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Abstract In this talk I will review a detailed analysis of the orthogonal polynomials and corresponding recurrence coefficients for the

varying weight exp
[
−N

(
1
2
z2 + 1

4
tz4
)]

with integration supported on several arcs in the complex plane.

While some general results (Rakhmanov, Bertola, Kuijlaars-de Silva) are known for the equilibrium measure in the case of polynomial
potentials of more general type, the detailed study of the “phase regions” in the complex parameter t can only be carried out on a case by
case basis, and numerical computations are also (almost) necessary.

I will discuss these results (in collaboration with Alexander Tovbis, UCF, Florida) as well as some detailed information on the behaviour of

the recurrence coefficients near the critical transition points, of which there are three of substantially different nature (two of them linked

to the first Painlevé transcendent and the third to the second Painlevé transcendent). This talk is based on three joint works with Alex

Tovbis (UCF).
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Based on

On Asymptotic Regimes of Orthogonal Polynomials with Complex Varying
Quartic Exponential Weight, Marco Bertola and Alexander Tovbis SIGMA 12
(2016), 118, 50 pages.

Asymptotics of orthogonal polynomials with complex varying quartic weight:
global structure, critical point behaviour and the first Painlevé equation, M.
Bertola and A.Tovbis, Constr. Approx. (2015) 41, 3 , 529–587

Asymptotics of complex orthogonal polynomials on the cross with varying quartic
weight: critical point behaviour and the second Painlevé transcendents, M.
Bertola, A. Tovbis, to appear (2017).
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Background

In the 90’s Random matrix models were proposed as a discretization of 2D Quantum
Gravity by [Gross-Migdal ’90]

ZN(β) =

∫
dΦ exp [−NTrV (Φ)] Φ = Φ† ∈ Mat(N × N). (1)

The partition function ZN can be computed with the aid of orthogonal polynomials∫
exp(−NV (φ))pn(φ)pm(φ)dφ = hnδnm , hn :=

Zn+1

Zn
(2)

Soon after, [Fokas-Its-Kitaev ’92] showed how to modify the contours of integration

and obtain the Painlevé I equation for the double scaling limit of αn =
hn+1

hn
.

We pursue the analyisis of the model in the case V (φ) = t
4
φ4 + g

2
φ2, with

(nonperturbative) analysis in the neighbourhood of the poles of the relevant Painlevé
solution, as well as the global behaviour in the phase space of the complex parameter
t.
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Definitions and motivations

The goal is the study of the asymptotic of following (nonHermitean) orthogonal
polynomials pn(z) = zn + . . . for the pairing

〈p, q〉~% =
4∑

j=1

%j

∫
Ωj

p(z)q(z)e−NV (z,t)dz, , V (z) :=
t

4
z4 +

g

2
z2 (3)

%1 + %0 = %3 + %2, (4)

n→∞,N →∞ ,
N

n
= x ∈ R+ , 〈pn, pm〉~ρ = hnδnm (5)

Up to rescaling z 7→ √gz we assume g = 1.

for all t ∈ C and all possible (fixed) values of the
parameters ~ρ ∈ C4. The main focus si on the asymp-
totics of the recurrence coefficients (which encodes
the combinatorics)

zpn = pn+1(z) + βn(t)pn(z) + αn(t)pn−1(z) (6)

Ω1

Ω0

Ω3

Ω2

$0

$1

$2

$3

arg(t)/4
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They satisfy general Freud system:

0 = βn + t
[
(2βn + βn+1)αn+1 + (β2

n + 2αn(1− δn0))βn + αnβn−1(1− δn0)
]
, (7)

n

N
= αn + t

[
αnαn−1 + α2

n(1− δn0) + αn+1αn + β2
nαn + αnβn−1(βn + βn−1)

]
.(8)

Assuming that βn → β and αn → α as n→∞, we obtain two leading order algebraic
equations

β(1 + 6tα+ tβ2) = 0 , α
(
1 + 3tα+ 3tβ2

)
= 1, (9)

which have two solutions

β = 0, α =

√
1 + 12t − 1

6t
, (10)

and

β2 = −6α−
1

t
, α =

√
1− 15t − 1

15t
. (11)
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For t > 0, g > 0 and integration on the real axis (ρ1 = ρ2 = −1, ρ3 = ρ4 = 0), these
are ordinary OPs and the asymptotic is determined first and foremost by the
equilibrium measure i.e. the minimizer of the functional

