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We start the lecture by introducing integral means over
spheres and balls and derivation of the Pizzetti formu-
las for real analytic functions.

Next we give a characterization of real analytic func-
tions in terms of integral means. The characterization
justifies introduction of a definition of analytic func-
tions on metric measure spaces.

We also apply the Pizzetti formulas to the study of con-
vergence and Borel summability of formal solutions to
the classical heat equation and its some generalizations.
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In the second part we introduce integral mean value
functions which are averages of integral means over
spheres or balls and over their images under the ac-
tion of a discrete group of complex rotations. In the
case of real analytic functions we derive higher order
Pizzetti’s formulas. As applications we get:

e a maximum principle for polyharmonic functions:

e a characterization of convergent solutions to the ini-
tial value problem for higher order heat type equations;
e a Dirichlet type problem for polyharmonic functions.
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1. Solid and spherical means value functions

Let Q be a domain in R*, u e CV(Q), 2 € Q,0< R <

dist(x, 9€2). Define solid and spherical means
1
M(u;, z, R) = / u(y)dy, la
o B) = o [t (1a)

1
T g, M08, (0

where o(n) = |B(0,1)| = #™/%/T(n/2 + 1).

N(u; xz, R) =
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Lemma 1 Let u € CV(Q).

Then for any x € Q and 0 < R < dist(z, 0%2)
(%% +1) M 2, R) = N(w: 2, B). (20

If u e C?(Q), then
n o
22 N(u; 2, R) = M(Au; z, R). (2
" N(u; 2, R) = M(du; 2, B). (2b)



2. Mean-value properties for real-analytic functions

Theorem 1 (|9|, Mean-value property). Letu € A(£2),
v € Q. Then M(u; x,R) and N(u; x, R) are even,
analytic functions at the origin and for small | R|,
00 AFy(z) ok
M(u;, z, R) = R,
( ) Zkzo 4F(5+1), k!

00 Aku(w) o
N(u; z,R) = Zkzo 4k(%)kk! .

Here (a)y = ala+1)---(a+ k — 1) is the Pochhammer symbol.

(3a)

(3b)
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Proof. Assume x = 0. Then for y € B(0, p),

€]
uly) = Zw.l 0 (2)y",

Uu
RY W
(eNT n 0z

Take R < p. Note that if at least one of the exponents
lq,..., 0y 1s odd, then the integral of

4
y =yl
over B(0, R) vanishes.



Next for ¢ = 2k we derive

1 / 2K1 2K
a(n)R" Jpo,r)"" !
R2/€




S e Y e
h k(2 ' lovo e | 2K
k=0 4 (2 T 1)kk KEN8,|/€|:]€ K1 Rn: Ox

_ i Aru(z) o

Clearly, the series converges for |R| small enough.
Finally, applying (2a) we get (3b). []
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Theorem 2 (|9, Converse to the mean-value property).
Let w € C°°(Q) and p € C(Q,Ry). If

~ o Afu(z) oy
MR =2 g,
~ o Afu(z) o

or N(z,R) = Zk:() I (%)kk' R

1 loc. uni. conv. in {(z,R) : x € Q,|R| < p(x)},
thenu € A(Q), M =M and N = N.
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Proof. Fix a compact set K € 2 and set p = dist(K, 0f2
Then the assumption implies that
AFy(z)
A4 (3) k!

uniformly on K x {|R| < p1} with any p1 < p. So for

any p; < p there exists a constant C'(p1) < oo such
that for £ € Ny

sup [A*u(x)] < Clpr) - 4 (n/2) k! p 7"
reK

R* 50 as k— oo
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Applying inequalities (@) < (max(1, a))kk! fora >0
and 2Fklk! < (2k)! we see that for any compact set
K & () one can find C < oo and L < oo such that for
k e Ny

sup [A¥u(z)| < C(2k) L2,
reK
But by Komatsu theorem this inequality implies that

u € A(Q). Finally, by Theorem 1 we get N(z, R) =
N(u; x, R) and M(z,R) = M(u; x, R). ]
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3. A characterization of real analyticity

