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Some background

e Painleve equations Py, ..., Py;: y"(z) = Rk(y,y’, z;0) such that all
movable singularities are poles
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Some background

e Painleve equations Py, ..., Py;: y"(z) = Rk(y,y’, z;0) such that all
movable singularities are poles

@ Painleve equations can be realised as isomonodromic deformation of a
linear system V' = A(y(z),y'(z),z; 0)V

M : { solutions of Pk } — { space of monodromy data of A }
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e Painleve equations Py, ..., Py;: y"(z) = Rk(y,y’, z;0) such that all
movable singularities are poles

@ Painleve equations can be realised as isomonodromic deformation of a
linear system V' = A(y(z),y'(z),z; 0)V

M : { solutions of Pk } — { space of monodromy data of A }

e Standard inversion: Fix a set of monodromy data M(y) and a point
z € C and compute y(z). (ex: PI,PIl', the problem has at most one
solution and it has no solution iff z is a pole).
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e Painleve equations Py, ..., Py;: y"(z) = Rk(y,y’, z;0) such that all
movable singularities are poles

@ Painleve equations can be realised as isomonodromic deformation of a
linear system V' = A(y(z),y'(z),z; 0)V

M : { solutions of Pk } — { space of monodromy data of A }

e Standard inversion: Fix a set of monodromy data M(y) and a point
z € C and compute y(z). (ex: PI,PIl', the problem has at most one
solution and it has no solution iff z is a pole).

e Alternative: Fix a set of monodromy data M(y) and a point in
w € C and compute the set y~}(w). Generically, the set is infinite
(more infos in G. Filipuk's talk).
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Some background. Classification

An observation (based on PI,PII,PIV): If all fuchsian singularities of the
linear system are apparent, the set y~!(w) is classified by topologically

inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).
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linear system are apparent, the set y~!(w) is classified by topologically

inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

@ Write the 2 x 2 linear equation in scalar form: ¢”(\) = Q(N\)¥(N),

where @ is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.
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inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

@ Write the 2 x 2 linear equation in scalar form: ¢”(\) = Q(N\)¥(N),

where Q is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.

@ For any pair of solutions 1o, f = % is a meromorphic function with
a finite number of singularities:
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Some background. Classification

An observation (based on PI,PII,PIV): If all fuchsian singularities of the
linear system are apparent, the set y~!(w) is classified by topologically
inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

@ Write the 2 x 2 linear equation in scalar form: ¢”(\) = Q(N\)¥(N),

where @ is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.
@ For any pair of solutions 12, f = w—; is a meromorphic function with
a finite number of singularities: critical points are the fuchsian

singularities, the transcendental singularities 'are the Stokes sectors'’
[Nevanlinna,Elfving, Bergweiler-Eremenko].
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linear system are apparent, the set y~!(w) is classified by topologically
inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

@ Write the 2 x 2 linear equation in scalar form: ¢”(\) = Q(N\)¥(N),

where @ is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.

@ For any pair of solutions 12, f = % is a meromorphic function with
a finite number of singularities: critical points are the fuchsian
singularities, the transcendental singularities 'are the Stokes sectors'’
[Nevanlinna,Elfving, Bergweiler-Eremenko].

@ Conversely, if f is any meromorphic function with a a finite number of
singularities then f = % where the 1)1 > solve a linear ODE

Y15 = P12 for some P as above [Nevanlinna, Elfving]
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Some background. Classification

An observation (based on PI,PII,PIV): If all fuchsian singularities of the
linear system are apparent, the set y~!(w) is classified by topologically
inequivalent ramified coverings of the Riemann sphere, with the branch
points determined by M(y) (i.e. the Stokes multipliers).

@ Write the 2 x 2 linear equation in scalar form: ¢”(\) = Q(N\)¥(N),

where @ is the sum of a polynomial and a finite collection of apparent
fuchsian singularities.

@ For any pair of solutions 12, f = % is a meromorphic function with
a finite number of singularities: critical points are the fuchsian
singularities, the transcendental singularities 'are the Stokes sectors'’
[Nevanlinna,Elfving, Bergweiler-Eremenko].

