Rational solution of Painleve IV

Davide Masoero, FCT Investigator

Grupo de Fisica Matematica, Universidade de Lisboa

13-17/1/2017

Asymptotic and Computational Aspects of Complex ODEs CRM PISA

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

A D A D A D A

Talk based on:

- A. Eremenko, D. Masoero *Poles of rational solutions of Painleve II* (unpublished 2013)
- D. Masoero, P. Roffelsen : *Poles and Zeroes of rational solutions of Painleve IV* (work in progress)

Talk based on:

- A. Eremenko, D. Masoero *Poles of rational solutions of Painleve II* (unpublished 2013)
- D. Masoero, P. Roffelsen : *Poles and Zeroes of rational solutions of Painleve IV* (work in progress)

Talk based on:

- A. Eremenko, D. Masoero *Poles of rational solutions of Painleve II* (unpublished 2013)
- D. Masoero, P. Roffelsen : *Poles and Zeroes of rational solutions of Painleve IV* (work in progress)

< ∃ > <

• Painleve equations P_1, \ldots, P_{VI} : $y''(z) = R_K(y, y', z; \theta)$ such that all movable singularities are poles

(4) (3) (4) (4) (4)

- Painleve equations P₁,..., P_{VI}: y''(z) = R_K(y, y', z; θ) such that all movable singularities are poles
- Painleve equations can be realised as isomonodromic deformation of a linear system Ψ' = A(y(z), y'(z), z; θ)Ψ

 \mathcal{M} : { solutions of P_K } \rightarrow { space of *monodromy* data of A }

• • = • • = •

- Painleve equations P₁,..., P_{VI}: y''(z) = R_K(y, y', z; θ) such that all movable singularities are poles
- Painleve equations can be realised as isomonodromic deformation of a linear system Ψ' = A(y(z), y'(z), z; θ)Ψ

 \mathcal{M} : { solutions of P_K } \rightarrow { space of *monodromy* data of A }

Standard inversion: Fix a set of monodromy data M(y) and a point z ∈ C and compute y(z). (ex: PI,PII, the problem has at most one solution and it has no solution iff z is a pole).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Painleve equations P₁,..., P_{VI}: y''(z) = R_K(y, y', z; θ) such that all movable singularities are poles
- Painleve equations can be realised as isomonodromic deformation of a linear system Ψ' = A(y(z), y'(z), z; θ)Ψ

 \mathcal{M} : { solutions of P_K } \rightarrow { space of *monodromy* data of A }

- Standard inversion: Fix a set of monodromy data M(y) and a point z ∈ C and compute y(z). (ex: PI,PII, the problem has at most one solution and it has no solution iff z is a pole).
- Alternative: Fix a set of monodromy data M(y) and a point in w ∈ ℂ and compute the set y⁻¹(w). Generically, the set is infinite (more infos in G. Filipuk's talk).

(本間) (本語) (本語) (語)

- Painleve equations P₁,..., P_{VI}: y''(z) = R_K(y, y', z; θ) such that all movable singularities are poles
- Painleve equations can be realised as isomonodromic deformation of a linear system Ψ' = A(y(z), y'(z), z; θ)Ψ

 \mathcal{M} : { solutions of P_K } \rightarrow { space of *monodromy* data of A }

- Standard inversion: Fix a set of monodromy data M(y) and a point z ∈ C and compute y(z). (ex: PI,PII, the problem has at most one solution and it has no solution iff z is a pole).
- Alternative: Fix a set of monodromy data M(y) and a point in w ∈ ℂ and compute the set y⁻¹(w). Generically, the set is infinite (more infos in G. Filipuk's talk).

(本間) (本語) (本語) (語)

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

• Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities:

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities: critical points are the fuchsian singularities,

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities: critical points are the fuchsian singularities, the transcendental singularities 'are the Stokes sectors' [Nevanlinna,Elfving, Bergweiler-Eremenko].

通 ト イヨ ト イヨト

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities: critical points are the fuchsian singularities, the transcendental singularities 'are the Stokes sectors' [Nevanlinna,Elfving, Bergweiler-Eremenko].