Lemma 2 ([11]). Let u € CUQ). If there exist func-
tions vy € CV(Q) for 1 € Ny and p € CY(Q, R such
that

O

N o R =Y @R ()
locally uniformly in {(xz, R) : x € Q) |R| < p(x)},
then u € C°°(§2) and vop € C°(Q)) forl € Ny.
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Proof. Let n(r) be a Smooth functlon on [0, 00) sup-
ported by |0, 1] with no(n f() r"~Ldr = 1. Then

n-(y) = —n(‘i‘)

is a radially symmetric mollifier supported by B(0, ).
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Integrating in the spherical coordinates we get

1
/ N (y) dy = / no(n)i(r)r™tdr = 1.
B(0,e) 0

Since n° is radially symmetric we have

L _u(ly L n—1_,/ly|
€ - 2 /
o) = ot (1) + e 7

= Le(m)(lyl)- (5)
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For x € Q and 0 < e < p(x) we compute
A * @) = () eu(e) = [ (St — )y

/6</ (A7) (rz)u(z — rz) dS(z )) el g
i//m u(x —rz)dS(2)Le(m)(r)r" " dr

| no(m)N(u; 2, r)Le()(r)r" ™ dr

@Zn0<”>02l( )/ L) (r)yr2 =1 gy

[=0 0

\
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77,0'(71)1)2[<ZE) 20— 2/0 (ﬁ)( >t2l+n—1 dt

2(2) 22 no(n) / DAl dy

|
I I I[]¢
-

voy() e / An'(y) y* dy
B(0,1)

since fB(O,l)An (y) dy—fSOl %n( )dS(y) =
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SO

O

A(Ug * U) (z) = Z U2l+2(~’5) ‘ 52Zm21+2(AU1),
[=0

where moy(n') = fB(O,l) n'(y)y?' dy for | € Ny,
Similarly for £ € Ny we get

O

A" (775 * U) () = Z U912k () - 52lm21+2k(ﬁk771)-
[=0
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Note that AF(nf s u) is distributionally convergent as
e — 0. Hence
k(A7 gy = lim A (" % u)
e—0
= Ak( lim 7° % u) = AFyy € D'(9).

e—0

Since vy € C(S2) applying the Weil lemma we con-
clude that u = vy € C?F(Q),
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Next for 0 <[ < k we have
ARy = AP ALY = my (Alph) - APy, € CY(Q).

So vy € C?F2H(Q).
Since k is arbitrary big we conclude that vy; € C'°°(Q)
for [ € Nj. ]
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Theorem 3 ([11, Theorem 3|). Let u € CY(Q).

If there exist functions uj € CO(Q) for k € Ny and
p e CUQ Ry such that

M(u; z, R) = Zuk

locally uniformly in {(z, R) X E ) |R| < p(x)},
then w 1s real analytic on $) and for [ € Ny,

0 anduy = (A1) ) A
U] 41 ana u9; (2+ )l' (v
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Proof. Since M(u; z, R) is even we get ug 1 = 0.
Applying the relation between mean value functions M
and N, we get for z € Q and 0 < R < p(x),

N(u; z, R) = (%% + 1) (Zio ugl(az)R2l)

— ZZO (%l + 1)u21(:13)R25.

Hence the assumptions of Lemma 2 are satisfied with
Vo] = (%l + 1)u21 and so ug; € C°(Q) for | € Ny,

Next we derive that 4l(% + 1)Z“ Uo] = Aly and apply
Theorem 2. O
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4. Analytic functions on metric measure spaces

It is well known that the mean value characterization
of harmonic functions can be used to define harmonic
functions on metric measure spaces (MMS). Namely,
let (X, p, ;) be a metric measure space with a metric
p and a Borel regular measure p which is positive on
open sets and finite on bounded sets.
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Then a continuous function u : {2 — R on an open

set €2 C X 1is said to be harmonic on €2 if for every
r € ) and any closed ball B(x, R) C €2 it holds

1
u(z) = B R) /B o u(y) duly).

