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Asymptotic Analysis and Borel summability in one variable
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We have at our disposal a powerful summability theory useful in the study of
solutions of analytic differential equations at singular points, solutions of
difference equations, conjugacy of diffeomorphisms, singular perturbation
problems among others.
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Asymptotic Analysis and Borel summability in one variable

UNVERSIDAD
'SERGIO ARBOLEDA

We have at our disposal a powerful summability theory useful in the study of
solutions of analytic differential equations at singular points, solutions of
difference equations, conjugacy of diffeomorphisms, singular perturbation
problems among others.

» Asymptotic expansions, Gevrey asymptotic expansions, k—summability.
» Borel and Laplace transformations. Tauberian theorems.

> Ecalle’s accelerator operators, Multisummability.
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Monomial summability
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The concept of summability w.r.t. a monomial was introduced and then
generalized in the papers:

» Canalis-Durand M.,Mozo-Fernandez J., Schafke R.: Monomial
summability and doubly singular differential equations. J. Differential
Equations, vol. 233, (2007) 485-511.,

» Mozo-Fernddez J., Schifke R.: Asymptotic expansions and summability
with respect to an analytic germ. 2017. Available at
arxiv.org/pdf/1610.01916v2.pdf

in order to study the formal solutions of the doubly singular equation

pr1d
1P t! d;g = F(ze, y)

The method combines the variables x and ¢ in the new one t = xP¢9,
corresponding to the source of divergence of the solutions.



S. Carrillo — Tauberian properties for monomial asymptotic expansions

A\

5

Formal setting

UNVERSIDAD
'SERGIO ARBOLEDA

Let & = (x1,...,24) be coordinates of C?. We will work with formal power
series in C[[]].
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Formal setting
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Let & = (x1,...,24) be coordinates of C?. We will work with formal power
series in C[[]].

We will restrict our attention to series f = ZZO:O fn,jm? such that all f, ;
have a common polyradius of convergence and are bounded for all j =1,...,d.
Let C be the space of such series.
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Given a monomial z* =z ---25%, a = (a1, ...,aq) €N%y and f € C we

can write it uniquely as

f@) = fal@)a",

where each f, € £~ (an adequate space of analytic functions, r > 0).
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Given a monomial z* =z ---25%, a = (a1, ...,aq) €N%y and f € C we

can write it uniquely as

flx) = Z fa(z)z™™,
n=0
where each f, € £~ (an adequate space of analytic functions, r > 0).

More precisely, g € £ if it is analytic at the polydisk at the origin with radius

5161 ,
85(9)(0) =0for 8; > aj, j=1,...,d

r and
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We may consider the linear map

To:c— (U&7 ) 1,

>0

fr—s Z fnt".
n=0
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We may consider the linear map
T :C —> <U 5;.’) (211,
>0

fr—s Z fnt".
n=0

Let C[[x]] be the set of s—Gevrey series in the monomial , i.e. series f such

that for some r > 0, T (f) € £7[[t]] and it is a s—Gevrey series in t.
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Lemma
The series > agx? is s—Gevrey in the monomial =™ if and only if there are
constants C; A > 0 satisfying

lag| < CAP min {51!‘*/%.. . ,ﬁd!”‘/”d} . B=(,...,B) € N*



S. Carrillo — Tauberian properties for monomial asymptotic expansions

a

8

UNVERSIDAD
'SERGIO ARBOLEDA

Lemma
The series > agx? is s—Gevrey in the monomial =™ if and only if there are
constants C; A > 0 satisfying

lag| < CAP min {51!‘*/%.. . ,ﬁd!”‘/”d} . B=(,...,B) € N*

Corollary

Iff e (C[[m]]f‘/ then Tw (f) is a maxi<;j<d{;/a); }s—Gevrey series in some E.
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A sectors in the monomial £ is a set defined as

Ma(a,b,r) = Sa(d,b—a,r)
= {ace(cd | a < arg(x™) < b, 0< |x;|% <r,j:17...,d},
where a,b € R with a < b and r > 0. The number r is called the radius, b — a

the opening and d = (b + a)/2 the bisecting direction of the sector,
respectively.
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Analytic setting

A sectors in the monomial £ is a set defined as

Ma(a,b,r) = Sa(d,b—a,r)
= {mG(Cd | a < arg(x™) < b, 0< |x;|% <r,j:17...,d},

where a,b € R with a < b and r > 0. The number r is called the radius, b — a
the opening and d = (b + a)/2 the bisecting direction of the sector,
respectively.

