond It may happen that $E_{\infty}(\lambda)$ vanishes identically, in which case it is quite useless for our initial purpose. This motivates the following definition

Definition
The system $[A]$ is called simple at $x=\infty$ if $\operatorname{det}\left(C_{0}+\lambda D_{0}\right) \neq 0$ (as a polynomial in λ).
In this case $E_{\infty}(\lambda)$ is called the indicial polynomial of $[A]$ at $x=\infty$.

Example: Systems of First Kind

$$
\begin{aligned}
& {[A] \quad x \frac{d}{d x} y=A(x) y,} \\
& A(x)=\sum_{i=0}^{\infty} A_{i} x^{-i} .
\end{aligned}
$$

In this case $x=\infty$ is at worst a singularity of the first kind.

- In this case $D_{0}=I_{n}$ and $C_{0}=A_{0}$. Hence

$$
E_{\infty}(\lambda)=\operatorname{det}\left(A_{0}+\lambda I_{n}\right) \neq 0
$$

- The system $[A]$ is simple and its indicial polynomial is the characteristic polynomial of the matrix $-A_{0}$.

Systems Associated with a Scalar Differential Equation

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1}
\end{array}\right), \quad a_{i} \in \mathbb{C}(x)
$$

Here $D_{0}=\operatorname{diag}(1, \ldots, 1, \epsilon)$ where $\epsilon=1$ or 0 .
The matrix C_{0} is given by

$$
C_{0}=\left(\begin{array}{cccc}
0 & 1 & & \\
& 0 & 1 & \\
& & & \\
& & & 1 \\
\bar{a}_{0} & \bar{a}_{1} & & \bar{a}_{n-1}
\end{array}\right)
$$

with $\bar{a}_{j}=\ell c_{\infty}\left(a_{j}\right)$ if $\operatorname{ord}_{\infty} a_{j}=\min _{0 \leq i \leq n} \operatorname{ord}_{\infty} a_{i}$, and 0 otherwise.
M. Barkatou (CRM, Pisa 2017)

- It then follows that

$$
\operatorname{det}\left(C_{0}+\lambda D_{0}\right)=\sum_{\operatorname{ord}_{\infty} a_{j}=\min _{0 \leq i \leq n} \operatorname{ord}_{\infty} a_{i}} \bar{a}_{j}(-\lambda)^{j},
$$

which is a nonzero polynomial in λ.

- Any companion differential system is simple.
- Consequence: Any differential system can be reduced to an equivalent simple one (Use cyclic vector lemma)

An Example of a Non Simple System

$$
x \frac{d y}{d x}=A y, \quad A=\left[\begin{array}{cc}
1 & x^{3} \\
2 x^{-1} & 1
\end{array}\right] .
$$

One has

$$
D=\left[\begin{array}{cc}
x^{-3} & 0 \\
0 & 1
\end{array}\right] \text { and } C=D A=\left[\begin{array}{cc}
x^{-3} & 1 \\
2 x^{-1} & 1
\end{array}\right] .
$$

Thus

$$
D_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad C_{0}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

One has

$$
\operatorname{det}\left(C_{0}+\lambda D_{0}\right)=0
$$

Hence $[A]$ is not simple at ∞.

Is it possible to make it simple, and if yes how?
\diamond The answer is 'YES': any differential system can be reduced to an equivalent simple one.
\diamond It can be done by using polynomial gauge transformations
\diamond In this example, we put

$$
w=T y
$$

where

$$
T=\left[\begin{array}{cc}
0 & x^{2} \\
1 & 0
\end{array}\right]
$$

Then w satisfies the equivalent differential system

$$
x \frac{d w}{d x}=\widetilde{A} w
$$

where

$$
\widetilde{A}=\left(T A+x \frac{d T}{d x}\right) T^{-1}=\left[\begin{array}{cc}
3 & 2 x \\
x & 1
\end{array}\right]
$$

$$
x \frac{d y}{d x}=\tilde{A} y, \quad \tilde{A}=\left[\begin{array}{cc}
3 & 2 x \\
x & 1
\end{array}\right]
$$

One has

$$
\widetilde{D}=\left[\begin{array}{cc}
x^{-1} & 0 \\
0 & x^{-1}
\end{array}\right] \text { and } \widetilde{C}=\widetilde{D} \widetilde{A}=\left[\begin{array}{cc}
3 x^{-1} & 2 \\
1 & x^{-1}
\end{array}\right]
$$

Thus

$$
\widetilde{D}_{0}=0 \quad \text { and } \quad \widetilde{C}_{0}=\left[\begin{array}{cc}
0 & 2 \\
1 & 0
\end{array}\right]
$$