If the measure is continuous with respect to the met-
ric, then harmonic functions on MMS satisty maximum
principle, the Harnack type inequality and the Weier-
strass and Montel convergence theorem, see |5|.
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Another approach to the theory of harmonic functions
on MMS, based on variational methods, was proposed
by Shanmugalingam [15].

Recently Alabern, Mateu and Verdera obtained in |2| a
characterization of Sobolev spaces on R only in terms
of the Fuclidean metric and the Lebesgue measure which
allowed them to define higher order Sobolev spaces on

MM5.
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We propose a definition of analytic functions on MMS.

Definition (|11]). Let (X, p, i) be a metric measure
space with a metric p and a Borel regular measure u
which is positive on open sets and finite on bounded
sets. Let {2 be an open subset of X

For any x € {2 and 0 < R < dist(x, 9€2) define a solid
mean of a continuous function u € CY(Q) by

1
w(Bp(z, R)) /Bm R u(y) dp(y)-

26

Mx(u; z, R) =




Definition (|11]). Let (X, p, 1) be a metric measure
space and € be an open subset of X. Let u € CV(Q, C).
We say that u is (X, p, u)-analytic on §2 and write u €
Ax(Q, p, p) if there exist functions u;, € CY(Q) for
k € Ny and p € CY(Q,Ry) such that

x(u; x, R) = Zuk
locally uniformly in {(z, R) : x € Q, |R| < p(z)}.
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By the Theorem 3 we get

Corollary 1 Let X = R"™ with the Fuclidean metric p
and the Lebesque measure A. Let 2 C X.

Then v € CUQ) is (X, p, N)-analytic on Q0 if and only
of 1t 1s real analytic on ).
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Definition ([11|). The metric measure space (X, p, 1)
is called analytizable if for any x € X there exist open
sets U C R™ ) C X and a homeomorphism

® : U =0 ) such that for y € Q and R small enough

O(B(®'(y), R)) = By(y, R)
and for Borel sets A C ()
u(A) =2 1(A)].
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Theorem 4 (|11|). Under the notations of the last def-
mition let u : €2 — C be a continuous function.

Then u is (X, p, w)-analytic on Q if and only if
wo ® is real analytic on U = d~1(Q).

Hence if X is locally homeomorphic to R then the
metrical properties of X-analytic functions can be de-
rived from the analogous properties of real analytic
functions.
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5. Functions of Laplacian growth

In order to control the growth of iterated Laplacians of
smooth functions Aronszajn et al. |1] introduced the
notion of the Laplacian growth.
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Definition (|1|). Let p > 0 and 7 > 0. A function u
smooth on §2 C R™ is of Laplacian growth (p, ) if for

every K € 2 and € > 0 one can find C = C(K,¢) <
oo such that for £ € Ny

sup |[AFu(z)] < C(Qk)!l_l/p(T +e)?k. (6)
reK
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Definition (|3]). Let p > 0 and 7 > 0. An entire
function F' is said to be of exponential growth (p,T)
if for every € > 0 one can find Cs such that for any
R < o0
sup |F(z)| < C-exp{(T + ¢)RF}.
[2|<R
The exponential growth of an entire function can be

expressed in terms of estimations of its Taylor coeffi-
clents.
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[t appears that a function u of Laplacian growth (p, 7)
on €) is in fact real-analytic on €2 (see |1, Theorem
2.2 in Chapter II|). So the spherical and solid means
N(u; z, R) and M (u; x, R) are well defined for x € {2
and R small enough. However due to estimation (6)
both functions N(u; x, R) and M (u; x, R) can be ex-
tended to entire functions of exponential growth.
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Theorem 5 (|9]). Let p > 0 and 7 > 0.

If w is of Laplacian growth (p,T), then N(u; x, R) and
M (u; x, R) extend holomorphically to entire functions
of exponential growth (p, TP /p) locally uniformly in §2.
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Theorem 6 (|9]). Let u € A().

