
Real solutions of Painlevé VI and special pentagons
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Introduction

Richard Fuchs was a son of Lazarus Fuchs. Father Fuchs is famous
for Fuchsian groups, and several (at least three different kinds of)
“Fuchs conditions” in the analytic theory of differential equations.



Richard studied in 1905 the following differential equation:
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with 5 singularities at (t1, t2, t3, t4, q) := (0, 1, x ,∞, q).
The singularities at tj have exponents {0, κj}, for 1 ≤ j ≤ 3, and
the exponents at q are {0, 2}.
R. Fuchs imposed the following conditions:
a) the singularity at ∞ is regular, and has exponent difference κ4,
and
b) the singularity at q is apparent (has trivial monodromy).
For given κj , 1 ≤ j ≤ 4, and given p, q, x = t3, these conditions
determine the rest of the parameters hj uniquely.



Suppose that all κj are fixed, and let us move x continuously. How
should p(x), q(x) change so that the monodromy of this equation
remains unchanged?
Answer: q must satisfy the following non-linear ODE:
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which is called Painlevé VI.



This was the first example of “isomonodromic deformation”.
All solutions are meromorphic in C\{0, 1}. The points x = 0, 1,∞
are fixed singularities of PVI.
The conditions of Cauchy’s theorem are violated at the points
where q(x) ∈ {0, 1, x ,∞}. These points x are removable
singularities or poles. We call them special points.
We consider real solutions q(x) of PVI with real parameters, on an
interval of the real line between two adjacent fixed singularities
0, 1,∞. WLOG we choose the interval (1,∞).
We will explain a geometric interpretation of these solutions, and
obtain an algorithm which determines the number and mutual
position of special points on the interval.
More precisely, the outcome of the algorithm is a sequence of
symbols {0, 1, x ,∞} which shows the order in which the special
points appear on (1,∞).



How do we select a particular solution q(x)? There are the
following methods:
a) one can solve the Cauchy problem with some non-special initial
conditions q(x0) = q0, q

′(x0) = q′0.
b) one can specify the second order linear equation with 5
singularities.
c) one can specify the monodromy representation corresponding to
the linear equation. At least for generic values of PVI parameters
and generic monodromies this specifies the linear equation (that is
p0 and q0) uniquely.
We will use somewhat different method of assigning the initial
conditions, and monodromy representation will be easily computed
from our initial conditions. (Initial values of p0, q0 are difficult to
compute directly from the monodromy).



Linear Fuchsian ODE with real parameters and circular

polygons

Suppose that all parameters (singularities, exponents and accessory
parameters) in a linear Fuchsian ODE

w ′′ + P(z)w ′ + Q(z)w = 0

are real. Such equations will be called real. Consider the ratio
f = w1/w2 of two linearly independent solutions. This function is
meromorphic in the upper half-plane H and is locally univalent
there. Aat a singular point t we have:

f (z) = f (t) + (c + o(1))(z − t)α,

where α is the absolute value of the exponent difference at t. If
α = 0 but the singularity at t is not apparent, then

f (z) = f (t) + (c + o(1))/ log(z − t).



Notice that we measure all angles in half-turns instead of

the radians!

Function f is holomorphic in H, locally univalent in H\{tj}, maps
each interval (tj−1, tj) into some circle Cj , and has conical
singularities at tj .
Such functions are called developing maps (of circular polygons).
The formal definition of a circular polygon is

Q = (D, t1, . . . , tn, f ),

where D is a closed disk, tj ∈ ∂D are distinct boundary points, and
f is a developing map with conical singularities at tj . The intervals
(tj−1, tj) are called sides, the points tj corners and the αj are the
interior angles at the corners.



Two circular n-gons Q = (D, t1, . . . , tn, f ) and
Q ′ = (D ′, t ′1, . . . , t

′

n, f1) are equal if there is a conformal
homeomorphism φ : D ′ → D such that φ(t ′j ) = tj and

f1 = f ◦ φ. (1)

Two circular n-gons are called equivalent if instead of (1) we
require only f1 = L ◦ f ◦ φ, with some linear-fractional
transformation L. For polygons which are subsets of the sphere
this means that one can be moved onto another by a
linear-fractional transformation.



There is a one-to-one correspondence between the

equivalence classes of circular n-gons and normalized

Fuchsian equations with all parameters real. The

developing map defining a polygon is the ratio of two

linearly independent solutions.
Of course, this fact was well-known to Schwarz and possibly to
Riemann.



Special pentagons corresponding to the equation of R.

Fuchs

This equation with five singularities defines a circular pentagon.
But one singularity q is special: it has exponents 0, 2 and trivial
monodromy.
We say in such case that our pentagon Q has a slit, and call f (q)
the tip of the slit. Pentagons of this type (with exactly one slit)
will be called special pentagons.
There is a one-to-one correspondence between real normalized
Fuchsian equations with 5 singularities, one of them apparent with
exponent difference 2, and equivalence classes of special pentagons.