One has

$$
\operatorname{det}\left(\widetilde{C}_{0}+\lambda \widetilde{D}_{0}\right)=\operatorname{det}\left(\widetilde{C}_{0}\right)=-2
$$

Hence $[\widetilde{A}]$ is simple at ∞.
Remark: The indicial polynomial at ∞ is constant, hence system $[A]$ has no nonzero polynomial solution.
M. Barkatou (CRM, Pisa 2017)

Simple forms can be computed effeciently

Theorem (Bark1997)

Given a differential system $[A] \vartheta y=A y$, one can construct a nonsingular matrix T polynomial in \times such that the gauge transformation $w=T y$ takes $[A]$ into an equivalent system $[\widetilde{A}] \vartheta w=\widetilde{A} w$ which is simple at ∞.

- Such a transformation T can be constructed using the super-reduction algorithm (Hilali and Wazner (1987), Barkatou-Pflügel 2007) or a more recent algorithm by Barkatou and C. El Bacha (2012).

Remark. The fact that the transformation T can be chosen polynomial is important: if y is a polynomial solution of $[A] w=T y$ is a polynomial solution of the equivalent system $[\widetilde{A}]$.

Remarks

- This notion of simple systems extends to the case of finite singularities \rightarrow useful for computing denominators of rational solutions.
- Another application: computation of regular formal solution (Barkatou-Pflügel 1997), (El Bacha 2011).

Rational Solutions

Rational Solutions [B99]

Let $K=\mathbb{C}(x)$ and $\vartheta=x \frac{d}{d x}$.

- Linear Differential System :

$$
[A] \quad \vartheta y=A(x) y,
$$

$A(x)$ is an $n \times n$ matrix with entries in K.

- Rational Solutions : functions $y \in K^{n}$ such that $\vartheta y=A y$.
- Problem : Given a system $[A]$, to construct the space \mathcal{S}_{A} of rational solutions of $[A]$.

Let \mathcal{S}_{A} be the space of rational solutions of $[A]$.
We proceed in two steps :
STEP 1. Construct a universal denominator for [A], i.e. a polynomial (or rational function) $u(x)$ such that
for all $y \in \mathbb{C}(x)$, if $y \in \mathcal{S}_{A}$ then $u y$ is a polynomial.
STEP 2. If u is a universal denominator for $[A]$ then set

$$
w=u y
$$

and search for polynomial solutions of the resulting system in w :

$$
\vartheta w=\left(A(x)+u^{-1} \vartheta u I_{n}\right) w .
$$

Computing Denominators of Rational Solutions

Universal Denominator

The problem: Given a differential system

$$
[A] \quad \vartheta y=A(x) y,
$$

to find a rational function u such that for all $y \in \mathbb{C}(x)$, if $y \in \mathcal{S}_{A}$ then $u y$ is a polynomial.

Some Facts:

- If $y \in \mathcal{S}_{A}$ then the finite poles of y are poles of A.
- Given a pole x_{0} of A, one can reduce the system $[A]$ to an equivalent system which is simple at $x=x_{0}$.
- The reduction can be achieved by a polynomial gauge transformation.
- To each point x_{0} corresponds an indicial polynomial $E_{x_{0}}(\lambda) \in \mathbb{C}[\lambda]$
- If y is a nonzero rational solution with a pole of order m at x_{0} then $E_{x_{0}}(-m)=0$.
- If for some pole x_{0} of A the corresponding indicial polynomial has no integer root then $\mathcal{S}_{A}=\{0\}$.
- For each pole x_{0} of A put:

$$
m_{x_{0}}=\min \left\{\mu \in \mathbb{Z}: E_{x_{0}}(\mu)=0\right\}
$$

Then

$$
u(x)=\prod\left(x-x_{0}\right)^{-m_{x_{0}}}
$$

is a universal denominator for $[A]$.

Complexity Estimate

Rational solutions of Differential systems

$\diamond C$ computable field of char. zero, $K=C(x)$

$$
Y^{\prime}=A Y, \quad A \in M_{n}(K), \quad \operatorname{denom}(A)=\prod_{i=1}^{s} q_{i}(x)^{r_{i}+1}
$$

\diamond Algorithm for computing rational solutions (Barkatou'99):

- Compute a universal denominator $U=\prod_{i=1}^{s} q_{i}(x)^{m_{i}}$: if Y is a rational solution then $Z=U Y$ is a polynomial vector.
- Compute polynomial solutions of $Z^{\prime}=\left(A+\left(U^{\prime} / U\right) I_{n}\right) Z$