@ Conversely, if f is any meromorphic function with a a finite number of
singularities then f = % where the 1)1 > solve a linear ODE
Y15 = P12 for some P as above [Nevanlinna, Elfving]

@ Topological classification: two meromorphic functions are equivalent
iff they are topologically equivalent as covering maps of the sphere.
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Some background. Classification |l

@ The 'values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]
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@ The 'values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

@ The location of the (movable) critical points of f are related to the
values of y.
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@ The 'values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

@ The location of the (movable) critical points of f are related to the
values of y.

@ Poles of y actually simplifies the monodromy problem!
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Some background. Classification |l

@ The 'values’ of the transcendental singularities of f can be read off
the Stokes multipliers [M.]

@ The location of the (movable) critical points of f are related to the
values of y.

@ Poles of y actually simplifies the monodromy problem!

o Consequences: A-priori characterization of the set y~!(w) by
combinatorics (topology) — simple proof of surjectivity of the
monodromy map (ex: PI).
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Some background. PIV

@ Main example for this talk: Painleve IV

1. 3 86>
Vo = ny + 5y’ + 42y +2(27 +1 - 2000)y - - 00 el
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Some background. PIV

@ Main example for this talk: Painleve IV

1 3 862
Voo = oy2+ oy 44z 4 2(22 +1-20)y — —, 0,00 €C.
2y 2 y
@ There are at least three different isomonodromic representations for
PIV. | use here the Garnier-Jimbo-Miwa: one fuchsian singularity at
the origin and one irregular singularity at co.

@ The monodromy map is rather involved. The resonant case is
considered in [Kapaev, unpublished].
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Rational solutions of PIV

P;v has a rational solution iff either

) m m
Hermite 0= > + n, Oso = 5

or
Okamoto 9—m+n:t2 0 _m
2 3’ <2

for some m, n € Z, furthermore for any such parameter values the
associated rational solution is unique.
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Hermite solutions

Three types of Hermite solutions

(Ang)n _ ;n—l—l,n . %,

' Hm+1,n Hm,n

w,(,lql),, _ % . ;n,n+1,

' Hm,n Hm,n+1
Hrln,n-‘rl _ Hrln—i-l,n

(nn
Wmn = —2z+ ,
mn Hm,n+1 Hm+1,n

Hm,n(z) is the generalized Hermite polynomial.
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Hermite solutions

Three types of Hermite solutions

/ /
M _ "'m+ln Hm,n
Wmn = 75— — 3
Hm+1,n Hm,n
/ /
w(ll) . Hm,n m,n+1
mn = T T o
Hm,n Hm,n+1
H; H;
Il 1 1
Wil = —0z 4 Mt _ _miln

)
Hm,n+1 Hm+1,n

Hm,n(z) is the generalized Hermite polynomial.
Note: poles (residue 1) and zeroes coincide with zeroes of Hermite
polynomials.
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Zeroes of generalized Hermite polynomials H, )

-0

Problem [P. Clarkson]: explain the pictures!
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Okamoto solutions

For m,n € Z,

= ——Zz

/ /
2 Qm+1,n Qm,n
——Z + — s
3 Qm-i—l,n Qm,n
/ /
2 m,n Xm,n+1

—=z

3 Qm,n Qm,n+1 ’

/
2 m,n+1 _

/
m—+1,n

3 Qm,n—l—l

Qm—&—l,n’

(1b)

(1c)

where Qp » are the generalized Okamoto polynomials [Okamoto, Noumi

and Yamada].
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Okamoto solutions

For m,n € Z,

~(N 2 Q:n-i-l,n . Qr/'n,n

Wiin = —=Z + , 1a
mn 3 Qm-i—l,n Qm,n ( )
1) 2 ; o1

~ m,n m,n+

Wmn=—=2 —— 1b
mn 3 Qm,n Qm,n+1 ( )

_ 2 / /

wgl]{lg = ;4 m,n+1  ¥m+41.n (1C)

3 Qm,n—l—l Qm—&—l,n’

where Qp » are the generalized Okamoto polynomials [Okamoto, Noumi
and Yamada].