通 ト イヨ ト イヨト

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities: critical points are the fuchsian singularities, the transcendental singularities 'are the Stokes sectors' [Nevanlinna,Elfving, Bergweiler-Eremenko].
- Conversely, if f is any meromorphic function with a a finite number of singularities then f = ψ₁/ψ₂ where the ψ_{1,2} solve a linear ODE ψ_{1,2}" = Pψ_{1,2} for some P as above [Nevanlinna, Elfving]

イロト 不得下 イヨト イヨト 二日

An observation (based on PI,PII,PIV): If all fuchsian singularities of the linear system are *apparent*, the set $y^{-1}(w)$ is classified by topologically inequivalent ramified coverings of the Riemann sphere, with the branch points determined by $\mathcal{M}(y)$ (i.e. the Stokes multipliers).

- Write the 2 × 2 linear equation in scalar form: $\psi''(\lambda) = Q(\lambda)\psi(\lambda)$, where Q is the sum of a polynomial and a finite collection of apparent fuchsian singularities.
- For any pair of solutions $\psi_{1,2}$, $f = \frac{\psi_1}{\psi_2}$ is a meromorphic function with a finite number of singularities: critical points are the fuchsian singularities, the transcendental singularities 'are the Stokes sectors' [Nevanlinna,Elfving, Bergweiler-Eremenko].
- Conversely, if f is any meromorphic function with a a finite number of singularities then $f = \frac{\psi_1}{\psi_2}$ where the $\psi_{1,2}$ solve a linear ODE $\psi_{1,2}'' = P\psi_{1,2}$ for some P as above [Nevanlinna, Elfving]
- Topological classification: two meromorphic functions are equivalent iff they are topologically equivalent as covering maps of the sphere.

• The 'values' of the transcendental singularities of *f* can be read off the Stokes multipliers [M.]

3.5

- The 'values' of the transcendental singularities of *f* can be read off the Stokes multipliers [M.]
- The location of the (movable) critical points of *f* are related to the values of *y*.

- The 'values' of the transcendental singularities of *f* can be read off the Stokes multipliers [M.]
- The location of the (movable) critical points of *f* are related to the values of *y*.
- Poles of y actually simplifies the monodromy problem!

- The 'values' of the transcendental singularities of *f* can be read off the Stokes multipliers [M.]
- The location of the (movable) critical points of *f* are related to the values of *y*.
- Poles of y actually simplifies the monodromy problem!
- Consequences: A-priori characterization of the set y⁻¹(w) by combinatorics (topology) → simple proof of surjectivity of the monodromy map (ex: PI).

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Some background. PIV

• Main example for this talk: Painleve IV

$$y_{zz}=\frac{1}{2y}y_z^2+\frac{3}{2}y^3+4zy^2+2(z^2+1-2\theta_\infty)y-\frac{8\theta^2}{y},\quad \theta,\theta_\infty\in\mathbb{C}.$$

A (1) > A (2) > A

Some background. PIV

Main example for this talk: Painleve IV

$$y_{zz}=rac{1}{2y}y_z^2+rac{3}{2}y^3+4zy^2+2(z^2+1-2 heta_\infty)y-rac{8 heta^2}{y},\quad heta, heta_\infty\in\mathbb{C}.$$

- There are at least three different isomonodromic representations for PIV. I use here the Garnier-Jimbo-Miwa: one fuchsian singularity at the origin and one irregular singularity at ∞.
- The monodromy map is rather involved. The resonant case is considered in [Kapaev, unpublished].

Rational solutions of PIV

 P_{IV} has a rational solution iff either

Hermite
$$heta = \frac{m}{2} + n, heta = \frac{m}{2},$$

or

Okamoto
$$heta=rac{m}{2}+n\pmrac{2}{3}, heta=rac{m}{2}$$

for some $m, n \in \mathbb{Z}$, furthermore for any such parameter values the associated rational solution is unique.

Hermite solutions

Three types of Hermite solutions

$$\omega_{m,n}^{(I)} = \frac{H'_{m+1,n}}{H_{m+1,n}} - \frac{H'_{m,n}}{H_{m,n}},$$

$$\omega_{m,n}^{(II)} = \frac{H'_{m,n}}{H_{m,n}} - \frac{H'_{m,n+1}}{H_{m,n+1}},$$

$$\omega_{m,n}^{(III)} = -2z + \frac{H'_{m,n+1}}{H_{m,n+1}} - \frac{H'_{m+1,n}}{H_{m+1,n}},$$

 $H_{m,n}(z)$ is the generalized Hermite polynomial.