Complexity estimate

$$
Y^{\prime}=A Y, \quad A=\left(a_{i, j}\right)_{i, j} \in M_{n}(K), \quad \operatorname{denom}(A)=\prod_{i=1}^{s} q_{i}(x)^{r_{i}+1}
$$

$$
\begin{gathered}
d:=\sum_{i=1}^{s}\left(r_{i}+1\right) \operatorname{deg}\left(q_{i}\right) \\
r_{\infty}:=\max \left(\max _{i, j}\left(1+\operatorname{deg}\left(\operatorname{num}\left(a_{i, j}\right)\right)-\operatorname{deg}\left(\operatorname{den}\left(a_{i, j}\right)\right)\right), 0\right)
\end{gathered}
$$

\diamond Arithmetic (operations in C) complexity estimate:

- Universal denominator: simple form at q_{i}, integer roots of the indicial polynomial: $\mathcal{O}\left(n^{5} \max _{i}\left(r_{i}\right) d\right)$
- Polynomial solutions: degree bound (simple form at ∞), coefficients: $\mathcal{O}\left(n^{5} r_{\infty}^{2}+n^{3} N^{2}\right)$
\rightsquigarrow rational solutions of $Y^{\prime}=A Y: \mathcal{O}\left(n^{5}\left(\max _{i}\left(r_{i}\right) d+r_{\infty}^{2}\right)+n^{3} N^{2}\right)$
\diamond Main tool: simple forms (El Bacha's PhD'11, Barkatou-El Bacha'12 direct method for computing simple forms, arithmetic complexity.)

Exponential Solutions

Exponential solutions

$$
y=\exp \left(\int u\right) z
$$

with $u \in \mathbb{C}(x), z \in \mathbb{C}[x]^{n}$.
For $x_{0} \in \mathbb{C} \cup\{\infty\}$ define the singular part $S_{x_{0}}(u)$ of u as the principal part of the Laurent series expansion of u at $x=x_{0}$.

Idea: there exist local exponential part w such that $w=S_{x_{0}}(u)$

1. Compute all exponential parts of ramification 1 at all singularities (Use algorithms from Part 2)
2. Reconstruct u from

$$
u=\sum_{x_{0}} S_{x_{0}}(u)
$$

Find candidates \tilde{u}, do a change of exponential and search for polynomial solutions.

Drawbacks

- Exponential number of combinations to be checked,
- Large algebraic extensions possible (splitting field).
- Can be improved using the approach of Cluzeau and van Hoeij, 2004: reduce $\bmod p$ to find the "good" combinations!

Example

$\frac{-12+3 x+3 x^{2}}{(x-1) x^{2}}$	$\frac{12}{(x-1) x^{2}}$	$\frac{3+6 x}{x(x-1)}$	0	0	0	0	0
$\frac{2 x-4}{(x-1) x^{2}}$	$\frac{5 x+4}{x^{2}}$	$\frac{2 x^{2}+1}{x(x-1)}$	$\frac{8}{(x-1) x^{2}}$	$\frac{\mathbf{2}+\mathbf{4} x}{x(x-\mathbf{1})}$	0	0	0
$\frac{3-x}{(x-1) x^{2}}$	$\frac{-4}{(x-1) x^{2}}$	$\frac{-9+x+x^{2}}{(x-1) x^{2}}$	0	$\frac{8}{(x-1) x^{2}}$	$\frac{\mathbf{2}+\mathbf{4} x}{x(x-\mathbf{1})}$	0	0
0	$\frac{4 x-8}{(x-1) x^{2}}$	0	$\frac{4-5 x+7 x^{2}}{(x-1) x^{2}}$	$\frac{4 x^{2}+2}{x(x-1)}$	0	$\frac{4}{(x-1) x^{2}}$	$\frac{1+2 x}{x(x-1)}$
0	$\frac{3-x}{(x-1) x^{2}}$	$\frac{2 x-4}{(x-1) x^{2}}$	$-\frac{4}{(x-1) x^{2}}$	$\frac{-3 x-1+3 x^{2}}{(x-1) x^{2}}$	$\frac{2 x^{2}+1}{x(x-1)}$	0	$\frac{4}{(x-1) x^{2}}$
0	0	$\frac{6-2 x}{(x-1) x^{2}}$	0	$\frac{-8}{(x-1) x^{2}}$	$\frac{-6-x-x^{2}}{(x-1) x^{2}}$	0	0
0	0	0	$\frac{6 x-12}{(x-1) x^{2}}$	0	0	$\frac{12-9 x+9 x^{2}}{(x-1) x^{2}}$	$\frac{6 x^{2}+3}{x(x-1)}$
0	0	0	$\frac{\mathbf{3 - x}}{(x-1) x^{\mathbf{2}}}$	$\frac{4 x-8}{(x-1) x^{2}}$	0	$-\frac{4}{(x-1) x^{2}}$	$\frac{7-7 x+5 x^{2}}{(x-1) x^{2}}$
0	0	0	0	$\frac{6-2 x}{(x-1) x^{2}}$	$\frac{2 x-4}{(x-1) x^{2}}$	0	$\frac{-8}{(x-1) x^{2}}$
0	0	0	0	0	$\frac{9-3 x}{(x-1) x^{2}}$	0	0