Note: poles have residue +1 and coincide with zeroes of Okamoto
polynomials.
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Zeroes of generalized Okamoto polynomials Q)

Problem: explain the pictures!
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Our strategy to explain the pictures

Two aspects to take care of:
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Our strategy to explain the pictures

Two aspects to take care of:

@ Theory: (Topological) Characterization of the monodromy problems
for the poles of rational solutions of Hermite type
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Our strategy to explain the pictures

Two aspects to take care of:

@ Theory: (Topological) Characterization of the monodromy problems
for the poles of rational solutions of Hermite type

@ Practice: Asymptotic analysis of these problems
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Our strategy to explain the pictures

Two aspects to take care of:

@ Theory: (Topological) Characterization of the monodromy problems
for the poles of rational solutions of Hermite type

@ Practice: Asymptotic analysis of these problems

Remark: 3 families of Hermite solutions — 3 'inequivalent’ monodromy
problems for the same zeroes of the Hermite polynomials.
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Isomonodromic equation at a pole. Hermite-l case.

Suppose a € C is a pole of residue —1 of w,(,i,),, and
-1
w%?n(z): z_a+---+b(z—a)2—|—...
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Isomonodromic equation at a pole. Hermite-l case.

Suppose a € C is a pole of residue —1 of w,(,i?,, and

-1
w,(,Qn(z):—+---+b(z—a)2—|—...

Z—a

The isomonodromic equation evaluated at z = a is

a,b) n?>—1
_|_

20 e

P"(N\) = (()\ + 3)2 —(2m+n) — al

@ The resonant singularity at A = 0 is apparent: no logarithms.
@ The Stokes multiplier o1 vanishes: g ~ 5.

@ The subdominant solution g vanishes at zero and has m — 1 further
simple zeroes.
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:

© f is a meromorphic function with only one critical point, of order
n—1,at A=0.
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:

@ f is a meromorphic function with only one critical point, of order
n—1at A=0.

@ f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: wo, wi, w_1, wp with wo = wy (+> o1 = 0).
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:
© f is a meromorphic function with only one critical point, of order
n—1,at A =0.
@ f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: wo, wi, w_1, wa with wo = wy (<> o1 = 0).
© the critical value coincides with the double asymptotic value:
f(0) = wp (3 distinct singular values <+ 0 dimensional mouduli).
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:
© f is a meromorphic function with only one critical point, of order
n—1,at A =0.
@ f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: wo, wi, w_1, wa with wo = wy (<> o1 = 0).
© the critical value coincides with the double asymptotic value:
f(0) = wp (3 distinct singular values <+ 0 dimensional mouduli).

@ The equation f(z) = wg has m+ n — 1 solutions counting
multiplicities!
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Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:
© f is a meromorphic function with only one critical point, of order
n—1,at A =0.
@ f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: wo, wi, w_1, wa with wo = wy (<> o1 = 0).
© the critical value coincides with the double asymptotic value:
f(0) = wp (3 distinct singular values <+ 0 dimensional mouduli).
@ The equation f(z) = wg has m+ n — 1 solutions counting
multiplicities!
There are exactly m x n inequivalent functions f satisfying these
properties.

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 14 / 26



Characterization. 'IF' part

If ais a pole of Hp, 5, the ratio f = % of any two solutions of the linear
problem belongs to a finite family of meromorphic functions:
© f is a meromorphic function with only one critical point, of order
n—1,at A =0.
@ f has 4 transcendental singularities but 2 of the 4 asymptotic values
coincide: wo, wi, w_1, wa with wo = wy (<> o1 = 0).
© the critical value coincides with the double asymptotic value:
f(0) = wp (3 distinct singular values <+ 0 dimensional mouduli).
@ The equation f(z) = wg has m+ n — 1 solutions counting
multiplicities!
There are exactly m x n inequivalent functions f satisfying these
properties. Remark: m x n = order of Hp, , .
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A pictorial example. f for m=n=3
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Characterization v* [Roffelsen,M.]

The point a € C is a pole of residue —1 of wid)

m;n

-1
wgrlr,)n
Z —_—

(2)= —+
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Characterization v* [Roffelsen,M.]
The point a € C is a pole of residue —1 of wid)

D e L b a)?
wmin(2) z—a+ +b(z—a) +...

if and only if (Obrigado Nevanlinna!) the equation

K n2 —
W) = (22— @mop ) - T2 Ty

has the following properties
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Characterization v* [Roffelsen,M.]
The point a € C is a pole of residue —1 of w(l)

-1
wm,,(z)— — 44 b(z—a)*+...