F [ρ] =

∫
R
V (z)ρ(z) dz +

1

2

∫
R2

ln
1

|z − w |
ρ(z)ρ(w)dz dw (12)

The standard potential theory shows that there exists a unique measure ρeq(z) dz
supported on a finite interval like so:

ρeq = argmin F [ρ] (13)

ρeq(z) =
1

π

tz2 +
g
√

1 + 12 t
g2

3
+

2g

3

√b2 − z2 , (14)

b2 =
2g

3t

(√
1 + 12

t

g2
− 1

)
(15)

Remark

Clearly only important ratio t
g2 . From here on: g = 1. The case g < 0 is equivalent

to rotating z 7→ iz.
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t = 1 t = 0.5 t = 0.25 t = 0.2

Figure: The density of equilibrium dµ0 and the potential tz4

4 − 1
2 z

2. For t > 1
4 the density

becomes negative near the origin, which signals that the Ansatz is incorrect and we must look for a
two-cut solution.

t = 0.25 t = 0.2 t =0.1

Figure: The density of equilibrium dµ0 and the potential tz4

4 − 1
2 z

2 in the two-cut assumption,
plotted for various values of µ.
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Known transitions

For g = −1 and (integration on Real axis), [Bleher-Its ’03] it is known that the
recurrence coefficients βn = 0 and

Rn(t) '
1 + (−1)n

√
1− 4t

2t
, t <

1

4
(16)

Rn(t) '
1 +
√

1 + 12t

6t
, t >

1

4
(17)

(note that they coincide for t = 1
4

).

Double scaling asymptotics

Setting t = 1
4
− v

4n
2
3

Rn = 2 + c1
(−1)n+1

n
1
3

y(v) + c2
v + y2(v)

2n
2
3

(18)

(for some appropriate constants c1, c2) where y(v) is the Hastings–McLeod solution of
Painlevé II.

y ′′(v) = vy(v) + 2y(v)3 , y(v) ' Ai(v), v → +∞ (19)
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Analytic continuation in parameter space

To analytically continue for t ∈ C we need to rotate the contours of integration by

ϑ = − arg(t)
4

, so that –in general– as a result of a loop t 7→ te2iπ the real axis would
become the imaginary axis.

− arg(t)/4

V (z) :=
t

4
z4 +

g

2
z2 (20)
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...Continuation...cont’d

It is known that for generic values of ~ρ = (%0, . . . , %3) there is a continuation of the
above equilibrium measure around t = 0 (either ways) and to the segment

−
1

12
< t < 0

given by the obvious continuation of the formulæ above [Duits-Kuijlaars, 2006]

ρeq(z) =
1

π

(
tz2 +

√
1 + 12t

3
+

2

3

)√
b2 − z2 , (21)

b2 =
2

3t

(√
1 + 12t − 1

)
(22)

10 8 6 4 2 0 2 4 6 8 10
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12

3 4

5
dt dt ct ct 

The support is the horizontal segment: this is also where the
roots of the OPs asymptotically accumulate. The contours of
integration are asymptotic to the rays arg(z) = π

4
+ k π

2
and

are deformed as shown. (Picture from [Duits-Kuijlaars ’06]).
The technique of the nonlinear steepest descent of Deift-Zhou
implies that the contours cannot intersect the dark regions

ϕ(z) = <V (z) +

∫
ln

1

|z − w |
ρeq(w)dw + ` ≤ 0 (23)
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Ortogonal polynomials with quartic weight

Asymptotic behavior of the recurrence coefficients αn(t,N) (n = N):

αn(t) =

√
1 + 12t − 1

6t
+ O(N−1) , βn(T ) = O(N−∞) (24)

Near t0 = − 1
12

something is gotta happen!