Our program finds the solution

Factorization Using Eigenring

Definitions

A system [A] $Y^{\prime}=A Y, A \in M_{n}(\mathbb{C}(x))$ is called:

- reducible, if it is equivalent (over $\mathbb{C}(x)$) to a system of the form

$$
Z^{\prime}=\left(\begin{array}{cc}
A_{1,1} & 0 \tag{9}\\
A_{2,1} & A_{2,2}
\end{array}\right) Z .
$$

- decomposable if $[A]$ is equivalent to a system of the form (9) with $A_{2,1}=0$.
- irreducible (indecomposable) if it is not reducible (decomposable).
- completely reducible, if it is equivalent to a block-diagonal system

$$
T[A]=\operatorname{diag}\left(A_{1,1}, \ldots, A_{s, s}\right)
$$

where each system $\left[A_{i, i}\right], 1 \leq i \leq s$, is irreducible.

The Eigenring Method

This method was introduced by M. Singer (1996) for factoring scalar differential operators over $K=\mathbb{C}(x)$.

Definition: The eigenring $\mathcal{E}(A)$ of a system $[A]$ is the finite dimensional \mathbb{C} - algebra of all the matrices $T \in M_{n}(\mathbb{C}(x))$ satisfying the matrix equation

$$
T^{\prime}=A T-T A
$$

- A simple way to compute $\mathcal{E}(A)$ is to convert the above equation into a n^{2}-dimensional first order linear differential system and search for rational solutions of this system.

Some Properties

- Elements of $\mathcal{E}(A)$ map a solution of $[A]$ to a solution of $[A]$.
- If $T \in \mathcal{E}(A)$ then all its eigenvalues are constant.
- If two systems $[A]$ and $[B]$ are equivalent, their eigenrings $\mathcal{E}(A)$ and $\mathcal{E}(B)$ are isomorphic as \mathbb{C}-algebras. In particular, one has $\operatorname{dim}_{\mathbb{C}} \mathcal{E}(A)=\operatorname{dim}_{\mathbb{C}} \mathcal{E}(B)$

More precisely If $B=P^{-1} A P-P^{-1} P^{\prime}$ with $P \in G L(n, \mathbb{C}(x))$ then

$$
\mathcal{E}(A)=P^{-1} \mathcal{E}(B) P:=\left\{P^{-1} T P \mid T \in \mathcal{E}(B)\right\} .
$$

- If $[A]$ is decomposable then $\operatorname{dim}_{\mathbb{C}} \mathcal{E}(A)>1$.

Factorization of Systems with Nontrivial Eigenring

Theorem 1 If $\operatorname{dim}_{\mathbb{C}} \mathcal{E}(A)>1$ then $[A]$ is reducible and the reduction can be carried out by a matrix $P \in G L(n, K)$ that can be computed explicitly.

Cor. Given a system $[A]$ one can construct an equivalent matrix equation $[B]$ having a block-triangular form

$$
\left(\begin{array}{cccc}
B_{1,1} & 0 & & 0 \\
B_{2,1} & B_{2,2} & & \\
\vdots & & \ddots & 0 \\
B_{s, 1} & \cdots & & B_{s, s}
\end{array}\right)
$$

where s is the maximal possible, i.e. for each $1 \leq i \leq s$, the eigenring of [$B_{i, i}$] is trivial (having dimension 1).

Proof of Theorem1

Suppose $\operatorname{dim} \mathcal{E}(A)>1$. Then there is $T \in \mathcal{E}(A)$ with rank $r<n$. One can compute $P \in G L(n, K)$ such that

$$
S:=P^{-1} T P=\left(\begin{array}{ll}
S_{1,1} & 0 \\
S_{2,1} & 0
\end{array}\right)
$$

where $S_{1,1}$ is an $r \times r$ matrix and $\binom{S_{1,1}}{S_{2,1}}$ has rank r.
Let $B=P^{-1}\left(A P+P^{\prime}\right)$ then $S \in \mathcal{E}(B)$, Decompose B in the same form as S

$$
B=\left(\begin{array}{ll}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{array}\right)
$$

The equation $S B-B S=S^{\prime}$ implies

$$
\binom{S_{1,1}}{S_{2,1}} B_{1,2}=0
$$

Since $\binom{S_{1,1}}{S_{2,0,}}$ is of full rank, then $B_{1,2}=0$.