If M(u; x,R) (resp. N(u; x,R)) defined for x € €
and 0 < R < dist(x, 02) extends to an entire function
M(u; z,2) (resp. N(uw: z,2)) of exponential growth
(p, T) locally uniformly in €2,

then w is of Laplacian growth (p, (T,O)l/p).
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6. Convergent solutions of the heat equation

Let us consider the initial value problem for the heat
equation

(7)

ult=0 up;
where ug € A(S2), @ C R™

{@u—Ag;u = 0,
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Then its formal power series solution is given by

X Ak
. AVup()
u(x,t) = Z T th. (8)
k=0
We ask when the solution u is an analytic function of

time variable at ¢ = 0. In the dimension n = 1 the
problem was solved by Kowalevskaya [8|.
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She proved that the solution w is analytic in time if
and only if the initial data ugp can be analytically ex-
tended to an entire function of exponential order 2. In
the multidimensional case the solution of the problem
was given by Aronszajn at al. |1], but only in terms of
the Laplacian growth of the initial data.

Here we give its solution in terms of the mean value
functions of the initial data.
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Theorem 7 (|9, Theorem 5.1|). Let 0 < T < o0. If
formal power series solution (8) of the heat equation (7)
is convergent for [t| < T locally uniformly in ), then
M (ug; x, R) and N (ug; x, R) extend to an entire func-
tion of exponential growth (2,1/(4T)) locally uniformly
in §.
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Conversely, if M(ug; z, R) or N(ug; x, R) can be
extended to an entire function of exponential growth
(2,1/(4T)) locally uniformly in S, then the solution (8)
of (7) is convergent for |t| < T locally uniformly in €.
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Proof. Assume that u(t,z) is convergent for |t| < T
loc. unif. in €2. Then VK € (), > 0 dC s.t.

k AL
sup |AMug(x)| < C’(TJM:) - k!

reK , - .
< CE(T+€) (§+5> -(2k)!1/2
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Hence wg is of Laplacian growth (2,1/4/2T) and by
Theorem 5, M(ug; , R) and N(ug; z, R) extend to
entire functions of exponential growth (2,1/(47)) lo-
cally uniformly in €2.

On the other hand let M (ug; x, R) or N(ugy; z, R)
can be extended to an entire function of exponential
growth (2,1/(4T)) loc. unif. in 2. Then by Theorem
6, ug is of Laplacian growth (2,1/4/27T) loc. unif. in
().
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Hence for [t| < T and small € > 0

o0 k

Sup

gcgi [(%H)yt@k < 0.

So u(t, x) is convergent for |t| < T locally uniformly in

(2. L]
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The problem of Borel summability of formal solutions
of the heat equation was solved by Michalik (|12, 13]).

Theorem 8 (|13, Theorem 1|). Let d € R, D" a disc
in C" and u be the formal power series solution (8) of
the heat equation (7) with ug € O(D™). Then TFCAE

o W is 1-summable in the direction d;
o M(uy; 2, R) € O(D" 084150 Sujx))
e N(uyz R)eO(D" Oz(gd/z U §d/2—|—7r>)'
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Furthermore, the 1-sum of w is given by

RTID:
ud(z,t) = W / exp{ 64t|x‘ }uo(az‘ + 2)dx

(ezd/2R>n
if the integral 1s well defined.

Here §d = D' U S, S, is a sector bisected by the
direction d and O%(S;) is the space of holomorphic
functions F' on Sy of exponential order s, i.e. satisfying

FO)| < el for ¢ €S
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7. Second order heat type equations

Let P be a homogeneous, second order PDO with con-
stant coefficients. Then the formal solution of

{ oru — Pru = 0, (0)
ult=0 = uy € A(2),

Is given by




[n [14] S. Michalik has given conditions for conver-
gence and Borel summability of w(x, t) in terms of gen-
eralized integral mean value function M, with respect
to a probability Borel measure y supported by the ball
B(0,1).