< ロ > < 同 > < 三 > < 三

Hermite solutions

Three types of Hermite solutions

$$\omega_{m,n}^{(I)} = \frac{H'_{m+1,n}}{H_{m+1,n}} - \frac{H'_{m,n}}{H_{m,n}},$$

$$\omega_{m,n}^{(II)} = \frac{H'_{m,n}}{H_{m,n}} - \frac{H'_{m,n+1}}{H_{m,n+1}},$$

$$\omega_{m,n}^{(III)} = -2z + \frac{H'_{m,n+1}}{H_{m,n+1}} - \frac{H'_{m+1,n}}{H_{m+1,n}},$$

 $H_{m,n}(z)$ is the generalized Hermite polynomial. Note: poles (residue ± 1) and zeroes coincide with zeroes of Hermite polynomials.

• = • •

Zeroes of generalized Hermite polynomials $H_{(m,n)}$

Problem [P. Clarkson]: explain the pictures!

D. Masoero (Universidade de Lisboa)

Pisa, CRM 9 / 26

Okamoto solutions

For $m, n \in \mathbb{Z}$,

$$\begin{split} \widetilde{\omega}_{m,n}^{(I)} &= -\frac{2}{3}z + \frac{Q'_{m+1,n}}{Q_{m+1,n}} - \frac{Q'_{m,n}}{Q_{m,n}}, \quad (1a) \\ \widetilde{\omega}_{m,n}^{(II)} &= -\frac{2}{3}z + \frac{Q'_{m,n}}{Q_{m,n}} - \frac{Q'_{m,n+1}}{Q_{m,n+1}}, \quad (1b) \\ \widetilde{\omega}_{m,n}^{(III)} &= -\frac{2}{3}z + \frac{Q'_{m,n+1}}{Q_{m,n+1}} - \frac{Q'_{m+1,n}}{Q_{m+1,n}}, \quad (1c) \end{split}$$

where $Q_{m,n}$ are the generalized Okamoto polynomials [Okamoto, Noumi and Yamada].

< ∃ > <

Okamoto solutions

For $m, n \in \mathbb{Z}$,

$$\begin{split} \widetilde{\omega}_{m,n}^{(I)} &= -\frac{2}{3}z + \frac{Q'_{m+1,n}}{Q_{m+1,n}} - \frac{Q'_{m,n}}{Q_{m,n}}, \quad (1a) \\ \widetilde{\omega}_{m,n}^{(II)} &= -\frac{2}{3}z + \frac{Q'_{m,n}}{Q_{m,n}} - \frac{Q'_{m,n+1}}{Q_{m,n+1}}, \quad (1b) \\ \widetilde{\omega}_{m,n}^{(III)} &= -\frac{2}{3}z + \frac{Q'_{m,n+1}}{Q_{m,n+1}} - \frac{Q'_{m+1,n}}{Q_{m+1,n}}, \quad (1c) \end{split}$$

where $Q_{m,n}$ are the generalized Okamoto polynomials [Okamoto, Noumi and Yamada].

Note: poles have residue ± 1 and coincide with zeroes of Okamoto polynomials.

→ ∃ →

Zeroes of generalized Okamoto polynomials $Q_{(m,n)}$

Problem: explain the pictures!

D. Masoero (Universidade de Lisboa)

Rational Solutions of Painleve IV

Pisa, CRM 11 / 26

- ∢ ∃ ▶

Two aspects to take care of:

Two aspects to take care of:

• Theory: (Topological) Characterization of the monodromy problems for the poles of rational solutions of Hermite type

Two aspects to take care of:

- Theory: (Topological) Characterization of the monodromy problems for the poles of rational solutions of Hermite type
- Practice: Asymptotic analysis of these problems

12 / 26

Two aspects to take care of:

- Theory: (Topological) Characterization of the monodromy problems for the poles of rational solutions of Hermite type
- Practice: Asymptotic analysis of these problems

Remark: 3 families of Hermite solutions \rightarrow 3 'inequivalent' monodromy problems for the same zeroes of the Hermite polynomials.

Isomonodromic equation at a pole. Hermite-I case.