Factorization of Decomposable Systems

Proposition Suppose that $\mathcal{E}(A)$ contains an element T which has $s \geq 2$ distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{C}$ then $[A]$ is decomposable.

Moreover, if $P \in G L(n, K)$ is such that

$$
J=P^{-1} T P=\bigoplus_{i=1}^{s} J_{i} \quad \text { with } \operatorname{spec}\left(J_{i}\right)=\lambda_{i}
$$

Then the matrix $B=P[A]=P^{-1}\left(A P+P^{\prime}\right)$ has the form

$$
P[A]=\bigoplus_{i=1}^{s} B_{i}
$$

Example

$A=\left[\begin{array}{ccccc}9 & -6 x^{-2} & 0 & 6 x^{-2} & 6 x^{-2} \\ \frac{1-x}{x^{2}} & \frac{4 x^{2}-9 x+4}{x^{2}-x^{3}} & 6 \frac{x-1}{x^{2}} & \frac{-3+3 x-4 x^{2}+4 x^{3}}{x^{4}} & 4 \frac{x-1}{x^{2}} \\ 0 & 5\left(x^{4}-x^{3}\right)^{-1} & \frac{5-x}{x^{2}} & -3 x^{-2} & 5 x^{-3} \\ 0 & (1-x)^{-1} & 0 & 3 x^{-3} & -1 \\ x^{-2} & \frac{x^{2}+5 x-4}{x^{3}-x^{2}} & 6 \frac{x-1}{x^{2}} & -\frac{3+4 x^{2}}{x^{4}} & \frac{x^{2}-4}{x^{2}}\end{array}\right]$

A basis of $\mathcal{E}(A)$ is $\left(I_{5}, T\right)$ where
$T=\left[\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & -x^{-1} & 0 & 1 / 2 \frac{-2 x+2}{x} & 1 / 2 \frac{-2 x+2}{x} \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & -x^{-1} & 0 & x^{-1} & 1 / 4 \frac{-4 x+4}{x}\end{array}\right]$

Let

$$
P=\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
\frac{x-1}{x} & 0 & \frac{1+x}{x} & -1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
-x^{-1} & 0 & x^{-1} & 0 & 0
\end{array}\right]
$$

Then

$$
J:=P^{-1} T P=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

As expected

$$
P[A]=B_{1} \oplus B_{2}
$$

where

$$
B_{1}=\left[\begin{array}{cc}
-5 x^{-1} & x^{-1} \\
-\frac{9 x^{2}+5 x-6}{x^{2}} & \frac{9 x+1}{x}
\end{array}\right]
$$

and

$$
B_{2}=\left[\begin{array}{ccc}
\frac{-10 x^{3}+8 x^{4}+6 x^{2}-3 x+3}{x^{3}(x-1)} & -\frac{x^{4}+x^{3}+3-3 x}{x^{3}(x-1)} & 6 \frac{x-1}{x} \\
2 \frac{3-3 x+3 x^{2}-4 x^{3}+4 x^{4}}{x^{3}(x-1)} & -\frac{2 x^{3}-6 x+6+x^{4}}{x^{3}(x-1)} & 6 \frac{x-1}{x} \\
-\frac{-7-x+3 x^{2}-9 x^{3}+8 x^{4}}{x^{3}(x-1)} & \frac{x^{3}+3 x^{2}-6 x-2+x^{4}}{x^{3}(x-1)} & -\frac{-5 x-5+6 x^{2}}{x^{2}}
\end{array}\right]
$$

More Recent Developments

- Modular Algorithms for Linear Differential Equations: PhD Thesis of Thomas Cluzeau'2004
- Algorithms for solving directly systems of higher order differential equations: PhD Thesis of Carole El Bacha'2011
- Reduced Forms of Linear Differential Systems and Applications to Integrability of Hamiltonian Systems. Specific Reduction Algorithms for Hamiltonian Systems: PhD Thesis of Ainhoa Aparicio'2010
- Formal reduction of pfaffian systems: PhD Thesis of Nicolas LeRoux'2006
- Singularly-perturbed linear differential systems, completely integrable Pfaffian systems: PhD Thesis of Suzy S. Maddah'2015

