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The basics of Nevanlinna theory: notation, examples and main theorems

f(z): meromorphic function

T (r, f): characteristic function given by

T (r, f) = m(r, f) +N(r, f),

where

m(r, f) =
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ, log+ x = max(0, logx), x > 0,

is a proximity function and

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r

is an integrated counting function. Here n(r, f) is the number of poles of f(z)
counting multiplicities in |z| < r.

One can further define m(r, a) = m(r,1/(f −a)), N(r, a) = N(r,1/(f −a)) for
a-points of f(z).



ρ(f) := lim sup
logT (r, f)

log r

is the order of growth of f(z).

Examples.

• f(z) = ez has order 1, f(z) = ee
z

has infinite order.

• f is rational iff T (r, f) = O(log r) as r →∞.

The first main theorem:

T (r, f) = T (r,1/(f − a)) +O(1).

(The characteristic function does not depend on the value a).

Notation: S(r, f) := o(T (r, f))

Lemma on the logarithmic derivative:

m(r, f ′/f) = S(r, f).



The defect δ(a, f) of f at a value a ∈ C is defined by

δ(a, f) = lim inf
r→∞

m(r, a, f)

T (r, f)
= 1− lim sup

r→∞

N(r, a, f)

T (r, f)
.

The index of multiplicity ϑ(a, f) of a value a is defined by

ϑ(a, f) = lim inf
r→∞

N1(r, a, f)

T (r, f)
,

where N1(r, a, f) := N(r, a, f)−N(r, a, f).

If δ(a, f) > 0, then we say that the value a is defective (in the sense of
Nevanlinna), and if ϑ(a, f) > 0 we call a a ramified value of f.

It is known that the set EN(f) of defective values of a meromorphic function
f is at most countable and the following relations are true:

0 ≤ δ(a, f) + ϑ(a, f) ≤ 1,∑
a∈C

(δ(a, f) + ϑ(a, f)) ≤ 2.



Petrenko’s theory

In 1969 Petrenko introduced the quantity

β(a, f) = lim inf
r→∞

L(r, a, f)

T (r, f)

called deviation of a meromorphic function with respect to the value a ∈ C,
where

L(r, a, f) :=


max
|z|=r

log+ |f(z)| for a =∞,

max
|z|=r

log+
∣∣∣ 1
f(z)−a

∣∣∣ for a 6=∞.

For a ∈ C the inequality

δ(a, f) ≤ β(a, f)

follows easily from the definition of β(a, f). Thus we have EN(f) ⊂ EΠ(f),
where EΠ(f) : {a ∈ C : β(a, f) > 0}. In general the sets EN(f) and EΠ(f) may
differ.



Under certain assumptions on the order of growth of the function f , the set
EΠ(f) of exceptional values in the sense of Petrenko is at most countable and

β(a, f) ≤ B(µ) :=

{ πµ
sinπµ

if µ ≤ 0.5 ,

πµ if µ > 0.5 .

Marchenko and Shcherba proved that∑
a∈C

β(a, f) ≤ 2B(µ).

Both estimates are sharp.

Example. Let f(z) = exp(z). We have %(f) = 1, EN(f) = EΠ(f) = {0,∞}
and for exceptional values:

δ(0, f) = δ(∞, f) = 1, β(0, f) = β(∞, f) = π,

so ∑
a∈C

δ(a, f) = 2 and
∑
a∈C

β(a, f) = 2π.



Clunie’s lemma

Let f be a transcendental meromorphic solution of

fnP (z, f) = Q(z, f),

where n is a positive integer, P (z, f), Q(z, f) are polynomials in f and its
derivatives with meromorphic coefficients {aλ : λ ∈ I}, such that m(r, aλ) =
S(r, f) for all λ ∈ I. If the total degree d of Q(z, f) as a polynomial in f and
its derivatives is d ≤ n, then

m(r, P (z, f)) = S(r, f).



An analogue of Clunie’s lemma [GF-Ciechanowicz]

Let f be a transcendental meromorphic solution of

fnP (z, f) = Q(z, f), (1)

where n is a positive integer, P (z, f), Q(z, f) are polynomials in f and its
derivatives with meromorphic coefficients aν, bν, respectively, which are small
with respect to f in the sense that

L(r,∞, aν) = S(r, f), L(r,∞, bν) = S(r, f).

If the total degree d of Q(z, f) as a polynomial in f and its derivatives is d ≤ n,
then

L(r,∞, P (z, f)) = S(r, f).



Mohon’ko–Mohon’ko’s theorem and its analogue

Let

P (z, f, f ′, ..., f (n)) = 0 (2)

be an algebraic differential equation (P (z, u0, u1, ..., un) is a polynomial in all ar-
guments) and let f be its transcendental meromorphic solution. If a constant
a does not solve the equation, then m(r, 1

f−a) = S(r, f) and δ(a, f) = 0.