if and only if (Obrigado Nevanlinna!) the equation

K n2 —
W) = (22— @mop ) - T2 Ty

has the following properties

@ The resonant singularity at A = 0 is apparent: no logarithms.
@ The solution g vanishes at A = 0.
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Characterization v* [Roffelsen,M.]
The point a € C is a pole of residue —1 of w(l)

-1
wmn(z)_ia —|—b(z—a)2+

if and only if (Obrigado Nevanlinna!) the equation

k(a,b) n?®—1
SR e LU G

W"(A) = ((A+a)* = (2m +n) —

has the following properties
@ The resonant singularity at A = 0 is apparent: no logarithms.
© The solution g vanishes at A = 0.
Indeed the further conditions
@ (0) has m — 1 simple zeroes.
@ The Stokes multiplier o1 vanishes: g ~

are satisfied because of the parametrization of the potential by m, n.

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM

16 / 26



Asymptotic analysis

On the equation

k(a n? —
P'(A) = (A + a)?> — (2m+n) — (ib) + 2 1)1&()\)

we must impose two conditions in order to find the poles
@ The resonant singularity at A = 0 is apparent: no logarithms.
@ The solution v vanishes at 0.
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Asymptotic analysis. Apparent singularity

We compute the location of zeroes of Hermite polynomials in the limit
E =2m+ n — oo with n bounded.
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Asymptotic analysis. Apparent singularity
We compute the location of zeroes of Hermite polynomials in the limit
E =2m+ n — oo with n bounded.

, 1 .
We define o = E~2a and restrict to |1 — a?| > ¢ > 0.
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Asymptotic analysis. Apparent singularity

We compute the location of zeroes of Hermite polynomials in the limit
E =2m+ n — oo with n bounded.

, 1 .
We define o = E~2a and restrict to |1 — a?| > ¢ > 0.

First step: For any fixed «, we look for x such that the fuchsian singularity
of )
-1
W) = (2 +20E} - (1-aD)E - S+ ”T)qm)
is apparent. A complicated algebraic equation of order n for .
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Asymptotic analysis. Apparent singularity

We compute the location of zeroes of Hermite polynomials in the limit
E =2m+ n — oo with n bounded.

, 1 .
We define o = E~2a and restrict to |1 — a?| > ¢ > 0.

First step: For any fixed «, we look for x such that the fuchsian singularity
of
ko n?—1

W"(A) = (A2 +20E7 — (1 —?)E — 1 W)

is apparent. A complicated algebraic equation of order n for .
For E — +o0, we find:

n—1

Kk =v/—1j(1 — a?)2Ez + O(E~2) with |j| < integer .

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 18 / 26



Zeroes of generalized Hermite polynomials H, )

. . . .« . 02 .
. o . . . .
- 008
01
. . . . . P o,
03 w02 -01 o1 02 03 0s * 0 B2 2 % 08 33 G
02 0
~a0s
. o . . . .
. . . . 02 .
04
o1
. . . . .
@3
0e o
010
02
. . 0 . . . oo,
o i
04 02 of o e o &2 13 o o8 0% tH
o —aos
. . 0% . .
02
“a10
04 o -
. . . . . . N
015

In the pictures n = 3,5. The integer j parametrizes the lines of poles!

=] 5
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WKB expansion of 1)y
We got rid of «:

¢"(A) = (\2 +20E7 — (1 —a?)E — \/—_1j(

1—a?)

N
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WKB expansion of 1)y

We got rid of k:

N
m
N
S
N
|
—_

¢"(A) = (\2 +20E7 — (1 —a?)E — \/—_11'(1 — 6;2) + 33 )¥(N)

We have to find « such that the solution g vanish at 0
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WKB expansion of 1)y

We got rid of k:

1-a2)2E2 n?—1

¢"(A) = (\2 +20E7 — (1 —a?)E — \/—_1j( 3 + ()

We have to find « such that the solution g vanish at 0
For O(E~2%%) < XA < (1 — a?)E2, the WKB asymptotic holds

2

£ ,
+ 5( — aV/1—a? +arccosa) + \/—1élog2(1 — 0?)E2)}

Ii
J log A+

o ~ sin{% —(1—- az)%E%)\ -
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Asymptotic analysis of ¥,

equation

For A — 0 one can transform the original equation into a Whittaker
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Asymptotic analysis of ¥,

For A — 0 one can transform the original equation into a Whittaker
equation
The subdominant solution ¥4 vanishing at 0 has the asymptotic

