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Painlevé VI:
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> ((t) =t(t—1)ZInT, where 7 (t) is Painlevé VI tau function
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(Special) solutions of Painlevé VI:
1. Hypergeometric Riccati family
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> PVI parameters (6o, 0:,61,000) = 3 (0, N, =N —v — ', v — v/ +1n)
depend on v/, n € Cand N € Z>o

~
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» 1-parameter family of initial conditions depending on £ € C
> [Forrester, Witte, '02]



2. Elliptic Picard family
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TPicard (t) = s T =

> PVI parameters (6o, 0¢,61,000) = (%, %7 %7 %)
» 2-parameter family of initial conditions depending on o,0’ € C
> [Kitaev, Korotkin, 98]

3. Algebraic solutions
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> (6o,0:,601,05) = (0,0,0,—%), 10 branches
> no parameters in the initial conditions

> great icosahedron solution from [Dubrovin, Mazzocco, '98]




4. Fredholm determinant solutions

om0 (£) = det (1= AK|, ),

where continuous > F; kernel K (x,y) = v)e (y)z : f () () is defined by
260

1+60+4+01+0,1+60+ 601 — 0 .
2 + 260 T

L,O(X): X90(1_X)612F1|:90+01+900,90+01—000 ;X:|7

B (x) =x"% (1 - x)" oF {
> PVI parameters (6o,0: = 0,61, 60)

» 1-parameter family of initial conditions depending on A € C
> [Borodin, Deift, '01]



Solutions:

» Riccati: classical special functions

2F1 — 1F1 — Bessel --- & -----
Hermite » Airy ---- @
> elliptic (PVI)

> algebraic

» transcendental (almost all solutions!)



Question 1:

Can the general solution of Painlevé VI be expressed in terms
of a Fredholm determinant?



General solution of PVI:
[Gamayun, lorgov, OL, 1207.0787]

PVI tau function is a Fourier transform of ¢ = 1 Virasoro conformal block:

m(t) =3 Blotnt) =3 >—<<>
nez neZ D 0

© 0

> B, 0,t) =t > oo Bi(f,0) t*, with By rational in #, o and determined
by commutation relations of Vir

> as ¢ — oo (Vir — sl), conformal block B(t) ~ 2F1(t)
> all 4 parameters (6o, 0¢, 61,0 ) <= external momenta

> 2 integration constants (o,7) <= internal momentum + Fourier
conjugate variable



CFT derivations:
[lorgov, OL, Teschner, 1401.6104]
» understood in the framework of Liouville CFT and generalized to an
arbitrary number of punctures (Garnier system)
> uses quantum monodromy of conformal blocks with additional level 2
degenerate insertions
[Bershtein, Shchechkin, 1406.3008]

> bilinear differential-difference equations for conformal blocks coming from
an embedding Vir & Vir C NSR& F

> extends to arbitrary values of central charge ¢



AGT correspondence [Alday, Gaiotto, Tachikawa, '09]

B(t) = Zinea(t) = combinatorial sum

o Nek '04
over tuples of partitions [Nekrasov, "04]

> coefficients of B (t) are explicit rational functions of parameters
determined by geometry of appropriate Young diagram

> proved in [Alba, Fateev, Litvinov, Tarnopolsky, '10]

> provides series representation for general Painlevé VI function!

J
_ | E1=(2,3)
, : M=3 @ (E)=2
L(E)=1
h,(E)=4
A,=5 A|=17 &)

Young diagram associated to partition
A= {6,5,4,2}.



Conjecture [Gamayun, lorgov, OL, 1207.0787]

Complete expansion of Painlevé VI tau function at t = 0 is given by

T(t) = Z e™B(f, o + n; t),

n€Z

where the function B(Qj o; t) is explicitly given by
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Question 2:

How to understand this combinatorial structure without
reference to CFT /gauge theory ?

T(t) ~ > €™ S Bau(o + n) e
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Question 2:

How to understand this combinatorial structure without
reference to CFT /gauge theory ?