Implementation

Packages

Computer Algebra team, University of Limoges

- M. Barkatou, E. Pfluegel: ISOLDE (late 90s-2012), a package written in Maple with algorithms for global solutions (polynomial, rational, exponentiel solutions, factorization, etc) as well as local analysis (singularities, formal solutions, formal reduction, ...) for both differential and (q -) difference equations
- Higher order linear differential equations: Carole El-Bacha'2011
- IntegrableConnections: RationalSolutions (\& Eigenring), HyperexponentialSolutions: Thomas Cluzeau
- Linear ordinary first-order differential systems with singularities, Singularly-perturbed linear differential systems, completely integrable Pfaffian systems, Apparent and Removable Singularities: 2013 -2015: Mathemagix: Lindalg; Maple: minilSOLDE, ParamInt, Pfafflnt, AppSing : Suzy S. Maddah.

On Completely Integrable Pfaffian systems with normal crossings

Completely Integrable Pfaffian systems with normal crossings

For more details see PhD Thesis of Suzy S. Maddah'2015

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{\partial}{\partial x_{1}} Y=\left[\begin{array}{cc}
x_{1}^{3}+x_{1}^{2}+x_{2} & x_{2}^{2} \\
-1 & x_{1}^{3}+x_{1}^{2}-x_{2}
\end{array}\right] Y \\
x_{2}^{3} \frac{\partial}{\partial x_{2}} Y=\left[\begin{array}{cc}
x_{2}^{2}-2 x_{2}-6 & x_{2}^{3} \\
-2 x_{2} & -3 x_{2}^{2}-2 x_{2}-6
\end{array}\right] Y
\end{array}\right.
$$

Required: Compute solutions in a neighborhood of $(x, y)=(0,0)$.

General form

[A]

$$
\begin{aligned}
& x_{1}^{p_{1}+1} \frac{\partial}{\partial x_{1}} Y=A_{(1)}\left(x_{1}, x_{2}, \ldots, x_{m}\right) Y \\
& x_{2}^{p_{2}+1} \frac{\partial}{\partial x_{2}} Y=A_{(2)}\left(x_{1}, x_{2}, \ldots, x_{m}\right) Y \\
& \vdots \\
& x_{m}^{p_{m}+1} \frac{\partial}{\partial x_{m}} Y=A_{(m)}\left(x_{1}, x_{2}, \ldots, x_{m}\right) Y
\end{aligned}
$$

For $i, j \in\{1, \ldots, m\}$,

- p_{i} is an integer and $\underline{p}=\left(p_{1}, \ldots, p_{m}\right)$ is called Poincaré rank
- $A_{(i)} \in \mathrm{R}=\mathbb{C}\left[\left[x_{1}, \ldots, x_{m}\right]\right]$ ($i^{\text {th }}$-component), and
- Integrability conditions:

$$
x_{i}^{p_{i}+1} \frac{\partial}{\partial x_{i}} A_{(j)}(x)-x_{j}^{p_{j}+1} \frac{\partial}{\partial x_{j}} A_{(i)}(x)=A_{(i)}(x) A_{(j)}(x)-A_{(j)}(x) A_{(i)}(x)
$$

Fundamental matrix of formal solutions

$$
\Phi\left(x_{1}^{1 / s_{1}}, \ldots, x_{m}^{1 / s_{m}}\right) \prod_{i=1}^{m} x_{i}^{C_{i}} \prod_{i=1}^{m} \exp \left(Q_{i}\left(x_{i}^{-1 / s_{i}}\right)\right)
$$

- Φ is an invertible matrix whose entries are meromorphic series in $\left(x_{1}^{1 / s_{1}}, \ldots, x_{m}^{1 / s_{m}}\right)$ over \mathbb{C};
- $Q_{i}\left(x_{i}^{-1 / s_{i}}\right)$ is a diagonal matrix of polynomials in $x_{i}^{-1 / s_{i}}$ over \mathbb{C} without contant terms.
- C_{i} is a constant matrix which commutes with $Q_{i}\left(x_{i}^{-1 / s_{i}}\right)$.
- H. Charrière, P. Deligne, R. Gérard, A. H. M. Levelt, Y. Sibuya, A. van den Essen, ... (70's and 80's)
- Algorithms: Reduction of Poincaré rank, Constructing Solutions of regular systems - Barkatou and LeRoux (2006), Closed Form Solutions of Integrable Connections: Barkatou-Cluzeau-ElBacha-Weil'2012