Suppose $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$ and

$$\omega_{m,n}^{(I)}(z) = \frac{-1}{z-a} + \cdots + b(z-a)^2 + \ldots$$

Isomonodromic equation at a pole. Hermite-I case.

Suppose $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$ and

$$\omega_{m,n}^{(I)}(z) = \frac{-1}{z-a} + \cdots + b(z-a)^2 + \ldots$$

The isomonodromic equation evaluated at z = a is

$$\psi''(\lambda) = \left((\lambda + a)^2 - (2m + n) - \frac{\kappa(a, b)}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

- The resonant singularity at $\lambda = 0$ is apparent: no logarithms.
- The Stokes multiplier σ_1 vanishes: $\psi_0 \sim \psi_2$.
- The subdominant solution ψ_0 vanishes at zero and has m-1 further simple zeroes.
If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

• *f* is a meromorphic function with only one critical point, of order n-1, at $\lambda = 0$.

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

- f is a meromorphic function with only one critical point, of order n-1, at λ = 0.
- ② f has 4 transcendental singularities but 2 of the 4 asymptotic values coincide: w₀, w₁, w₋₁, w₂ with w₂ = w₀ (↔ σ₁ = 0).

14 / 26

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

- f is a meromorphic function with only one critical point, of order n-1, at λ = 0.
- If has 4 transcendental singularities but 2 of the 4 asymptotic values coincide: w₀, w₁, w₋₁, w₂ with w₂ = w₀ (↔ σ₁ = 0).
- the critical value coincides with the double asymptotic value: $f(0) = w_0$ (3 distinct singular values $\leftrightarrow 0$ dimensional mouduli).

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

- f is a meromorphic function with only one critical point, of order n-1, at λ = 0.
- ② f has 4 transcendental singularities but 2 of the 4 asymptotic values coincide: w₀, w₁, w₋₁, w₂ with w₂ = w₀ (↔ σ₁ = 0).
- the critical value coincides with the double asymptotic value: $f(0) = w_0$ (3 distinct singular values $\leftrightarrow 0$ dimensional mouduli).
- The equation $f(z) = w_0$ has m + n 1 solutions counting multiplicities!

• • = • • = •

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

- f is a meromorphic function with only one critical point, of order n-1, at λ = 0.
- ② f has 4 transcendental singularities but 2 of the 4 asymptotic values coincide: w₀, w₁, w₋₁, w₂ with w₂ = w₀ (↔ σ₁ = 0).
- the critical value coincides with the double asymptotic value: $f(0) = w_0$ (3 distinct singular values $\leftrightarrow 0$ dimensional mouduli).
- The equation $f(z) = w_0$ has m + n 1 solutions counting multiplicities!

There are exactly $m \times n$ inequivalent functions f satisfying these properties.

< 回 ト < 三 ト < 三 ト

If a is a pole of $H_{m,n}$, the ratio $f = \frac{\psi}{\tilde{\psi}}$ of any two solutions of the linear problem belongs to a finite family of meromorphic functions:

- f is a meromorphic function with only one critical point, of order n-1, at λ = 0.
- ② f has 4 transcendental singularities but 2 of the 4 asymptotic values coincide: w₀, w₁, w₋₁, w₂ with w₂ = w₀ (↔ σ₁ = 0).
- the critical value coincides with the double asymptotic value: $f(0) = w_0$ (3 distinct singular values $\leftrightarrow 0$ dimensional mouduli).
- The equation $f(z) = w_0$ has m + n 1 solutions counting multiplicities!

There are exactly $m \times n$ inequivalent functions f satisfying these properties. Remark: $m \times n =$ order of $H_{m,n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A pictorial example. f for m = n = 3

The point $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$

$$\omega_{m,n}^{(I)}(z) = \frac{-1}{z-a} + \cdots + b(z-a)^2 + \ldots$$

-∢ ∃ ▶

The point $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$

$$\omega_{m,n}^{(I)}(z)=\frac{-1}{z-a}+\cdots+b(z-a)^2+\ldots$$

if and only if (Obrigado Nevanlinna!) the equation

$$\psi''(\lambda) = \left((\lambda + a)^2 - (2m + n) - \frac{\kappa(a, b)}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

has the following properties

The point $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$

$$\omega_{m,n}^{(I)}(z)=\frac{-1}{z-a}+\cdots+b(z-a)^2+\ldots$$

if and only if (Obrigado Nevanlinna!) the equation

$$\psi''(\lambda) = \left((\lambda + a)^2 - (2m + n) - \frac{\kappa(a, b)}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

has the following properties

- **①** The resonant singularity at $\lambda = 0$ is apparent: no logarithms.
- 2 The solution ψ_0 vanishes at $\lambda = 0$.