In the double scaling limit v = N
4
5 2

9
5 3

6
5 (t − t0)

[Duits-Kuijlaars ’06, Fokas-Its-Kitaev ’92]

αN(t) = 2−
2

3
5 3

2
5

N
2
5

(yκ
1

(v) + yκ
2

(v)) + O(N−
3
5 ). (25)
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1

ccr ccr 

Here yκ
1

(v), yκ
2

(v) are two tronquée solutions of the Painlevé
I equation

y ′′(v) = y2(v) + v (26)

The asymptotics is uniform as v varies over a compact set V
that does not include any of the poles of the two functions (of
which there are ∞-ly many).
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The global picture in the t–plane; g–function

For t ∈ C there is no (simple) variational principle; one needs to use the notion of
”Boutroux” (algebraic) curve a.k.a. S–curve (Rakhmanov).

Equivalently (in the nonlinear steepest descent Deift–Zhou parlance) we need to
find the g–function ≡ logarithmic potential of the optimal measure.

The problem

Describe it in detail in different regions; not known a priori the number of connected
components of the accumulation set of zeroes of the OPs.

1 g(z; t) is analytic in C \ Σ, Σ = (M ∪ C), and

g(z; t) = ln z +O(z−1) , z →∞; (27)

g+(z)− g−(z) = 2iπ , z ∈ γ0 ⊂ C (28)

2 on bounded complementary arc γc,j , j = 1, 2, · · · , L, the function g(z) has a
constant jump

g+(z)− g−(z) = 2πiηj , ηj ∈ R , z ∈ γc,j ⊂ C (29)

3 across each main arc γm,j , j = 0, 1, 2, · · · , L, the function g(z) has a jump

g+(z) + g−(z) =
tz4

4
+

z2

2
+ `+ 2πi$j , $j ∈ R , z ∈ γm,j ⊂M, (30)
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g–function, cont’d

In the next few slides I will show these phase portraits which show where the zeroes of
the OPs accumulate: the nonlinear steepest descent method allows to recover the
asymptotics in each of these regions of the t–plane.

When the support of zeroes consists of one arc we are in the genus zero case: then
the asymptotic is given by algebraic expression (not reported here). If there are more
arcs then we have genus 1, 2 etc. and the asymptotic requires (hyper)elliptic theta
functions.

Dictionary

”genus zero”: the recurrence coefficients have a limit;
”higher genus”: the recurrence coefficients are asymptotically (quasi) periodic
functions of n.
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Global phase transitions (breaking curves)

There are six different situations [Explain on board....]

1 ”Generic” case: %j 6= 0 and %0 6= −%1, %0 6= %3;

2 ”Real axis”: %1 = %3 and ρ0 = 0 = %2 (or viceversa) ;

3 ”Single Wedge”: %1 = 0 = %2 and %0 = −%3 (or viceversa or cyclic);

4 ”Consecutive Wedges”: %0 = 0, %1,2,3 6= 0 (or cyclic);

5 ”Opposite Wedges, generic”: %0 + %1 = 0 = %2 + %3;

6 ”Opposite Wedges, symmetric”: %0 = −%1 = %2 = −%3.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

− 1

12

1

15

1

4

Figure: All breaking curves, summarized: they are symmetric about the real t–axis. Recall that in
general these phase portraits span several (up to four) sheets of the t plane branched around t = 0.
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The steepest descent analysis revolves around the “g” function (or the effective
electrostatic potential); in short a holomorphic function on C minus certain cuts with
behavior

h(z) =
t

4
z4 +

1

2
z2 − 2g(z) =

t

4
z4 +

1

2
z2 − 2 ln z +O(z−1) (31)

and constant imaginary jumps along the cuts. In particular it is essential that

<h(z) ≥ 0 , z ∈ γ <h < 0⇔ the sea (32)

over the contours of integration, where the real part is zero along the cuts. As t
changes a saddle point of <h may sink/emerge and pinch a contour: a genus (phase)
transition occurs. The curves in the previous slide are thus obtained by solving the
implicit system (but the resulting formulas are rather explicit){

h′(z) = 0 (saddle point of the (sub)harmonic function <h)
<h(z) = 0 (transition at sea-level)

(33)

The next slides (and animations if time permits) show the process.
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Generic; only one sheet

−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4
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0
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0.4

− 1

12

1

4
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Real Axis: two sheets glued along R−
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1
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Single Wedge: four sheets glued along R−

Only sheets 1 and 2 shown: the others are copies where z 7→ −z. Note that there at
the critical point t = 1

15
on all four sheets we have a transition of type Painlevé I (and

also at t = − 1
12

).
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Consecutive Wedges: four sheets glued along R−

Only sheet 1 and 2 shown, because the others are copies where z 7→ −z. Note the
Painlevé I transition at both t = − 1

12
and t = 1

15
.