(5~ D™ D7 Baulo + n) el Nk

neZ ApeY

Remark: Similar Fourier transform structure also appears for
> regular type expansions for PV, Pllly 23 at t = 0 (irregular CBs)

» irregular expansions for PI-PV on Stokes rays at t = co



A digression on (block) Toeplitz determinants

> symbol J(z) € Hom (C, GLw (C)) Lz

» continues into an annulus A D C

J(2)=Y sz,

keZ!

with Z' =Z + 3

> detJ (z) has no winding
(Block) Toeplitz and Hankel matrices associated to J :

Tk [Vl = (hw)s Hx[J] = (kpwria)s  Ax I = (Jokr-1),
with k, k' = 0,..., K — 1.
Theorem [Widom, '76] The limit W[J] = Klim det Tk [J] exists and is equal to
— 00

WJ] = det (1 — Hoo[J]Aoc[JY]) = det (1 + U)

) €EndVand3:V_ -V, d:V, >V given by

010
o W

with 0 = (
5="nN,J7'_, d=n_Jn,.

» N =1 = strong Szegd limit theorem



von Koch formula

Write U in the Fourier basis and expand Fredholm determinant using

det (1+ 0) = > det Uy, Uec**

Pe2x

» multi-indices of principal minors
det Uy = det 0 3
v d/ o

incorporate color indices « = 1,... N and (half-)integer Fourier indices
> combinatorial expansion
det (1 + 0) = Z det 3/ deta,J7
(1,J)€Conf ;.

with balance condition |I| = |J|

» Fourier indices in | and J are resp. positive and negative



> A Maya diagram is a map m : Z' — {—1,1} subject to the condition

m (p) = +1 for all but finitely many p € Z/. (positions of particles and
holes)

> charge(m) = f(particles) — f(holes)



here the charge Q (m) = 2 and the positions of particles and holes are
given by p(m) = (3,7,3,3) and h(m) = (-3, -3)

elements of Conf are in bijection with N-tuples of Young diagrams of
zero total charge

MY 2 YV x Qp, where Qn denotes the Ay_1 root lattice:
—{BegN N ol
av={@ez"|>" Q@ =o}.

in the case N = 2

det (1 + 0) = Z det 5’J det af

(1,J)eY2 XZ



Assume that J admits factorizations

J(z) =" (2) T (2) =T, ()T (2) 7

where W (2), W_ (z) and W (z), W, (z) are analytic, respectively, outside
and inside C.

Corollary. For symbols admitting 1st factorization, the Widom's constant W/[J]
may be rewritten as

WI[J] = det (1 + V), U:<2 3>6End(v+@v_),

where the operators a: V_ — Vi, d: Vi — V_ are defined by

, d = Wintl—l_wint_l

t t—1
3= wex I-I+wex

Vi

They thus have integrable kernels

(ag) (2) = % J a(z,2)g(Z)d7, a(z7)= et (2) \|z;eir S/)— _ 17
(8) () = 5 ) d(22)5()d, d(22) = 1-wn g w ()"



2nd Widom's theorem ['74]
Suppose that J(z) smoothly depends on an additional parameter t.

For symbols admitting left and right factorizations, the log-derivatives of the
Widom's constant wrt parameters are given by

Beln W[J] = 2% 7{ Tr (4740 [0, (0-) O+ we o, (we)]) oz

» Widom's constant = tau function



Monodromy preserving deformation

Consider rank N Fuchsian system on P':

0,9 = PA(z),
n—1 A
A(z) = “ A [
(Z) Vz:; z— auv € sly
» n regular singular points a1, ..., an—1,00

Monodromy representation:

p: m(B'\{a}) - SLu(C)

» different choices of the basis of solutions = equivalent representations



Riemann-Hilbert correspondence:

parameter set P space M

RH: of the linear system T of monodromy data



Schlesinger equations:

P LI R

b
a, —ay

» non-autonomous hamiltonian system
> a,'s play the role of times

» tau function generates hamiltonians of isomonodromic flows:
1 2
H, =0, InT(a) = 5 resz=a, tr A%(2)

> sp(A,) conserved due to Lax form



Consider moduli space of representations with fixed local monodromies.
Mg = Hom(mi(P*\{a}, SL(N,C))/ ~

Example: N =2
» Schlesinger = Garnier system G,_3

» dmMg=3(n—1)—-3—-n=2(n—-3)
(complete set of conserved quantities for G,_3!)

> n=4 — Painlevé Vl, a—= {07 t7 1,00}

Monodromy provides a convenient labeling of Painlevé functions.

solution of construction of

Painlevé equations inverse map RH !