[GF-Ciechanowicz] If f is a transcendental meromorphic solution of equation
(2) and a constant a does not solve this equation, then L(r, a, f) = S(r, f)
and β(a, f) = 0.



Painlevé equations and value distribution theory

The six Painlevé equations have many applications in modern mathematics
and mathematical physics and a number of remarkable properties.

The second and the fourth Painlevé equations are given by

f ′′ = 2f3 + zf + α, (P2)

f ′′ =
f ′2

2f
+

3f3

2
+ 4zf2 + 2(z2 − α)f +

β

f
, (P4)

where α, β are arbitrary complex parameters and f = f(z). Their solutions
are of finite order.



Known facts about P2

Transcendental solutions of P2 fulfill the conditions:

1. m(r, f) = O(log r) and δ(∞, f) = 0;

2. if α 6= 0, then, for every a ∈ C, we have m(r, 1
f−a) = O(log r) and δ(a, f) =

0;

3. in the case of α = 0 for every a ∈ C \ {0} we have m(r, 1
f−a) = O(log r)

and δ(a, f) = 0, and for a = 0 we have m(r, 1
f
) ≤ 1

2
T (r, f) + O(log r) and

δ(0, f) ≤ 1
2
.

4. for every a ∈ C\{0} we have N1(r, 1
f−a) ≤ 1

4
T (r, f)+O(log r) and ϑ(a, f) ≤

1
4
;

5. if α 6= 0, then N1(r, 1
f
) ≤ 1

5
T (r, f) +O(log r) and ϑ(0, f) ≤ 1

5
, and if α = 0,

then N1(r, 1
f
) = 0 and ϑ(0, f) = 0;

6. N1(r, f) = 0 and ϑ(∞, f) = 0.



Known facts about P4

Transcendental solutions of P4 fulfill the conditions:

1. m(r, f) = O(log r) and δ(∞, f) = 0;

2. if β 6= 0, then for a ∈ C we have m(r, 1
f−a) = O(log r) and δ(a, f) = 0;

3. if β = 0 and a 6= 0, then we have m(r, 1
f−a) = O(log r) and δ(a, f) = 0;

4. if β = 0 and if f does not satisfy the Riccati differential equation f ′ =
±(f2 + 2zf), then m(r, 1

f
) ≤ 1

2
T (r, f) +O(log r) and δ(0, f) ≤ 1

2
;

5. for every a ∈ C \ {0}, N1(r, 1
f−a) ≤ 1

4
T (r, f) +O(log r) and ϑ(a, f) ≤ 1

4
;

6. if β 6= 0, then N1(r, 1
f
) = 0 and ϑ(0, f) = 0;

7. if β = 0, then N1(r, 1
f
) = 1

2
T (r, f) +O(log r) and ϑ(0, f) = 1

2
;

8. N1(r, f) = 0 and ϑ(∞, f) = 0.



New facts about P2 and P4

Transcendental meromorphic solutions of P2 and P4 have the following prop-
erties.

1. For solutions of P2(α) the equalities L(r, a, f) = S(r, f) and β(a, f) = 0
hold for all a ∈ C \ {0}. If α 6= 0 we also have L(r,0, f) = S(r, f) and
β(0, f) = 0.

2. If f is a solution of P4(α, β), then the equalities L(r, a, f) = S(r, f) and
β(a, f) = 0 hold for all a ∈ C\{0}. If β 6= 0, then we also have L(r,0, f) =
S(r, f) and β(0, f) = 0.



The unified equation of P4 and P34

Equation P34, also called equation XXXIV, is the second order equation of
the form

f ′′ =
(f ′)2

2f
+Bf(2f − z)−

A

2f
, (3)

where A and B are fixed complex parameters.

Y. Ohyama introduced the unified equation

f ′′ =
(f ′)2

2f
−

α

2f
+ βf(2f + z) + γf(f + z)(3f + z). (4)

If f(z) is a solution of P4,34(α, β, γ), then f(cz)/c is a solution of P4,34(α, c3β, c4γ).
If β = 0, γ = 0, then equation (4) can easily be integrated with polynomial
solutions

f(z) =
(C2

1 − α)z2

4C2
+ C1z + C2.

Cases we consider:

(C1) γ = 0, β 6= 0;

(C2) γ 6= 0.



Expansions of solutions around a movable pole z0

The equation P4,34 has the following polar behavior.