−0.2 −0.1 0 0.1 0.2 0.3 0.4
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t=0.27951+0.41301i
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4

t=0.89118−0.40569i
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Opposite Wedges, generic: two sheets glued along R−

Only sheet 1 shown,
because sheet 2 is a
copy where z 7→ z.
Note the Painlevé I
transition at t = − 1

12
and Painlevé II transi-
tion at t = 1

4
.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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1

4
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Opposite Wedges, Symmetric: only one sheet

−0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2
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0
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0.4

1

4

Note the Painlevé
II transition at
t = 1

4
. The

spectral curve is
always of genus
1 except at the
point t = 1

4
.
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Summary of global analysis

[B.-Tovbis ’16] The global study in parameter space for matrix models (OPs) is
essentially a case study: general results are available in [ B.-Mo 2010, B. 2011,
Kuijlaars-Silva ’13] but each situation has its own beauty and peculiarity.
Two problems arise:

1 Global analysis: best performed by computer assistance;

2 Local analysis (i.e. Universality); near the transition regions the subleading (and
sometimes even the dominant) behavior is expressed in terms of universal objects
typically related to Painlevé transcendents;

3 Ultralocal analysis: near poles of these transcendents (i.e. when the OPs are
badly ill-conditioned) even simpler universality emerges, without any special
function:

We now address the second and third point above.
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Painlevé I transitions

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
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4
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What you need to know about Painlevé I

The tronquée family of solutions is associated to the Riemann Hilbert problem

γm

γc

γc

[
1 0
e−ϑ 1

]

[
0 1
−1 0

]
[
1 κeϑ
0 1

]

[
1 0
e−ϑ 1

] [
1 (1− κ)eϑ
0 1

]

ϑ(z) :=
4

5
ξ

5
2 − v

√
ξ

Problem (Tronquée family Painlevé 1 RHP
[Kapaev])

The matrix P(ξ;κ) is locally bounded,
admits boundary values on the rays shown
and satisfies

P+ = P−M,

P(ξ;κ) =
ξσ3/4

√
2

[
1 −i
1 i

]
·(

1−
HIσ3√
ξ

+
H2
I 1 + yκσ2

2ξ
+ . . .

)
HI :=

1

2
(y ′κ)2 + yκv − 2y3

κ ,

where the jump matrices M = M(ξ; v , ~ω)
are the matrices indicated on the
corresponding ray in the figure.
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It is known since [Boutroux 1913] that any solution of P1

y ′′ = y2 + v (34)

has infinitely many poles. The tronquée family has no poles in a distal sector of
amplitude 2π

5
; the exceptional case of the tritronquée (κ = 0, 1) has a larger sector

asymptotically free of poles ( 4π
5

). However, poles are inevitable.

The poles of the function y(v) correspond to the values of v = vp for which the
solution of the RHP above does not exist (as stated).

Question

What happens near those poles?
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Beware of poles!

Double Poles!
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Beware of poles!

What happens if we decide to explore the neighborhood of those poles? Let’s focus on
the symmetric case (i.e. the moment functional is symmetric): then yν

1
= yν2

and if
vp is one of those poles then:

Theorem (Symmetric case: P1 transition only at t = − 1
12

)

Let vp be a pole of y(v) := y (1)(v) = y (0)(v) and let t vary so that

t +
1

12
= −

vp

2
9
5 3

6
5 N

4
5

+
s

233N
, (35)

where s = O(N−ρ) with an arbitrary ρ ∈ [0, 1
5

). Then the following holds:

αn = 2
9− s2 +O(N−

1
5 )

1− s2 +O(N−
1
5 )

, βn = 0, (36)

hn = π
√

8 2N exp

[
−

3N

2
+

N
1
5 vp

3
1
5 2

4
5

−
s

4

](
3− s

1 + s
+O(N−

1
5 (s2 − 1)−1)