Scheme of the proof

Step 1: Represent the tau function of the Schlesinger system in the form
of Fredholm determinant

> arbitrary rank N, arbitrary number n of regular singularities



Riemann-Hilbert setup

» contour I on a Riemann surface ©
> jump matrix J : I — GL (N, C)

RHP defined by (I, J) is to find analytic invertible matrix function
V: ¥\I' - GL (N, C) whose boundary values satisfy

\U+ = J\U,



Monodromy representation p : m1 (P*\a) — GL (N, C) generated by

M =p (&) = M1 "Mk
Assume that all My, = My ... My are diagonalizable,

27iS —1 .
Mlﬁk:Ske kSk s Gk:dlag{akyl,...,ak,,\,}.



Contour I' for n =5



Fundamental matrix solution

v (z), z outside 1...n,
®(2) = Ce(ak—2)° W (2), zinside v, k=1,...,n—1,
Co(—2)" %"V (z2), z inside .

> only piecewise constant jumps on Rso

> matrix 19, meromorphic on P! with poles only possible at ai, ..., an

> local analysis shows that

0.0 =0A(z), A(z)= Ak

with Ay = V¥ (ak)fl oV (ak)



Jump data

> local exponents: n diagonal non-resonant N x N matrices
Ok = diag {0k,1,...,0kn} (k=1,...,n) satisfying a consistency relation
> Trer=0

> 2n connection matrices G+ € GL (N, C) satisfying the constraints

27O —1 —1
Mik = Cy—e”" " C L = Chy1,— G 4 k=1,...n—2,
27O, —1 —27i® —1
Ml—“’—l = C"—la—e nt n—1,+ = C"’,—e nCn,+a

Mipi=1=Co-Cit=C -Gy,

Jump matrix J

J(2)| =M}, k=1,...,n—1,
Ly
J(z)W:(ak—z)_eka_,jl[, $z20, k=1,...,n—1,
k
_ ©n ~—1 x
J(z)| =(-2)""C, 1, Sz =z 0.
Yn




Aucxiliary 3-point RHPs

- —_—— .

> we are going to associate to the n-point RHP n — 2 3-point RHPs
assigned to different trinions



Contour ¥ (left) and [ for n = 5 (right)

- (2) v (z) outside the annuli,
Z) =
(—2) %k S (2) inside.
> jumps on the boundary circles C§“%, Ci* mimic regular singularities
characterized by counterclockwise monodromies M;_, «



Example (n = 4)

» For a circle C C A define

- vt (2) "M (2), outside C,
v (Z) = int —1 4 ..
vt(z) TV (z), inside C.

» contour [ = C (single circle !, jump J : C — GL (N, C) is

J(z) = W (2) W (2) = By ()0 (2)



Example (n = 4)

2nd Widom's theorem then implies that
7 (t) = £2 (7-93-9%) det (1 + K) ,

with

K:(S 8)6End(v)

where the operatorsa: V_ — Vy andd: Vy — V_ are

1

pext (Z) yext (z/)—l

-1

(ag) (2) = a(z,z)g(Z)dZ, a(z,7)=

i

z—2z

1— wint (Z) wint (ZI)_

1

(dg) ( —?{d zz dz’, d(z,z'):

z—Zz



For N = 2:

K_i(z) K__(z

oo (K00 6 o) )

a(z,z): z—z ’
1-(1- L)zof< Kit(2) Ki-(2) ) ( K- () -Ki-(2) )
d(z 5 “ Ki(z) K-—(2) -K+(Z) K (Z)
(z.7) = ;
zZ—2z
with
[ 014 Ooo £ 0,01 — 000 +
Kii(z)zzﬁ- 1t 1201 ’ iZ:|7
02 — (b xo) 1461 +00£0,14+601—0o L0
Kez (2) = = =5 0 120) 220 2420 =k
- [ 0:+ 60 F 0,0: — 6, t
Ki;t(z)=2F1- t + 0:'::7:2(; oFo ;;]7

—2rn

20(1F20) =z 2F 20

Ri¥(z): :Ft$2<76$i7;0§_(9t:|:0-)2 t F. |: 1+9t+90:|:0',1+9t_90:!:0 .
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Step 2: Write K in the Fourier basis and expand Fredholm determinant using
von Koch formula:

det (14 K) = > detKy, K e Ccrx*

Pe2X

» multi-indices of principal minors

0 a
det Ky :det( o/ OJ )
incorporate color indices &« = 1,... N and (half-)integer Fourier indices
> combinatorial expansion
det(14+ K) = Z deta’;detd,
(1,J)eConf
with balance condition |/| = |J|