For u € CV(Q), z € Q and 0 < R < dist(z, 99Q) set

My(u: 2, 8) = [ ula+ Ry) duly).
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Assuming that M, satisfies a Pizzetti type formula
with respect to the operator P, i.e. if u € A(€2), then

M(u; z, R) = Z P?;/L(L;f)RQJ'
=0

for some moment function m of order 2, (i.e. m(j) ~
(27)!) he proved the following.
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Theorem 9 (|13, Theorem 1|). Let d € R and u be
the formal power series solution (10) of the heat type
equation (9) with ug € O(D"™). Then

o U is convergent for small t iff

M, (up; z, R) € O(D™; OQ(C))-

o U is 1-summable in the direction d_iff

My(up; 2, R) € O(D"™ 0%(Sy3/5U Sg/941)).
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8. Higher order mean value functions

Let k£ € N. Denote by € = €. the transformation of C"
into C" given by

€(z1,. .. ) = (€™ Fz

Let u be a continuous function defined on a complex
neighborhood U of an open set {2 C R".
For x € Q and 0 < R < dist(x, dU) we define

eQW@/an).

’ e o o ’

ol



the spherical and solid mean value functions of order k
k—1

Ni(u; 7, R) = — > /u(aj + Rel () dS(y),
kno(n) j:OSn—l(O )
| - 1 k—1 ]
M (u; z, R) = ko (n) ]E:OBTL({;L(:E + Re (y)) dy,

where o(n) = #%/D(n/2 + 1) = |B(0,1)].
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Note that if £ is odd, then Np.(u; x, R) = Nop(u; x, R)
and Mp(u; x, R) = Mosp.(u; x, R). In particular

Ni(u;z, R) = No(u; x, R) = : / (x + Ry) dS(y)

na(n)
and

1
Mi(u;z, R) = My(u;z, R) = <— / (z+ Ry) d

B(0,1

Assume that u € A(€)) is a real analytic function on
an open set {2 C R".
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Then u extends to a function u holomorphic on a com-
plex neighborhood U of €2 and for any x € €2 it holds

- 1 alkly .
ily)= Y ———(@)y—o)" for [ly—z| < p(z)
rEN) '

with some function p € CY(Q,R).
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Theorem 10 (|10, Theorem 1|, Higher order Pizzetti’s
formulas).

Let k =2l withl € N, v € A(2) and x € €.
Then the functions

R+ Np(u; x,R) and Rw— Mi(u; x, R)

are real analytic at the origin and for R small enough

it holds
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o0 Almu<$)
Ni(u; z, R) = Z 4lm(%)lm(lm)!

m=0

> Almu(w) 2lm
My (u; x, R) = Z Am (% +1), (Im)! e

Rle) (12&)

m=0
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The proot is done by expending u into Taylor power
series, noting that the integral of ¥ over B(0,1) van-
ishes if at least one of the coordinates k; of x is odd,
using the following property of the roots of unity

k—1 .
Z 2jlklm/k _ {k if |k| = km for some m € Ny,
J=0

0 otherwise,

and the formula |4, formula 676, 11|, and finally rec-
ognizing in the obtained expression the powers of the
laplacian multiplied by numerical factors. O
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Real analytic functions can be characterized as those smooth ones

for which the higher order Pizzetti’s series converge.

Theorem 11 (|10, Theorem 2|). Letl € N,
p e CUQLRL) and u € C®(Q). If the series

o lm
N AMu(x) o
N(z,R) = R=™
2 ), )
15 convergent locally uniformly in {(z, R) : x € (), |R| <
p(x)}, then u € A(Q) and Noj(u; x, R) = N(z, R).
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Corollary 2 Under the assumptions of Theorem 11 if

the series
o Im
— A
M@, R)=Y —m u() R
oo— 4 (7 + 1)lm(lm).

is convergent locally uniformly in

{(z,R): 2 €Q,|R| <plx)}, N

then u € A(Q) and Moyy(u; z, R) = M(z, R)
for z € Q and 0 < R < min (p(z), dist(z, 99)).