)
. (37)

The variable s may approach the points s = ±1 at some rate (a quadruple scaling) as
long as the corresponding error indicated in the formulæ above terms are infinitesimal.
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Note that exactly at the pole there is no divergence, αn(t̃) = 9αn(t0), but the
asymptotic diverges in two places near the pole; in fact one can use a quadruple
scaling argument (i.e. let s depend on N) to see that those divergencies are genuine.
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There is a similar Painlevé I transition at t = 1
15

(for different configuration of
contours)

Theorem (Nonsymmetric case)

Let t approach t0 = − 1
12

or t1 = 1
15

in such a way that it satisfies respectively

t +
1

12
= −

vp

N
4
5 3

6
5 2

9
5

−
s

3
√

2N
or t −

1

15
= −

vpe
− 3iπ

5

3
6
5 2

1
4 5N

4
5

− i
s

2N
, (38)

αn(t) =
b2

0

4
−

1

4s2
+O

(
N−

1
5 s−1

)
, βn(t) = a0 +

1

2s(1− b0s) +O(N−
1
5 )
, (39)

where a0 = 0, b0 =
√

8 and a0 = −3i , b0 = 2i in the cases t ∼ t0 and t ∼ t1

respectively. The numbers hn satisfy:

hn = π2N exp

[
−

3N

2
+

N
1
5 vp

3
1
5 2

4
5

+
√

2 s

](√
8−

1

s
+O(N−

1
5 s−1)

)
, (40)

hn = π(−1)N exp

[
9N

4
−

13

4

N
1
5 vpe

− 3iπ
5

3
1
5 2

1
5

+
13

2
is

](
2i −

1

s
+O(N−

1
5 s−1)

)
.(41)

These formulæ hold uniformly for bounded values of s as long as the indicated error
terms remain infinitesimal.
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The results are based on the Deift–Zhou steepest descent method, refined to handle
the non-existence of the local parametrix (i.e. the RHP for Painlevé I). The technical
tool is the following

Theorem (B-Tovbis)

When v is near a pole of y = 1
(v−vp)2 +O(1) there is a (unique) solution of the same

jump conditions, but with asymptotic behavior (p2, ξ0 some constants)

P̂(ξ, v) = ξ
−

3

4
σ3 1
√

2

[
1 i
1 −i

]1 +O

ξ− 1
2 , y−4, e

−p2
|y|5/2

|ξ0|5/2

(√ξ +
√
y

√
ξ − y

)σ3

(42)

The result above holds uniformly in a neighborhood of v = vp (i.e. y =∞); to be
compared with the usual asymptotic behavior

P(ξ;κ) = ξ

1

4
σ3 1
√

2

[
1 −i
1 i

](
1 +O(ξ−

1
2 )
)

(43)

where the O(1/
√

(ξ)) term is not uniform for large y .
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The Painlevé II transition: a new phenomenon

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0
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0.2
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0.4

− 1
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1

15

1

4

While for the critical transitions at the critical points t = − 1
12
, 1

15
the Painlevé

transcendents appear at the subleading order, at t = 1
4

(for special choices of traffics)
we get a leading order phenomenon.

We consider the “generic” phase diagram, and without loss of generality %2 = 1 by
overall scaling of the bilinear pairing (does not affect orthogonality relations)

To explain I need to introduce the general PII equation
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[
%−1

0 0
0 %0

][
1 (−)n+1e2ϑ

%0

0 1

]

[
1 (−)n+1e2ϑ

0 1

][
1 0

(−)ne−2ϑ 1

]

[
1 0

(−)ne−2ϑ

%0
1

]

[
1 0

−(−)n%1e
−2ϑ 1

][
1 −(−)n%3e

2ϑ

0 1

]
I

II

III

IV

V

VI

VII

Problem

Let P(ξ) : C→ Mat(2× 2;C) be a locally bounded,
piecewise analytic function on the complement of the
oriented rays indicated in the figure and such that

Jump P+(ξ) = P−(ξ)M where ξ belongs to one of the rays
and M as in figure.

