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Some background

Painleve equations PI , . . . ,PVI : y ′′(z) = RK (y , y ′, z ; θ) such that all
movable singularities are poles

Painleve equations can be realised as isomonodromic deformation of a
linear system Ψ′ = A(y(z), y ′(z), z ; θ)Ψ

M : { solutions of PK } → { space of monodromy data of A }

Standard inversion: Fix a set of monodromy data M(y) and a point
z ∈ C and compute y(z). (ex: PI,PII , the problem has at most one
solution and it has no solution iff z is a pole).

Alternative: Fix a set of monodromy data M(y) and a point in
w ∈ C̄ and compute the set y−1(w). Generically, the set is infinite
(more infos in G. Filipuk’s talk).
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Some background. Classification
An observation (based on PI,PII,PIV): If all fuchsian singularities of the
linear system are apparent, the set y−1(w) is classified by topologically
inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

Write the 2× 2 linear equation in scalar form: ψ′′(λ) = Q(λ)ψ(λ),
where Q is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.

For any pair of solutions ψ1,2, f = ψ1
ψ2

is a meromorphic function with
a finite number of singularities: critical points are the fuchsian
singularities, the transcendental singularities ’are the Stokes sectors’
[Nevanlinna,Elfving, Bergweiler-Eremenko].

Conversely, if f is any meromorphic function with a a finite number of
singularities then f = ψ1

ψ2
where the ψ1,2 solve a linear ODE

ψ′′1,2 = Pψ1,2 for some P as above [Nevanlinna, Elfving]

Topological classification: two meromorphic functions are equivalent
iff they are topologically equivalent as covering maps of the sphere.
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Some background. Classification II

The ’values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

The location of the (movable) critical points of f are related to the
values of y .

Poles of y actually simplifies the monodromy problem!

Consequences: A-priori characterization of the set y−1(w) by
combinatorics (topology) → simple proof of surjectivity of the
monodromy map (ex: PI).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 5 / 26



Some background. Classification II

The ’values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

The location of the (movable) critical points of f are related to the
values of y .

Poles of y actually simplifies the monodromy problem!

Consequences: A-priori characterization of the set y−1(w) by
combinatorics (topology) → simple proof of surjectivity of the
monodromy map (ex: PI).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 5 / 26



Some background. Classification II

The ’values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

The location of the (movable) critical points of f are related to the
values of y .

Poles of y actually simplifies the monodromy problem!

Consequences: A-priori characterization of the set y−1(w) by
combinatorics (topology) → simple proof of surjectivity of the
monodromy map (ex: PI).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 5 / 26



Some background. Classification II

The ’values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

The location of the (movable) critical points of f are related to the
values of y .

Poles of y actually simplifies the monodromy problem!

Consequences: A-priori characterization of the set y−1(w) by
combinatorics (topology) → simple proof of surjectivity of the
monodromy map (ex: PI).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 5 / 26



Some background. PIV

Main example for this talk: Painleve IV

yzz =
1

2y
y2z +

3

2
y3 + 4zy2 + 2(z2 + 1− 2θ∞)y − 8θ2

y
, θ, θ∞ ∈ C.

There are at least three different isomonodromic representations for
PIV. I use here the Garnier-Jimbo-Miwa: one fuchsian singularity at
the origin and one irregular singularity at ∞.

The monodromy map is rather involved. The resonant case is
considered in [Kapaev, unpublished].
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Rational solutions of PIV

PIV has a rational solution iff either

Hermite θ =
m

2
+ n, θ∞ =

m

2
,

or

Okamoto θ =
m

2
+ n ± 2

3
, θ∞ =

m

2

for some m, n ∈ Z, furthermore for any such parameter values the
associated rational solution is unique.
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Hermite solutions

Three types of Hermite solutions

ω
(I)
m,n =

H ′m+1,n

Hm+1,n
−

H ′m,n
Hm,n

,

ω
(II)
m,n =

H ′m,n
Hm,n

−
H ′m,n+1

Hm,n+1
,

ω
(III)
m,n = −2z +

H ′m,n+1

Hm,n+1
−

H ′m+1,n

Hm+1,n
,

Hm,n(z) is the generalized Hermite polynomial.