The sides of a special pentagon are mapped by f into 4 circles. Let
Cj be the circle that contains f ([tj−1, tj ]). If q ∈ (tk−1, tk) then
two sides (tk−1, q) and (q, tk) are mapped into the same circle Ck .
The intersections Cj ∩ Cj+1 are not empty, they contain f (tj); and
our assumption of non-trivial monodromy implies that Cj 6= Cj+1

for all j ∈ Z4.
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The monodromy transformation Lj at tj is obtained by the formula

Lj = σjσj+1, (2)

where σj is the reflection in the circle Cj . Indeed to perform an
analytic continuation along γj we first continue f analytically to
the lower half-plane by reflection σj , and then continue back to H
by reflection in the circle σjCj+1. This last reflection is σjσj+1σj
and applying it after σj we obtain

σjσj+1σjσj = σjσj+1.

One can show that if a representation (2) of Lj in terms of σj
exists, then the σj are unique, except in the case that all Lj
commute. One can also write explicit conditions on the Lj which
imply existence of representation (2).
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Transformation 1. Let q ∈ (tk−1, tk), and as the slit vanishes, q
collides with s which is either tk or tk−1. When q = s, we have a
quadrilateral without a slit. As x passes s we must have a special
pentagon with images of the sides on the same 4 circles, but q and
s interchanged their order on ∂H, The slit which was on Ck is now
on Ck+1, if s = tk , and on Ck−1 if s = tk−1.
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Transformation 2. Suppose that q ∈ (tk−1, tk), and the slit
lengthens. Then eventually it hits the boundary from inside of Qx ,
and becomes a cross-cut. The cross-cut splits the pentagon into
two parts. Let s ∈ ∂H be the point where this collision happens
(that is f (q) → f (s) as the slit lengthens).



The part which splits away is a digon with corners at t and s. This
digon is detached in the limit. In the z plane all three points q, t, s
collide. Before this collision, it is a small neighborhood of t which
is mapped on the would-be digon.
After the collision, we have s < t < q, and a new digon is
attached. It is easy to see that this new digon has the same angle
as the old one, and is bounded by the same two circles. We call it
the “vertical digon” to the old one.
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Transformation 3. When the slit lengthens, hits the boundary from
inside, and the special pentagon splits, as in Transformation 2, we
assume now that the slit hits a corner s ∈ {tj}.



Examples
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In Example 1, when the slit in a) lengthens and hits the boundary,
we have x → 1. As the slit in a) shortens, x increases. When the
slit vanishes we obtain the limit quadrilateral in picture b); at this
point q(x) = ∞. Then the new slit grows as in picture c) and
when it hits the boundary, x → +∞. Therefore the solution q(x)
has only one special point on (1,+∞), and it is a pole. We had
one transformation of type 1 in this example.



In Example 2, when the slit in a) lengthens, x decreases and x → 1
as the slit hits the boundary. When the slit in a) shortens, x
increases. Then we have transformation 1 in b), transformation 2
in d) and transformation 1 in f). The solution has 3 special points:
x0 < x1 < x2 with x0 > 1, q(x0) = x0, q(x1) = 1, q(x2) = 0.
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Representation of polygons by nets

Let Q = (D, t1, . . . , tn, f ) be a circular n-gon. Cj is the circle
containing f ((tj−1, tj)). Circles Cj define a cell decomposition of
the sphere which we call the lower configuration. The f -preimage
of the lower configuration is a cell decomposition of the closed disk
D which is called the net of our polygon. Vertices of the net at the
corners are labeled by tj .



Two nets are considered the same if there is an
orientation-preserving homeomorphism of D sending one net to
another and labeled vertices to similarly labeled vertices.
Specifying the cells

(f (t1), f (e), f (T ))

of the lower configuration will define the polygon uniquely.
So a polygon is completely determined by the lower configuration,
the net and the normalization data.
It is difficult to describe intrinsically all possible nets on a given
lower configuration. But in the case when n = 4 and the lower
configuration is homeomorphic to a generic quadruple of great
circles, one can give such an intrinsic description.



The corresponding cell decomposition of the sphere has the
following property:

a) any pair of 2-cells adjacent along a 1-cell consists of a triangle
and a quadrilateral.

This property is inherited by the net. Two additional property of
the net are:



b) every interior vertex has degree 4, and every vertex on a side
has degree 3, and
c) the degrees of the corners (as vertices of the net) are even.
The last property follows from our assumption that the circles Cj

and Cj+1 are distinct.
One can show that these three properties a), b) and c)
characterize the nets over lower configurations homeomorphic to
generic configurations of 4 great circles.
This permits to construct many examples of nets, circular
quadrilaterals and special circular pentagons.



Transformations 1, 2, 3 above can be explicitly performed on the
nets.
Lower configurations of four great circles correspond to PSU(2)
monodromy representations.
Properties of special points of real PVI solutions strongly depend
on the topological type of the lower configuration. For example,
the number of special points can be infinite only if some two
circles of the lower configuration are disjoint. We conjecture that
this condition is also sufficient for a PVI solution to have infinitely
many real special points.