Asym P(ξ) in each connected sector as ξ →∞

P(ξ) =

(
1 +

1

ξ

[
−HII (v) − u(v)

2

− z(v)
u(v)

HII (v)

]
+O(ξ−2)

)
ξ−θσ3

ϑ(ξ; v) :=
ξ3

3
+

v

2
ξ

HII :=
1

2
z2 +

(
y2 +

v

2

)
z +θy =

(y ′)2

2
−

1

2

(
y2 +

v

2

)2
+θy ,

(44)
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Painlevé II equation I

Consequence of the isomonodromic method is that

z = y ′ − y2 − v/2,
d

dv
ln u = −y ; y ′′ = 2y3 + vy +

1

2
− θ. (45)

HII :=
1

2
z2 +

(
y2 +

v

2

)
z + θy =

(y ′)2

2
−

1

2

(
y2 +

v

2

)2
+ θy , (46)

In our case we need the special family of solutions of the RHP. 5, and therefore of
(45) with

θ = −
ln %0

2iπ
<θ ∈ (−

1

2
,

1

2
] (47)

The set of poles of u(v) is, in general, infinite (except when u is a rational function)
and very complicated (and little studied)

P(~%) := { poles of u(v) = u(v ; ~%)} (48)
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Painlevé II equation II

Theorem

Let

t =
1

4
−

v

4n
2
3

, where v ∈ C. (49)

Let δ = dist(v ,P(~ρ)) and assume that δ = O(n−ε) with 0 ≤ ε < 1
3

. Then the
recurrence coefficients and the norms hn have the following asymptotic behavior:

αn = −2

(
4n

1
3 ± c±(v)e±2a

4n
1
3 ∓ c±(v)e±2a

+O1

)2

;

βn =
−16
√

2c±(v)e±2an
1
3(

4n
1
3 ∓ c±(v)e±2a

)(
4n

1
3 ± c±(v)e±2a +O0

) +O1;

hn = iπ
√

8%0(−2)n e
n
2

+ 3
2
n

1
3 v

(
4n

1
3 ± c±(v)e±2a

4n
1
3 ∓ c±(v)e±2a

+O1

)
. (50)

Here
e2a = (eiπ64n

2
3 )θ(−1)n, (51)

(O’s are suitable error terms) the sign ± is to be chosen according to the sign of <θ
and

c+(v) =
u(v)

2
, c− =

z(v)

u(v)
=

y ′(v)− y2(v)− v/2

u(v)
(52)
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Comments

Example (<θ = 0 or %0 = 1: )

αn = −2+O(n−
1
3

+ε) , βn = O(n−
1
3

+ε), hn = iπ
√

8%0(−2)n e
n
2

+ 3
2
n

1
3 v
(

1 +O(n−
1
3

+ε)
)
.

(53)
Subleading terms contain Painlevé transcendents (as in Bleher-Its’03);

Example (<θ = 1
2

or %0 = −1)

Painlevé transcendents affect the leading order.

αn = −2

(
1 + (−1)niu(v)

1− (−1)niu(v)
+O1

)2

, βn =
(−1)n+14

√
2iu(v)

(1− (−1)niu(v)) (1 + (−1)niu(v) +O0)
+O1,

hn = π
√

8(−2)n e
n
2

+ 3
2
n

1
3 v

(
1 + iu(v)(−1)n

1− iu(v)(−1)n
+O1

)
. (54)

Recurrence coefficients acquire a dependence on u(v) at leading order

singularities at some points of the double-scaling variable v that have nothing to
do with the poles of u(v). No singularity at the poles; this analysis is the content
of our second main theorem.
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Theorem (Triple scaling near poles)

Let vp ∈ P(~%) so that

u(v) = −
2

κ(v − vp)
+O(v − vp), κ ∈ C×. (55)

t =
1

4
−

vp

4n
2
3

−
s

2
√

2n
+O(n−

4
3 ), ⇔ v = vp +

√
2

3
√
n
s (56)

Then

αn = −2

[
cosh(2ã)−

√
8s − 2

cosh(2ã) +
√

8s
+O2

][
cosh(2ã)−

√
8 s + 2

cosh(2ã) +
√

8 s
+O2

]
;

βn =
−
√

8e−2ã
(

1− e4ã
)

(1−
√

8 s)(
cosh(2ã) +

√
8 s
)(

cosh(2ã)−
√

8 s + 2 +O0

) +O2;

hn = πi
√

8%0(−2)n exp

[
n

2
+

3vpn
1
3

2
+

3s
√

2

](
1−

4 cosh2(ã)

cosh(2ã) +
√

8 s
+O2

)
.