Example

Poincaré Rank Reduction, Barkatou-LeRoux'2006

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}^{4} \frac{\partial}{\partial x_{1}} Y=A_{(1)}\left(x_{1}, x_{2}\right) Y=\left(\left[\begin{array}{cc}
x_{1}^{3}+x_{2} & x_{2}^{2} \\
-1 & -x_{2}+x_{1}^{3}
\end{array}\right]\right) Y \\
x_{2}^{2} \frac{\partial}{\partial x_{2}} F=A_{(2)}\left(x_{1}, x_{2}\right) Y=\left(\left[\begin{array}{cc}
x_{2} & x_{2}^{2} \\
-2 & -3 x_{2}
\end{array}\right]\right) Y
\end{array}\right. \\
& \downarrow \quad Y=\left(\left[\begin{array}{cc}
x_{1}^{3} & -x_{2}^{2} \\
0 & x_{2}
\end{array}\right]\right) G \\
& \left\{\begin{array}{l}
x_{1} x_{2} \frac{\partial}{\partial x_{1}} G=\tilde{A}_{(1)}\left(x_{1}, x_{2}\right) G=\left(\left[\begin{array}{cc}
-2 x_{2} & 0 \\
-1 & x_{2}
\end{array}\right]\right) G \\
x_{2}^{3} \frac{\partial}{\partial x_{2}} G=\tilde{A}_{(2)}\left(x_{1}, x_{2}\right) G=\left(\left[\begin{array}{cc}
-x_{2}^{2} & 0 \\
-2 x_{1}^{3} & -2 x_{2}^{2}
\end{array}\right]\right) G .
\end{array}\right.
\end{aligned}
$$

Figure: Computing the exponential part from associated ODS's

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{\partial}{\partial x_{1}} Y=\left[\begin{array}{cc}
x_{1}^{3}+x_{1}^{2}+x_{2} & x_{2}^{2} \\
-1 & x_{1}^{3}+x_{1}^{2}-x_{2}
\end{array}\right] Y \\
x_{2}^{3} \frac{\partial}{\partial x_{2}} Y=\left[\begin{array}{cc}
x_{2}^{2}-2 y-6 & x_{2}^{3} \\
-2 x_{2} & -3 x_{2}^{2}-2 x_{2}-6
\end{array}\right] Y
\end{array}\right.
$$

Associated system:

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{d}{d x_{1}} \mathcal{Y}=\left[\begin{array}{cc}
x_{1}^{3}+x_{1}^{2} & 0 \\
-1 & x_{1}^{3}+x_{1}^{2}
\end{array}\right] \mathcal{Y} \\
x_{2}^{3} \frac{d}{d x_{2}} \mathcal{Y}=\left[\begin{array}{cc}
x_{2}^{2}-2 x_{2}-6 & x_{2}^{3} \\
-2 x_{2} & -3 x_{2}^{2}-2 x_{2}-6
\end{array}\right] \mathcal{Y}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{d Y}{d x_{1}}=\left[\begin{array}{cc}
x_{1}^{3}+x_{1}^{2}+x_{2} & x_{2}^{2} \\
-1 & x_{1}^{3}+x_{1}^{2}-x_{2}
\end{array}\right] Y \\
x_{2}^{3} \frac{d Y}{d x_{2}}=\left[\begin{array}{cc}
x_{2}^{2}-2 x_{2}-6 & x_{2}^{3} \\
-2 x_{2} & -3 x_{2}^{2}-2 x_{2}-6
\end{array}\right] Y
\end{array}\right.
$$

With minilSOLDE or Lindalg we compute from the asscoiated system

$$
\Phi\left(x_{1}, x_{2}\right) x_{1}^{C_{1}} x_{2}^{C_{2}} \exp \left(\left[\begin{array}{cc}
\frac{-1}{x_{1}} & 0 \\
0 & \frac{-1}{x_{1}}
\end{array}\right]\right) \exp \left(\left[\begin{array}{cc}
\frac{3}{x_{2}{ }^{2}}+\frac{2}{x_{2}} & 0 \\
0 & \frac{3}{x_{2}{ }^{2}}+\frac{2}{x_{2}}
\end{array}\right]\right)
$$

Upon applying

$$
Y=\exp \left(\frac{-1}{x_{1}}\right) \exp \left(\frac{3}{x_{2}^{2}}+\frac{2}{x_{2}}\right) G
$$

we have

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{\partial}{\partial x_{1}} G=\left[\begin{array}{cc}
x_{1}^{3}+x_{2} & x_{2}^{2} \\
-1 & x_{1}^{3}-x_{2}
\end{array}\right] G \\
x_{2}^{2} \frac{\partial}{\partial x_{2}} G=\left[\begin{array}{cc}
x_{2} & x_{2}^{2} \\
-2 & -3 x_{2}
\end{array}\right] G
\end{array}\right.
$$