If € lla(a,b,r) then
t=x*€V(a,br?):={z€C|0<|z| <7 a<arg(z) < b}.
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Given a bounded function f € O(Ilq(a,b,r)), as in the formal case it is
possible to construct an analytic map

Ta(f)p: Via,b,p?) — EF,

for all p < r, satisfying

In fact, f is completely determined by the map To(f),.



S. Carrillo — Tauberian properties for monomial asymptotic expansions

Asymptotic expansions in a monomial

Definition R o
Let f € O(Ila), I = Ila(a,b,7) and f € C with T f =3 fut™ € EF[[t]] for
some 0 < 7’ <r.

We say that f has f as asymptotic expansion in x* on Il (f ~% f on Il,) if
for every subsector IIo and N € N there is a constant C'y > 0 such that:

N—-1
f@) =" fal@)z"| < Cn[z™*|, @ € Ma. (1)
n=0
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Asymptotic expansions in a monomial

Definition R o
Let f € O(Ila), I = Ila(a,b,7) and f € C with T f =3 fut™ € EF[[t]] for
some 0 < 7’ <r.

We say that f has f as asymptotic expansion in x* on Il (f ~% f on Il,) if
for every subsector IIo and N € N there is a constant C'y > 0 such that:

N—-1
f@) =" fal@)z"| < Cn[z™*|, @ € Ma. (1)
n=0

The asymptotic expansion is said to be of s—Gevrey type (f ~& f on Ia) if it
is possible to choose Uy = CANN!® for some C, A independent of N. In this
case [ € Cl[z]]s.
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Proposition

Let f € O(Ila) be an analytic function (Ila = Ila(a,b,7)), fecand

0 <1’ <7 such that To. f € E[[t]]. The following statements are equivalent:
1. f~° f on I,
2. Forevery 0 < p <7, Ta(f),~Tu(f) on V(a,b, p?).

The same result is valid for asymptotic expansions of s—Gevrey type.
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Proposition

Let f € O(Ila) be an analytic function (Ila = Ila(a,b,7)), fecand

0 <1’ <7 such that To. f € E[[t]]. The following statements are equivalent:
1. f~° f on I,
2. Forevery 0 < p <7, Ta(f),~Tu(f) on V(a,b, p?).

The same result is valid for asymptotic expansions of s—Gevrey type.

This asymptotics behave well under usual algebraic operations and
differentiation. In particular, if f ~* f = Zagmﬁ on Il then

198
ag = lim Eﬁ(m)

!
xeTll,
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Definition

Let £ > 0 and f € C be given. We say that f is k—summable in the monomial
x® in the direction d if there is a sector Il (a, b, r) bisected by d with opening
b—a>m/kand f € O(Tla(a,b,r)) with f ~7, f on Iy (a,b,7).

We simply say that f is k—summable in the monomial x® if it is k—summable
in the monomial & in every direction d, with finitely many exceptions mod.
2.

> C{z}7)x 4: k—summable series in ™ in the direction d,

(o2 . N H @
» C{z}7)x: k—summable series in z°.
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Monomial Borel transform with weights

Definition
The k—Borel transform w.r.t. % and a weight s € o4, of a map f is defined
by the formula

Ba(f)(€) = w/f(£1u7%7...7§du7%>e"du,

21

ark? " agk

where A = < 1 *—d> and ~ denotes a Hankel's path.

Here and below, oq = {(s1,...,84) €R%y | 51 + -+ 54 = 1}.
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Monomial Borel transform with weights

Definition
The k—Borel transform w.r.t. % and a weight s € o4, of a map f is defined
by the formula

Ba(f)(€) = (ﬁkai)_l/f (£1u7%7...7§du7%> edu,

21

kot

where A = < = ,;—;k) and v denotes a Hankel’s path.