> elements of Conf are in bijection with N-tuples of Young diagrams of
zero total charge

» in the case N =2

det(1+ K) = Z deta/; detdf

(1,J)eY2xZ



Step 3: Explicit computation of elementary determinants deta/,, detd; of
Plemelj operators

» in the case N = 2 = Cauchy determinants det

Xi Yi
> rewrite resulting factorized expressions using lengths of rows/columns
instead of positions of particles/holes of different colors



Cauchy-Plemelj operators

>

associate to every trinion Ty with k =2,... n — 3 the spaces of
vector-valued functions

W- @ (Hlent),  HL-cVev. )

e=in,out

elements I € HIX will be written as

[£] [K]
f-[k] _ fin,— ® fin,+
£lA £k ’
out,+ out,—

define an operator P : 1K 5 214 by

2w z—Zz

k k Nl ’
,P[k]f[k] (z) _ i 7{ \U[Jr] (z) W[Jr] (z ) Ik (z )dZ/
cinucout



out,—

2
Lemma. We have (P[k]) =P and ker PH = 7-[!‘;]74r & H¥, . Moreover,

PH can be explicitly written as

P ( fin- ) @< fis ) ( fin- ) @< all bl >( fin )
s Y e |
k k ’
fott font- fot o d

where the operators al¥l, bl c[¥ dIl are defined by

() @) = . [V @V ()7 1] EELE L zecp,
cin

2mi z—2z

~1g () d?

1 Wik () wlk (o cin
-ﬁﬁut 1 (2) +(Z) 72— zely,

(M) (2) =5 § W@l () TEELE, zeop,
cin

27 z—2Zz

[ _ 1 [k KN~ ,]8(2)dZ out
(d g (Z)_Zwiﬁruc [W+ (z2) Vi (Z) 1] S _ zeCm.



introduce the total space

H = @92 HH,
k=1

there is a splitting
H=H  DH_,

oHl ) o ..o (M eul) e ul 2.

Hy = HLll]lt,i ® (Hi[i],q:
combine the 3-point projections P into an operator Pg : H — H given
by the direct sum

Pe=Ple. . . op3

similarly, define another projection Ps : H — H by

2mi z—Zz

L@ e T
Pef(e) = g f THERHELIEE o (Jortuaa
T k=1



> it is easy to show that PsPg = Pg and PgaPs=Px

> the space

7'[7* = im P@ =im P):.
can be thought of as the subspace of functions on the union of boundary
circles C{*, C2"* that can be continued inside Uz;f T with monodromy

and singular behavior of the n-point fundamental matrix solution ¢ (z)

varying the positions of singular points, one obtains a trajectory of Hy in
the infinite-dimensional Grassmannian Gr (#) defined with respect to the
splitting H =H, ® H_

each of the subspaces H+ may be identified with N (n — 3) copies of the
space L* (S') of functions on a circle; the factor n — 3 corresponds to the
number of annuli and N is the rank of the appropriate RHP



> introduce operators Pg + : Hy — H7 and Ps ;. : Hy — Hy given by
restrictions of Pg and Px to H

> define L € End () defined by
L = P@,+71Pz,+

> there exists a basis in which L™ =1 — K, with

Us Vi 0 . 0 gl

Wy Uz W . 0 & [K]
K= 0 W, U . : , 8= : » Bk = < B

. . . . Vn_4 : in,—

0 0 . W,,74 U,,,3 g—n73

0 a[k+1] b[k+1] 0 0 0
Uk:(d[k] 0 )7Vk:( 0 0)7Wk:(0 C[k+1])



Definition
The tau function associated to the Riemann-Hilbert problem for W is defined as

7(a) :=det (L77)

Theorem
We have
7(a) =T (a) 'ramu (a),

where Tyvu (a) is defined up to a prefactor independent of a by

da|nTJMU = Z TrAkA/ dln (ak —a/)7
1<k<I<n—1

and T (a) = ';22 afki&k’rAk, with Ay = %Tr 02, Ay = %TrGi



Fourier basis

Let us represent the elements of H¢ by their Laurent series inside A,

1
_1 N
z 2P, fFeC”,

and write integral kernels of 3-point projection operators al¥l, blKl, ¢l dIdl 55

\U[k] (2) \U[k] (Zl)_l

a[k] (Z’ Z,) = - zi z/

bkl (z, z’) =

z—2z

M (z,7

SN—r
li

z—Zz

d (z,2') =

W)t
v (2wl ()

1- vl ) ull ()

z—2z

/ in
z,z € C/,

Kl p,—3+p /—3+q
E alfz P e

’
P,qEZl,

S pHE Ry s e

P,qEL],

X 1 1 .
§ C[] P,=32 PZ/ +q7Z€C;3Ut,ZIEC;<n

—q
P,qEZL,

K—p —2—p_r—21_ t
E d[]pqzzpz'zq7 z,7 e Cp™.