And so, it is left to obtain:

$$
G\left(x_{1}, x_{2}\right)=\Phi\left(x_{1}, x_{2}\right) x_{1}^{C_{1}} x_{2}^{C_{2}} .
$$

For rank-reduction, we apply $G=T_{1} H$ where

$$
T_{1}=\left[\begin{array}{cc}
x_{2} x_{1}^{3} & -x_{2} \\
0 & 1
\end{array}\right]
$$

which yields:

$$
\left\{\begin{array}{l}
x_{1} \frac{\partial}{\partial x_{1}} H=\left[\begin{array}{cc}
-2 & 0 \\
-x_{2} & 1
\end{array}\right] H, \\
x_{2} \frac{\partial}{\partial x_{2}} H=\left[\begin{array}{cc}
-2 & 0 \\
-2 x_{1}^{3} & -1
\end{array}\right] H .
\end{array}\right.
$$

Finally, we compute

$$
T_{2}=\left[\begin{array}{cc}
1 & 0 \\
\frac{x_{2}}{3}+2 x_{1}^{3} & -1
\end{array}\right]
$$

Then $H=T_{2} U$ yields

$$
\left\{\begin{array}{l}
x_{1} \frac{\partial}{\partial x_{1}} U=C_{1} U=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right] U \\
x_{2} \frac{\partial}{\partial x_{2}} U=C_{2} U=\left[\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right] U
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x_{1}^{4} \frac{\partial}{\partial x_{1}} F=\left[\begin{array}{cc}
x_{1}^{3}+x_{1}^{2}+x_{2} & x_{2}^{2} \\
-1 & x_{1}^{3}+x_{1}^{2}-x_{2}
\end{array}\right] F \\
x_{2}^{3} \frac{\partial}{\partial x_{2}} F=\left[\begin{array}{cc}
x_{2}^{2}-2 x_{2}-6 & x_{2}^{3} \\
-2 x_{2} & -3 x_{2}^{2}-2 x_{2}-6
\end{array}\right] F
\end{array}\right.
$$

A fundamental matrix of formal solutions is given by

$$
T_{1} T_{2} x_{1}^{C_{1}} x_{2}^{C_{2}} \exp \left(\left[\begin{array}{cc}
\frac{-1}{x_{1}} & 0 \\
0 & \frac{-1}{x_{1}}
\end{array}\right]\right) \exp \left(\left[\begin{array}{cc}
\frac{3}{x_{2}{ }^{2}}+\frac{2}{x_{2}} & 0 \\
0 & \frac{3}{x_{2}{ }^{2}}+\frac{2}{x_{2}}
\end{array}\right]\right)
$$

References

围 M．A．Barkatou，An algorithm for computing a companion block diagonal form for a system of linear differential equations，AAECC 4 （1993），185－195．

圊 G．D．Birkhoff，Formal theory of irregular linear difference equations， Acta Mathematica 54 （1930），205－246．

雷 R．C．Churchill，J．J．Kovacic，Cyclic vectors，Differential Algebra and related topics（Newark，N．J．，2000），World Sci．Publishing（2002）， 191－218．
䍰 P．Deligne，Équations différentielles à points singuliers réguliers， Springer L．N．in Math． 163 （1970）．

R．J．－P．Ramis，Théorèmes d＇indices Gevrey pour les équations différentielles ordinaires，Memoirs of the Amer．Math．Soc．296，vol． 48 （1984）．

References

䍰 Babbitt, D.G. and Varadarajan, V.S
Formal reduction of meromorphic differential equations: a group theoretic view.
Pacific Journal of Mathematics, 109(1) pages 1-80, 1983.
Balser, W., Jurkat, W., and Lutz, D.
A General Theorie of Invariants For Meromorphic Differential Equations, Part I: Formal Invariants.
Funcialaj Ekvacioj 22 (1979), 197-221.
國 Barkatou, M.A.
An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system.
Journal of App. Alg. in Eng. Comm. and Comp. 8, 1 (1997), 1-23.
(-i M.A. Barkatou, M. Jaroschek, S.S. Maddah: Formal solutions of completely integrable Pfaffian systems with normal crossings. J. Symb. Comput. 81: 41-68 (2017)
M. Barkatou (CRM, Pisa 2017)

References

圊 W．Balser，
Formal power series and linear systems of meromorphic ordinary differential equations
Springer－Verlag（2000）．
围 W．Wasow，
Asymptotic expansions for ordinary differential equations Interscience，New York，（1965）；reprint R．E．Krieger Publishing Co， inc．（1976）．

目 M．van der Put and M．F．Singer．
Galois Theory of Linear Differential Equations
Grundlehren der mathematischen Wissenschaften，vol．328，Springer， 2003.