1. If γ = 0, then an arbitrary solution of P4,34(α, β,0) has double poles.
Moreover, equation P4,34(α, β,0) can be re-written in the form of a regular
system at a pole z = z0 for the variables u(z)2 = 1/f(z) and v(z) defined by

f ′(z) = −1−
√

2β

u(z)3
−
√
βz√

2u(z)
−
u(z)(

√
2βz2 − 120

√
2v(z))

24
√
β

such that the functions u(z) and v(z) are analytic in the neighborhood of
z = z0 and u(z0) = 0 and v(z0) = a2, where a2 is arbitrary.

2. If γ 6= 0, then an arbitrary solution of P4,34(α, β, γ) has simple poles.
Moreover, equation P4,34(α, β, γ) can be re-written in the form of a regular
system at a pole z = z0 for the variables u(z) = 1/f(z) and v(z) defined by

f ′(z) = −
√

2γ

εu(z)2
−

β + 2zγ
√

2γεu(z)
+

√
2β2 − 8ε

√
γγ

8ε
√
γγ

+
(8
√

2γv(z)− εβ − 2zεγ)u(z)

4εγ

such that the functions u(z) and v(z) are analytic in the neighborhood of
z = z0 and u(z0) = 0 and v(z0) = a2, where a2 is arbitrary.



Results on the distribution of a-points (a ∈ C) of a transcendental solution
of P4,34

Transcendental meromorphic solutions of P4,34(α, β, γ) satisfy the conditions

1. m(r, f) = S(r, f);

2. m(r, 1
f−a) = S(r, f) for all a ∈ C \ {0};

3. if α 6= 0, then m(r, 1
f
) = S(r, f);

4. if α = 0 and γ 6= 0, then m(r, 1
f
) ≤ 1

2
T (r, f) + S(r, f) unless f fulfills the

Riccati differential equation

f ′ = ε
√

2γf(f+z+β/(2γ)) with β2 +4εγ
√

2γ = 0 (ε2 = 1), (5)

in which case m(r, 1
f
) ≤ T (r, f) +O(1);

5. if α = 0 and γ = 0, then m(r, 1
f
) ≤ 1

2
T (r, f) + S(r, f).

As a corollary, equation P4,34 does not admit transcendental entire solutions.



If f is a transcendental meromorphic solution of P4,34(α, β, γ) with α 6= 0, then
both in case (C1) and (C2) for all a ∈ C we have

δ(a, f) = 0,

so the set EN(f) of Nevanlinna’s defective values of f is empty. For P4,34(0, β, γ),
both in case (C1) and (C2), we have EN(f) ⊆ {0}. Moreover, δ(0, f) ≤ 1/2,
unless in case (C2) f fulfills (5) and then δ(0, f) = 1.

For a transcendental meromorphic solution f of P34(A,B), we have EN(f) = ∅
if A 6= 0 and EN(f) ⊆ {0} with δ(0, f) ≤ 1/2 if A = 0.



Etimates for deviations of solutions of P4,34

Transcendental meromorphic solutions of P4,34 satisfy the conditions

1. L(r,∞, f) = S(r, f),

2. L(r, a, f) = S(r, f) for all a ∈ C \ {0}.

If α 6= 0 we also have L(r,0, f) = S(r, f).

If f is a transcendental meromorphic solution of P4,34, then for all a ∈ C \ {0}

β(a, f) = 0.

If α 6= 0 also β(0, f) = 0, so in this case the set EΠ(f) of Petrenko’s exceptional
values of f is empty.

A transcendental meromorphic solution f of the equation P34(A,B) does not
possess exceptional values in the sense of Petrenko if A 6= 0. If A = 0 then
EΠ(f) ⊆ {0}.



Result on multiplicity of a-points of a solution of P4,34

Let f be a transcendental solution of P4,34.

1. For P4,34 in case (C1), all the poles of f are double and ϑ(∞, f) = 1/2. For
P4,34(α, β, γ) in case (C2) all the poles of f are simple and ϑ(∞, f) = 0.

2. For P4,34(α, β, γ), (α 6= 0) all the zeros of f are simple and ϑ(0, f) = 0. For
P4,34(0, β, γ), the zeros of non-zero solutions are double. Thus we have
ϑ(0, f) ≤ 1

2
in case (C1) and in case (C2) unless f fulfills the equation

(5), which then means that ϑ(0, f) = 0.

3. For a 6= 0, we have ϑ(a, f) ≤ 1
4
.



Result on multiplicity of a-points of a solution of P34.

A transcendental meromorphic solution f of P34 satisfies the conditions:

1. all the poles of f are double and ϑ(∞, f) = 1/2;

2. for P34(A,B), (A 6= 0) all the zeros of f are simple and ϑ(0, f) = 0, for
P34(0, B), the zeros are double and ϑ(0, f) ≤ 1

2
;

3. if a ∈ C \ {0}, we have ϑ(a, f) ≤ 1
4
.



Thank you very much for your attention!