PyqEZLY,



Von Koch’s formula

Let A € C**¥ be a matrix indexed by a discrete and possibly infinite set X.
The basic tool for expanding 7 (a) is the formula

det(1+ A) = Z det Ay,

Pe2*

where det Ay denotes the |9)| x |2)| principal minor obtained by restriction of A
to a subset 9 C X.

In our case : Ais K in the Fourier basis. Elements of X are multi-indices which
encode the following data:

> positions of the blocks al!l, biH, ¥ dK in K
> a half-integer Fourier index of the appropriate block;
> a color index in {1,..., N}.

Combine Fourier and color indices into one multi-index
1= (p,a) €N =7 x {1,...,N}

Unordered sets {t1,...,tm} € 2% of such multi-indices are denoted by I or J.
Given M € C™*™, we denote by M7 its restriction to rows / and columns J.



Principal minor

0 (a[z])’Jl (b[z])lll o o . ‘ . .
1 2
(at) 0 0 0 o , ‘ . .
1
U A : :
2 3
G I .
0 o 0 0 o
0 0 0 (cm)js (d[s])le
2 3
n— In—
(b[ 3]):n,: o
0 0
0 0 0 0 0 0 (a[n—z])’Jn—3
n—3
T e e
> vanishes unless balance condition |lx| = |Jk| is satisfied

» factorization into a product of elementary determinants

(a[k])lk—l (b[k])lk—l
Jk—1 Ik

@ );
Jk—1 Ik

Z’IILTJlkak—l (T[k]) = (_1)|’k\ det




Corollary: Fredholm determinant 7 (a) is given by

@)= > HZ'fk J‘k’J* 1( ["])

(7. 7)eConf k=1

» The set Conf of proper balanced configurations (F, f) may be described
in terms of Maya diagrams and charged partitions

> A Maya diagram is a map m : Z' — {—1,1} subject to the condition
m (p) = %1 for all but finitely many p € Z’, (positions of particles and
holes)

> charge(m) = f#(particles) — f(holes)

> balanced configurations (/k, J«) are in one-to-one correspondence with
N-tuples of Maya diagrams of zero total charge



> here the charge Q (m) = 2 and the positions of particles and holes are
given by p(m) = (3,7,3,3) and h(m) = (-3, -3)

> MY = Y" x Qn, where Qy denotes the Ay_; root lattice:
R N
= zN ‘ (@ — }
av={Gez" |3 Q@9 =0
Alternative combinatorial notation :

2% G (TH) = Zhhes (71),

Vi, Gk



Theorem
Fredholm determinant 7 (a) can be written as a combinatorial series

GRS ol i G Aaley

Q1,...Gp_3€9Qy V1,...Y,_3€YN k=1

Q-1

. Yy .
> elementary determinants Z S~ are constructed from matrix

Y, Q
elements of 3-point Plemelj operators in Fourier basis

» in rank N = 2, they are given by Cauchy matrices conjugated by diagonal
factors = explicitly computable !!!

> the result coincides with dual Nekrasov partition function for U (2) linear
quiver gauge theory with €1 + 2 =0

> series representation for general solution of PVI/Garnier system

rank N = a sum of N — 1 Cauchy matrices
(unless additional spectral conditions are imposed)



Other Painlevé equations

) ™ / N \ oy
<

J 1,

{1

Gauss Whittaker Bessel

Some solvable RHPs in rank N = 2



Conclusions

1.

Isomonodromic tau functions of Fuchsian systems can be written as block
Fredholm determinants whose kernels are built of fundamental solutions
of 3-point Fuchsian systems

Expanding these determinants in Fourier basis leads to combinatorial
series over tuples of partitions

The coefficients of the series can be computed explicitly when 3-point
solutions have hypergeometric representations (in particular for N = 2)