Here and below, oq = {(s1,...,84) €R%y | 51 + -+ 54 = 1}.

> Balser W.: Summability of power series in several variables, with
applications to singular perturbation problems and partial differential
equations. Ann. Fac. Sci. Toulouse Math, vol. XIV, n°4 (2005) 593-608.

» Balser W., Mozo-Ferndndez J.: Multisummability of Formal Solutions of
Singular Perturbation Problems. J. Differential Equations, vol. 183,
(2002) 526-545.
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The formal k— Borel transform associated to the monomial x with weight s is
thus defined term-by-term by

Bx : &**C[[a]] — C[[€]]

wka«kﬁ Eﬁ
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Definition
The k—Laplace transform w.r.t. €& with weight s € o4 in direction 0,
|0] < /2, of a function f is defined by the formula

0

€ > 81 5 _
Lxo(f)(x) = mka/ f (xw“lk e ,xduadk) e "du.
0

We assume that f has an exponential growth of the form

|f(€)] < Cexp (Bmaxﬂéll%k,...’\édlafa‘ }) : (2)
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Definition
Let f bea 1/k—Gevrey series in %, s € g4 and d a direction. We will say
that f is k — s—Borel summable in the monomial < in direction d if:

1. ¢s = B,\(mka A), A= ( 51 d ) can be analytically continued, say

Sd_
a1k’ agk

as s, to a monomial sector of the form Sq (d, 2¢).

2. @s has exponential growth as in (2).
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Definition
Let f bea 1/k—Gevrey series in %, s € g4 and d a direction. We will say
that f is k — s—Borel summable in the monomial < in direction d if:

1 ¢s = Ba(a"™f), A= (afkr?k ,

as s, to a monomial sector of the form Sq (d, 2¢).

can be analytically continued, say

2. @s has exponential growth as in (2).
In this case the k — s—Borel sum of f in direction d is defined as

f() = —— La(a) ().

pko
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Theorem
Let f be a 1/k— Gevrey series in the monomial ™. Then it is equivalent:

1. fe C{z}T/k,a fe f is k—summable in > in direction d.

2. There is s € o4 such that f is k — s—Borel summable in the monomial
in direction d.

3. Forall s € o4, [ is k — s—Borel summable in the monomial % in
direction d.

In all cases the corresponding sums coincide.



S. Carrillo — Tauberian properties for monomial asymptotic expansions

Monomial summability and blow-ups B (o
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Consider the monomial transformations

Wi‘j(ClZl.,...,IIJd):(IEh..., TiTj ,‘..,xd), i,j:L....,d.
~—~—

J position

Lemma
1. f € C{x} ifand only if f o m;; € C{x} for some i, j =1,...,d.
2. fe Cl[x]]s* if and only if there arei,j =1,...,d, i # j such that

a+a]e7, a+a,ve]

fomij € Cllz])s and f o m;; € C[[x]]:
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Monomial summability and blow-ups

Consider the monomial transformations

Wi‘j(ClZl.,...,IIJd):(IEh..., TiTj ,‘..,xd), i,j:L....,d.
~—~—

J position

Lemma
1. f € C{x} ifand only if f o m;; € C{x} for some i, j =1,...,d.
2. fe Cl[x]]s* if and only if there arei,j =1,...,d, i # j such that
fomij € Cllx)s™™® and fomji € Clla]]e ™.

Proposition
Iff e C{x}T)x.a has k—sum f in direction d then fomy e C{m}?/tijei and
have k—sum f o m;; in direction d, for all i,5 =1,...,d, i # j.
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Proposition

Iff' € (C{:c}‘f‘/k has no singular directions then f is convergent.
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Proposition
Iff' € (C{:c}‘f‘/k has no singular directions then f is convergent.

Theorem
Let % and £© be two monomials and k,l > 0. The following statements
hold:

1. Ifmaxi<j<a{oy/aj} < 1/k/1/1 then C{x}$), N C[[mﬂ‘f‘//, = C{x}.
2. C{z}7 N (C{a:}f‘/ll = C{z}, except in the case a; /oy = 1/k for all
j=1,...,d where C{x}%), = Cl{z}{),.