The point $a \in \mathbb{C}$ is a pole of residue -1 of $\omega_{m,n}^{(I)}$

$$\omega_{m,n}^{(I)}(z)=\frac{-1}{z-a}+\cdots+b(z-a)^2+\ldots$$

if and only if (Obrigado Nevanlinna!) the equation

$$\psi''(\lambda) = \left((\lambda + a)^2 - (2m + n) - \frac{\kappa(a, b)}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

has the following properties

- **(**) The resonant singularity at $\lambda = 0$ is apparent: no logarithms.
- **2** The solution ψ_0 vanishes at $\lambda = 0$.

Indeed the further conditions

- $\psi(0)$ has m-1 simple zeroes.
- The Stokes multiplier σ_1 vanishes: $\psi_0 \sim \psi_2$

are satisfied because of the parametrization of the potential by m, n.

Asymptotic analysis

On the equation

$$\psi''(\lambda) = \left((\lambda + a)^2 - (2m + n) - \frac{\kappa(a, b)}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

we must impose two conditions in order to find the poles

- **(**) The resonant singularity at $\lambda = 0$ is apparent: no logarithms.
- 2 The solution ψ_0 vanishes at 0.

We compute the location of zeroes of Hermite polynomials in the limit $E = 2m + n \rightarrow \infty$ with *n* bounded.

We compute the location of zeroes of Hermite polynomials in the limit $E = 2m + n \rightarrow \infty$ with *n* bounded.

We define $\alpha = E^{-\frac{1}{2}}a$ and restrict to $|1 - \alpha^2| > c > 0$.

We compute the location of zeroes of Hermite polynomials in the limit $E = 2m + n \rightarrow \infty$ with *n* bounded.

We define $\alpha = E^{-\frac{1}{2}}a$ and restrict to $|1 - \alpha^2| > c > 0$.

First step: For any fixed α , we look for κ such that the fuchsian singularity of

$$\psi''(\lambda) = \left(\lambda^2 + 2\alpha E^{\frac{1}{2}} - (1 - \alpha^2)E - \frac{\kappa}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

is apparent. A complicated algebraic equation of order n for κ .

18 / 26

We compute the location of zeroes of Hermite polynomials in the limit $E = 2m + n \rightarrow \infty$ with *n* bounded.

We define $\alpha = E^{-\frac{1}{2}}a$ and restrict to $|1 - \alpha^2| > c > 0$.

First step: For any fixed α , we look for κ such that the fuchsian singularity of

$$\psi''(\lambda) = \left(\lambda^2 + 2\alpha E^{\frac{1}{2}} - (1 - \alpha^2)E - \frac{\kappa}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

is apparent. A complicated algebraic equation of order *n* for κ . For $E \to +\infty$, we find:

$$\kappa=\sqrt{-1}j(1-lpha^2)^{rac{1}{2}}E^{rac{1}{2}}+O(E^{-rac{1}{2}})$$
 with $|j|\leq rac{n-1}{2}$ integer .

Zeroes of generalized Hermite polynomials $H_{(m,n)}$

In the pictures n = 3, 5. The integer *j* parametrizes the lines of poles!

- 一司

► < ∃ ►</p>

WKB expansion of ψ_0

We got rid of κ :

$$\psi''(\lambda) = \left(\lambda^2 + 2\alpha E^{\frac{1}{2}} - (1 - \alpha^2)E - \sqrt{-1}\frac{j(1 - \alpha^2)^{\frac{1}{2}}E^{\frac{1}{2}}}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

A (10) F (10)

WKB expansion of ψ_0

We got rid of κ :

$$\psi''(\lambda) = \left(\lambda^2 + 2\alpha E^{\frac{1}{2}} - (1 - \alpha^2)E - \sqrt{-1}\frac{j(1 - \alpha^2)^{\frac{1}{2}}E^{\frac{1}{2}}}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