29



9. Maximum principle for polyharmonic functions

It is well known that modulus of a function « harmonic
on a connected domain 2 C R" cannot attain its max-
imum at an interior point of {2 unless w is constant.
On the other hand this maximum principle does not
extends to p-polyharmonic functions, i.e., solutions to
APy = 0 with p > 2. However due real analyticity of
such functions by the formula (12b) we obtain the fol-
lowing maximum principle for polyharmonic functions.
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Theorem 12 (|10, Theorem 3|). Let w be a real val-
ued, p-polyharmonic function on a connected open set
(2 C R™. Denote by u its holomorphic extension to a
connected complex neighborhood U of (1.

If for some xg € €2 and ro > 0 we have
p—1

u(xg) > Reuly) for y € xg+ Z ¢l (B(0,70)),
=0

where €(2) = 2™/ 2Pz then u is constant on §.
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Proof. Since u is p-polyharmonic the series in (12b)
terminates at the first term Hence

Map(u; z, R) = x+e] ))dy = u(x).

J Upn(0,R)

So Moy(u; xg, R) = u(zg) for 0 < R < p(xp) and
the assumption implies that Reu(y) = u(xg) for y €
x(ﬁ—zp 1€j (B(0,71)) with 0 < 71 < min(rg, p(zq)).
[t follows that u is constant on €. ]
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10. Convergent solutions of higher order heat equations

For p € N let us consider the initial value problem for
the p-th order heat type equation

{(‘%U—Agu = 0,

=0 — Yo,

(13)
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where ug € A(QQ), 2 C R". Clearly, the unique formal
power series solution of (13) is given by

ﬂ(t,x) _ i Ampu()(ﬁwtm. (14>

m

m=0
We ask when the solution u is an analytic function of
the time variable at ¢ = 0.
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Theorem 13 (|10, Theorem 6]). Let0 < T < oo. The
formal power series solution (14) of the initial value
problem (13) is convergent for |t| < T locally uni-
formly in Q, iff Moy(ug; z, R) and/or Nop(ug; x, R)
extend holomorphically to entire functions of exponen-
tial growth

(2581, 2%;1(229T)1_2p) locally uniformly in §.

The problem of summability of formal solutions of the
p-th order heat equation was solved by Michalik.
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Theorem 14 (|14, Corollary 3|). Let w be the formal

power series solution (14) of the equation (13) with
ug € O(D). Then TFCAE

o U IS Tl_l—summable in a direction d;

. n. —2281 2p—1 & )
o Myy(up 2, R) € O(D . D2p (Zkzo Sd+22k:7r));
p

| n. 21 G
® ng(u(), 2, R) S O(D O (Zk:() Sdzgkﬂ)).
P
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11. A Dirichlet type problem for polyharmonic functions

Let €2 be a domain in R" and p € N. We introduce the
following Dirichlet type problem for p-polyharmonic
functions. Set € = €9,(2) = e2m/(2p) 5.

Given functions f. on er (8@), k=20,...,p—1, find
a function v satisfying

APy =0 on i;éek(ﬂ),
u = f;. on ek(ﬁﬂ), k=0,...,p— 1.
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In the case of the unit ball the problem was solved by
H. Grzebuta in 2016.

Theorem 15 (|6, Theorem 1|). The problem
( _ p—1 k
APy =0 on [Ji_ge€ (B(0,1)),

u = fr on ek(S(O,l)), k=0,...,p—1

\
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has a unz’que solution given by
1
S L |x12p

(eky) dy.

yl”
"“ OSO1

The solution 1s a holomorphic function on the Lie ball
LB(0,1) ={z e C": |22+ /|2|* — |2?]?2 < 1}.
The proof uses the Almanasi expansion of a polyhar-

monic function to reduce the problem (15) to the Dirich-
let problem for harmonic functions on the unit ball.
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