Note: poles (residue ±1) and zeroes coincide with zeroes of Hermite
polynomials.
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Zeroes of generalized Hermite polynomials H(m,n)

Problem [P. Clarkson]: explain the pictures!
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Okamoto solutions

For m, n ∈ Z,

ω̃
(I)
m,n = −2

3
z +

Q ′m+1,n

Qm+1,n
−

Q ′m,n
Qm,n

, (1a)

ω̃
(II)
m,n = −2

3
z +

Q ′m,n
Qm,n

−
Q ′m,n+1

Qm,n+1
, (1b)

ω̃
(III)
m,n = −2

3
z +

Q ′m,n+1

Qm,n+1
−

Q ′m+1,n

Qm+1,n
, (1c)

where Qm,n are the generalized Okamoto polynomials [Okamoto, Noumi
and Yamada].

Note: poles have residue ±1 and coincide with zeroes of Okamoto
polynomials.
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Zeroes of generalized Okamoto polynomials Q(m,n)

Problem: explain the pictures!
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Our strategy to explain the pictures

Two aspects to take care of:

Theory: (Topological) Characterization of the monodromy problems
for the poles of rational solutions of Hermite type

Practice: Asymptotic analysis of these problems

Remark: 3 families of Hermite solutions → 3 ’inequivalent’ monodromy
problems for the same zeroes of the Hermite polynomials.
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Isomonodromic equation at a pole. Hermite-I case.

Suppose a ∈ C is a pole of residue −1 of ω
(I )
m,n and

ω
(I )
m,n(z) =

−1

z − a
+ · · ·+ b(z − a)2 + . . .

The isomonodromic equation evaluated at z = a is

ψ′′(λ) =
(
(λ+ a)2 − (2m + n)− κ(a, b)

λ
+

n2 − 1

λ2
)
ψ(λ)

The resonant singularity at λ = 0 is apparent: no logarithms.

The Stokes multiplier σ1 vanishes: ψ0 ∼ ψ2.

The subdominant solution ψ0 vanishes at zero and has m − 1 further
simple zeroes.
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Characterization. ’IF’ part

If a is a pole of Hm,n, the ratio f = ψ

ψ̃
of any two solutions of the linear

problem belongs to a finite family of meromorphic functions:

1 f is a meromorphic function with only one critical point, of order
n − 1, at λ = 0.

2 f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: w0,w1,w−1,w2 with w2 = w0 (↔ σ1 = 0).

3 the critical value coincides with the double asymptotic value:
f (0) = w0 (3 distinct singular values ↔ 0 dimensional mouduli).

4 The equation f (z) = w0 has m + n − 1 solutions counting
multiplicities!

There are exactly m × n inequivalent functions f satisfying these
properties. Remark: m × n = order of Hm,n .
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A pictorial example. f for m = n = 3
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Characterization X [Roffelsen,M.]
The point a ∈ C is a pole of residue −1 of ω

(I )
m,n

ω
(I )
m,n(z) =

−1

z − a
+ · · ·+ b(z − a)2 + . . .

if and only if (Obrigado Nevanlinna!) the equation

ψ′′(λ) =
(
(λ+ a)2 − (2m + n)− κ(a, b)

λ
+

n2 − 1

λ2
)
ψ(λ)

has the following properties

1 The resonant singularity at λ = 0 is apparent: no logarithms.

2 The solution ψ0 vanishes at λ = 0.

Indeed the further conditions

ψ(0) has m − 1 simple zeroes.