S. Carrillo — Tauberian properties for monomial asymptotic expansions

21

UNVERSIDAD
'SERGIO ARBOLEDA

Applications
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Theorem
Consider the singularly perturbed differential equation

=1 % = A(w, ey + b, <),

wherey € C', e = (e1,...,e4), @ € Ny and A and b are analytic in a
neighborhood of (0,0).

If A(0,0) is invertible then the previous equation has a unique formal solution
Y. Furthermore it is 1—summable in xPe*.
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The induced vector field by the Borel transform 2

Consider the vector field X given by

ka
XA:L(ﬂmli+...+sd 8)

a1 Oz ;dmd%
If f € Oy(Sa) then
BA(XA(£)) (&) = "B (£)(£).
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Consider the problem

2 (S—lx Dy sy, 0 ) — C(a)y +b(a),

(e %1 ! 0x g 0xq
where o € N4, (s1,...,84) € 04 and C, b analytic at 0 € C.
Theorem

If C(0) is invertible then the previous equation has a unique formal solution ¢
and it is 1—summable in <.
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Pfaffian system with normal crossings

Consider the following the system of PDEs:

, 0
2dgPt! a—;’l = fi(z1,22,9), (3a)

o gia1 O
Z’Il l‘g +187(LZ:/2 :fQ(I],iU27y), (3b)

where p,q,p’, ¢ € N*, y € C!, and f1, fo are analytic in a neighborhood of
(0,0,0).
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Consider the following the system of PDEs:

0
2dgPt! a—;’l = fi(z1,22,9), (3a)
o o410y
G Hafm = f2(21,22,Y), (3b)

where p,q,p’, ¢ € N*, y € C!, and f1, fo are analytic in a neighborhood of
(0,0,0).

It is called completely integrable if fi(x1,x2,0) = f2(z1,22,0) = 0 and the
functions fi, fa satisfy the following identity on their domains of definition:

R U O U T T S
dra \ 2t izg )0 2t ge \ Bzn T Oy W aftt )

0x1 <$11)/xg/+1> fa+ mflmg/+1 (8x1 + By ot +1gt )
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If the system is completely integrable, f1 = Ay + h.o.t. and fo = By + h.o.t.
then A and B satisfy

ry A 0B
b 2zl (ng—m —qA) — o xd (mg—zl —p/B> +AB - BA=0.
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If the system is completely integrable, f1 = Ay + h.o.t. and fo = By + h.o.t.
then A and B satisfy

xf/xgl (3:23—2 - qA) — o xd (mg—ﬁ - p/B> +AB - BA=0.
From this equation we have deduced that:
1. If p’ < porq < qthen A(0,0) is nilpotent.
2. If p<p orq<q then B(0,0) is nilpotent.
3. If p=1p' and ¢ = ¢/, for every eigenvalue p of B(0,0) there is an
eigenvalue \ of A(0,0) such that gA = pu. The number X is an eigenvalue

of A(0,0), when restricted to its invariant subspace
E, = {v e C"(B(0,0) — uI)*v = 0 for some k € N}.
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Convergence of solutions for different monomials 2

Theorem (Gérard-Sibuya)

Consider the completely integrable Pffafian system (3a), (3b), with ¢ = p’ = 0.
If %’2 (0,0,0) and %’;2 (0,0,0) are invertible then the Pfaffian system admits a
unique analytic solution y at the origin such that y(0,0) = 0.
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Convergence of solutions for different monomials

Theorem (Gérard-Sibuya)

Consider the completely integrable Pffafian system (3a), (3b), with ¢ = p’ = 0.
If %’2 (0,0,0) and %’;2 (0,0,0) are invertible then the Pfaffian system admits a
unique analytic solution y at the origin such that y(0,0) = 0.

Theorem
Consider the system (3a), (3b). Suppose the system has a formal solution y. If

%(07 0,0) and %—];2(0, 0,0) are invertible and x{z3 # x?;'xg’ then 4 is
convergent.
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Thanks for your attention.
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