(O’s are suitable error terms) Here

e2ã =
(eiπ64n

2
3 )θ(−1)n

κ
(57)
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Comments

The introduction of the triple scaling parameter s allows us to investigate a

neighborhood of size n−
1
3 of the v–plane around a pole vp ; consider again

Example (<θ = 0 or %0 = 1: )

We have a bounded (in n) expression cosh(2ã) = (−1)n

2

(
κ + 1

κ
)
; The singularity in

the coefficients is not at the pole vp (s = 0) but at some (oscillating with n) points in

a O(n−
1
3 )–neighborhood of vp .

Example (<θ = 1
2

or %0 = −1)

We have an unbounded (in n) expression cosh(2ã) = (−1)n 4i
κ n

1
3 +O(n−

1
3 ). The

singularity of the recurrence coeffs “escapes” to s =∞ faster than the maximum

allowed rate of |s| = n
1

12 ; in other words the recurrence coefficients do not have any
singularity at the poles of u(v), but at some other points where u(v) is otherwise
regular.

Further analysis (in the paper!) shows that the singularities “migrate” from a O(n−
1
3 )

nghbd of the poles of u(v) away to region at distance of order O(1), as <θ moves
from 0 to 1

2
(i.e. the traffic turns “head on”).
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The Nonlinear Schrödinger equation near the gradient catastrophe

The focusing Nonlinear Schrödinger (NLS) equation [see Stephanos Venakides’ talk of
yesterday]

iε∂tq = −ε2∂2
xq − 2|q|2q (58)

q(x , 0, ε) = A(x)e iΦ(x)/ε (59)

models self-focusing and self-modulation (optical fibers). It is integrable by inverse
scattering methods (Zakharov–Shabat). We study ε→ 0; in different regions of
spacetime, there are different asymptotic behaviors (phases) separated by breaking
curves (or nonlinear caustics).

Figure: The case A(x) = e−x2
, Φ′(x) = tanh x and ε = 0.03
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The tip-point of the braking curves is called a point of gradient catastrophe, or
elliptic umbilical singularity [Dubrovin-Grava-Klein].

Main goal

Leading order asymptotic q(x , t, ε) on and around the gradient catastrophe point
(x0, t0).

The behavior in the bulk is described in terms of slow
modulation of exact quasi-periodic solutions (genus
2), while outside by slow modulation equations for
the amplitude. There are (generically) two types of
transitional regions

A strip region of scale O(ε ln ε) around the
breaking curves (nonlinear caustics);

a circular region of scale O(ε
4
5 ) around the

gradient catastrophe point.

O(ε4
5)

O(ε)

Umbilical grad catastrophe

O(ε)
O(ε ln(ε))

Figure: A(x) = e−x2
, Φ′(x) = tanh x and

ε = 0.03
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Figure: The physical (x, t) plane and depiction of the fibration in spectral planes. In each spectral plane the negative sign regions of
=(h) are in blue. At the gradient catastrophe the topology is different.

The physical plane here plays the rôle of the t-plane in the previous case.
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The gradient catastrophe point

Separating amplitude and phase

q(x , t) = b(x , t)e
i
ε

Φ(x,t) , U := |q|2,V = Φx (60)

the equation is recast

Ut + (UV )x = 0 , Vt + VVx − Ux +
ε2

2

(
1

2

U2
x

U2
−

Uxx

U

)
x

= 0 (61)

Neglecting the green term yields an elliptic system, with a finite lifespan; they develop
singularities in the derivatives at (x0, t0).

What is the behavior in the vicinity of (x0, t0)?
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x
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U

)
x
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Neglecting the green term yields an elliptic system, with a finite lifespan; they develop
singularities in the derivatives at (x0, t0).