U (N) ~ M[5,5,2V=1(1 = a?)2E2A], A= O(E™7), 7> 0

where M[%, 2 1] is the Whittaker function.
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Asymptotic analysis. Matchings

We need to solve Wr[yg, 4] = 0.
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Asymptotic analysis. Matchings

We need to solve Wr[yg, 4] = 0.
Using the known asymptotics of the Whittaker function, we find
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Asymptotic analysis. Matchings

We need to solve Wr[yg, 4] = 0.
Using the known asymptotics of the Whittaker function, we find

Wr (o, 1+ ] :sin{g(— av/1—a?+arccosa) +v—1jlog [2(1 — a?)E?]

i) r[(1+n—))

1
y=- O(E~3), F,; = log o T M= J)1
+ +O(E™3), Fay T+ n+))]
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Asymptotic analysis. Matchings

We need to solve Wr[yg, 4] = 0.
Using the known asymptotics of the Whittaker function, we find

Wr[¢0,¢+]—sin{§(— av/1—a?+arccosa) +v—1jlog [2(1 — a?)E?]
= Y F e A=)
+2F"d}+O(E )2 Fri = o8 F(T )

Solving the approximate equation, we find the o up to an error O(E_%).

Since the spacing among them is O(E~1), all roots such that
|1 —a?| > ¢ > 0 are resolved.
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Asymptotic analysis. Matchings

We need to solve Wr[yg, 4] = 0.
Using the known asymptotics of the Whittaker function, we find

Wrtbo, 1] —sin{g(— av/1—a?+arccosa) +v—1jlog [2(1 — a?)E?]

V-1

+FnJ} +O(E™3), Foj=1lo M (Chaibal))

> ETI+ n+))]

Solving the approximate equation, we find the o up to an error O(E_%).
Since the spacing among them is O(E~1), all roots such that
|1 —a?| > ¢ > 0 are resolved.

We also computed the behavior for &« — =£1 but there is no simple formula.
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Asymptotics Vs. Numerics.

D. Masoero
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Layers of zero

In the large m

limit, zeroes condensate on the curves Sa = fj 5 m(Rav)
[‘\\ o
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Conclusions and Outlook

@ We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m — oo and n bounded (in case
|1—a?|>0and1—a?~0).

e Computations for m — oo and m/n — ¢ > 0 are underway

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 25/ 26



Conclusions and Outlook

@ We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m — oo and n bounded (in case
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e Computations for m — oo and m/n — ¢ > 0 are underway

@ Preliminary results for rational solutions of Okamoto type: related to
finite families of Nevanlinna functions with 12 asymptotic values
(anharmonic oscillators of order 10).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 25/ 26



Conclusions and Outlook

@ We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m — oo and n bounded (in case
|1 —a?|>0and 1—a?~0).

e Computations for m — oo and m/n — ¢ > 0 are underway

@ Preliminary results for rational solutions of Okamoto type: related to
finite families of Nevanlinna functions with 12 asymptotic values
(anharmonic oscillators of order 10).

D. Masoero (Universidade de Lisboa) Rational Solutions of Painleve IV Pisa, CRM 25/ 26



Conclusions and Outlook

@ We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m — oo and n bounded (in case
|1 —a?|>0and 1—a?~0).

e Computations for m — oo and m/n — ¢ > 0 are underway

@ Preliminary results for rational solutions of Okamoto type: related to
finite families of Nevanlinna functions with 12 asymptotic values
(anharmonic oscillators of order 10).

@ Rational solutions of PIlI are related to finite families of functions with
6 asymptotic values (oscillators of order 4) [Eremenko, M].
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Conclusions and Outlook

We charatcterised poles and zero of Hermite solutions and computed
its asymptotic distribution for m — oo and n bounded (in case
|1 —a?|>0and 1—a?~0).

Computations for m — oo and m/n — ¢ > 0 are underway

Preliminary results for rational solutions of Okamoto type: related to
finite families of Nevanlinna functions with 12 asymptotic values
(anharmonic oscillators of order 10).

Rational solutions of PII are related to finite families of functions with
6 asymptotic values (oscillators of order 4) [Eremenko, M].

Rational solutions and finite families of meromorphic functions: Is
there any reason for this phenomenon?
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The end

MANY THANKS FOR THE ATTENTION!
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