The Stokes multiplier σ1 vanishes: ψ0 ∼ ψ2

are satisfied because of the parametrization of the potential by m, n.
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Asymptotic analysis

On the equation

ψ′′(λ) =
(
(λ+ a)2 − (2m + n)− κ(a, b)

λ
+

n2 − 1

λ2
)
ψ(λ)

we must impose two conditions in order to find the poles

1 The resonant singularity at λ = 0 is apparent: no logarithms.

2 The solution ψ0 vanishes at 0.
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Asymptotic analysis. Apparent singularity

We compute the location of zeroes of Hermite polynomials in the limit
E = 2m + n→∞ with n bounded.

We define α = E−
1
2 a and restrict to |1− α2| > c > 0.

First step: For any fixed α, we look for κ such that the fuchsian singularity
of

ψ′′(λ) =
(
λ2 + 2αE

1
2 − (1− α2)E − κ

λ
+

n2 − 1

λ2
)
ψ(λ)

is apparent. A complicated algebraic equation of order n for κ.
For E → +∞, we find:

κ =
√
−1j(1− α2)

1
2E

1
2 + O(E−

1
2 ) with |j | ≤ n − 1

2
integer .
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Zeroes of generalized Hermite polynomials H(m,n)

In the pictures n = 3, 5. The integer j parametrizes the lines of poles!
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WKB expansion of ψ0

We got rid of κ:

ψ′′(λ) =
(
λ2 + 2αE

1
2 − (1− α2)E −

√
−1

j(1− α2)
1
2E

1
2

λ
+

n2 − 1

λ2
)
ψ(λ)

We have to find α such that the solution ψ0 vanish at 0

For O(E−
1
2
+ε) . λ . (1− α2)E

1
2 , the WKB asymptotic holds

ψ0 ∼ sin{π
4
− (1− α2)

1
2E

1
2λ−

√
−1j

2
log λ+

+
E

2

(
− α

√
1− α2 + arccosα

)
+
√
−1

j

2
log 2(1− α2)E

1
2 )}
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Asymptotic analysis of ψ+

For λ→ 0 one can transform the original equation into a Whittaker
equation

The subdominant solution ψ+ vanishing at 0 has the asymptotic

ψ+(λ) ∼ M
[ j

2
,
n

2
, 2
√
−1(1− α2)

1
2E

1
2λ
]
, λ = O(E−γ), γ > 0

where M
[ j
2 ,

n
2 , µ
]

is the Whittaker function.
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Asymptotic analysis. Matchings

We need to solve Wr [ψ0, ψ+] = 0.

Using the known asymptotics of the Whittaker function, we find

Wr [ψ0, ψ+]=sin

{
E

2

(
− α

√
1− α2 + arccosα

)
+
√
−1j log [2(1− α2)E

1
2 ]

+

√
−1

2
Fn,j

}
+ O(E−

1
3 ) , Fn,j = log

Γ[(1 + n − j)]

Γ[(1 + n + j)]

Solving the approximate equation, we find the α up to an error O(E−
4
3 ).

Since the spacing among them is O(E−1), all roots such that
|1− α2| > c > 0 are resolved.
We also computed the behavior for α→ ±1 but there is no simple formula.
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Asymptotics Vs. Numerics.
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Layers of zero

In the large m limit, zeroes condensate on the curves =α = fj ,n,m(<α)
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Conclusions and Outlook

We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m→∞ and n bounded (in case
|1− α2| > 0 and 1− α2 ∼ 0).

Computations for m→∞ and m/n→ c > 0 are underway

Preliminary results for rational solutions of Okamoto type: related to
finite families of Nevanlinna functions with 12 asymptotic values
(anharmonic oscillators of order 10).

Rational solutions of PII are related to finite families of functions with
6 asymptotic values (oscillators of order 4) [Eremenko, M].

Rational solutions and finite families of meromorphic functions: Is
there any reason for this phenomenon?
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The end

MANY THANKS FOR THE ATTENTION!
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