Conjecture (Dubrovin-Grava-Klein (2007))

Let x = x0 + ε
4
5 X , t = t0 + ε

4
5 T ; then (b2 = U, a = −2V , α := a + ib)

U + ib0V = b2
0 + ib0a0 + ε

2
5

4ib0

C
y(v) +O(ε

3
5 ) (62)

where

v = −i
√

2ib0

C
(X + 2(α0 + a0)T ) (1 +O(ε

1
5 )) (63)

and y(v) is the tritronquée solution of the Painlevé I equation

y ′′ = 6y2 − v (64)
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Zooming in on a peak (a.k.a. triple-scaling limit)

If we scale by ε around each peak we find the Peregrine breather

q(x , t, e) = e
i
ε

Φ(xp ,tp)Qbr

(
x − xp

ε
,
t − tp

ε

)
(1 +O(ε

1
5 )), (65)

where the rational breather

Qbr (ξ, η) = e−2i(aξ+(2a2−b2)η)b

(
1− 4

1 + 4ib2η

1 + 4b2(ξ + 4aη)2 + 16b4η2

)
(66)

i∂ηQbr + ∂2
ξQbr + 2|Qbr |2Qbr = 0 (67)

O(ε
1
5)

8π
5

2π
5
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In our case it is obtained from the “stationary” breather

Q0
br (ξ, η) = e2iη

(
1− 4

1 + 4iη

1 + 4ξ2 + 16η2

)
(68)

by applying the transformations (mapping solutions into solutions)

Q̃(ξ, η) = λQ(λξ, λ2η), Q̂(ξ, η) = ei(kx−k2η)Q(ξ − 2kη, η). (69)
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Ideally these peaks will get very “ sparse” near the gradient catastrophe:

Figure: A mock-up of what would happen for very small ε (location of peaks modeled after
numerics for the poles of the tritronquée)
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Summarizing: B.-Tovbis (2010)

1 poles of tritronquée ⇔ spikes of amplitude of q; can be used to find location in
spacetime of the peaks after the grad. cat.;

v(x , t, e) =
e−iπ/4

ε
4
5

√
2b

C
[δx + 2(2a + ib)δt]

(
1 +O(ε

2
5 )
)

(70)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1
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0.5

0.6
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0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

t0 = 0.25

t = 0.2800

|q(0, tpeak)| ∼ 3.9256

|q(0, t0)| ∼ 1.3137

Figure: q(x, 0) = 1
cosh(x)

and ε = 1
33

; note that 3|q0| = 3.9411. In this case µ = 0 and t0 = 1
4

. The time of the first

peak (numerically 0.2800) matches the prediction from the Tritronquée (0.2791260482)

2 Height of each spike = 3|q0(x0, t0)|+O(ε1/5);

3 Universal shape

q(x , t, e) = e
i
ε

Φ(xp ,tp)Qbr

(
x − xp,j

ε
,
t − tp,j

ε

)
(1 +O(ε

1
5 )), (71)

The two “roots” and the maximum are synchronous. This is a nonperturbative
result, in the sense that it is beyond perturbation theory.

4 Away from the spikes

q(x , t, e) =
(
b − 2ε

2
5=
(

y(v)
C

)
+O(ε

3
5 )
)
×

exp 2i
ε

[
1
2

Φ(x0, t0)−
(
a δx − (2a2 − b2)δt

)
+ ε

6
5<
(√

2i
Cb

HI (v)

)]
(72)

HI = 1
2

(y ′(v))2 + vy(v)− 2y3(v). Equation (72) is consistent with the
conjecture.
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Final remarks

5

Figure: Numerics of poles (and
zeroes in green) of the tritronquée
based on Padé approximations
following [Novokshenov]

The main technical tool is the same, namely,
the behavior of the Painlevé I parametrix near
each of its poles: in this case only the
tritronquée solution is relevant and since the
spikes are in 1-1 correspondence with the
poles, it is important (but a separate issue) to
know whether there are any poles outside of
the sector. It is a conjecture of Dubrovin et al.
that there are none (well supported
numerically).

There should be a quantization of the possible
gain factors of the peaks; 3 for Painlevé I,
5, 7, 9, . . . for the higher degenerate cases
(hierarchy of Painlevé I).
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