We have to find α such that the solution ψ_0 vanish at 0

< ∃ >

WKB expansion of ψ_0

We got rid of κ :

$$\psi''(\lambda) = \left(\lambda^2 + 2\alpha E^{\frac{1}{2}} - (1 - \alpha^2)E - \sqrt{-1}\frac{j(1 - \alpha^2)^{\frac{1}{2}}E^{\frac{1}{2}}}{\lambda} + \frac{n^2 - 1}{\lambda^2}\right)\psi(\lambda)$$

We have to find α such that the solution ψ_0 vanish at 0 For $O(E^{-\frac{1}{2}+\varepsilon}) \lesssim \lambda \lesssim (1-\alpha^2)E^{\frac{1}{2}}$, the WKB asymptotic holds

$$\begin{split} \psi_0 &\sim \sin\{\frac{\pi}{4} - (1 - \alpha^2)^{\frac{1}{2}} E^{\frac{1}{2}} \lambda - \frac{\sqrt{-1}j}{2} \log \lambda + \\ &+ \frac{E}{2} \left(-\alpha \sqrt{1 - \alpha^2} + \arccos \alpha \right) + \sqrt{-1} \frac{j}{2} \log 2(1 - \alpha^2) E^{\frac{1}{2}}) \} \end{split}$$

Asymptotic analysis of ψ_+

For $\lambda \rightarrow 0$ one can transform the original equation into a Whittaker equation

A (10) F (10)

Asymptotic analysis of ψ_+

For $\lambda \rightarrow 0$ one can transform the original equation into a Whittaker equation

The subdominant solution ψ_+ vanishing at 0 has the asymptotic

$$\psi_+(\lambda) \sim M\left[rac{j}{2}, rac{n}{2}, 2\sqrt{-1}(1-lpha^2)^{rac{1}{2}} E^{rac{1}{2}}\lambda
ight], \ \lambda = O(E^{-\gamma}), \ \gamma > 0$$

where $M\left[\frac{j}{2},\frac{n}{2},\mu\right]$ is the Whittaker function.

過 ト イヨ ト イヨト

We need to solve $Wr[\psi_0, \psi_+] = 0$.

→ < ∃ >

We need to solve $Wr[\psi_0, \psi_+] = 0.$

Using the known asymptotics of the Whittaker function, we find

We need to solve $Wr[\psi_0, \psi_+] = 0$. Using the known asymptotics of the Whittaker function, we find

$$Wr[\psi_{0},\psi_{+}] = \sin\left\{\frac{E}{2}\left(-\alpha\sqrt{1-\alpha^{2}} + \arccos\alpha\right) + \sqrt{-1}j\log\left[2(1-\alpha^{2})E^{\frac{1}{2}}\right] + \frac{\sqrt{-1}}{2}F_{n,j}\right\} + O(E^{-\frac{1}{3}}), \ F_{n,j} = \log\frac{\Gamma[(1+n-j)]}{\Gamma[(1+n+j)]}$$

22 / 26

We need to solve $Wr[\psi_0, \psi_+] = 0$. Using the known asymptotics of the Whittaker function, we find

$$Wr[\psi_{0},\psi_{+}] = \sin\left\{\frac{E}{2}\left(-\alpha\sqrt{1-\alpha^{2}} + \arccos\alpha\right) + \sqrt{-1}j\log\left[2(1-\alpha^{2})E^{\frac{1}{2}}\right] + \frac{\sqrt{-1}}{2}F_{n,j}\right\} + O(E^{-\frac{1}{3}}), \ F_{n,j} = \log\frac{\Gamma[(1+n-j)]}{\Gamma[(1+n+j)]}$$

Solving the approximate equation, we find the α up to an error $O(E^{-\frac{4}{3}})$. Since the spacing among them is $O(E^{-1})$, all roots such that $|1 - \alpha^2| > c > 0$ are resolved.

We need to solve $Wr[\psi_0, \psi_+] = 0$. Using the known asymptotics of the Whittaker function, we find

$$Wr[\psi_{0},\psi_{+}] = \sin\left\{\frac{E}{2}\left(-\alpha\sqrt{1-\alpha^{2}} + \arccos\alpha\right) + \sqrt{-1}j\log\left[2(1-\alpha^{2})E^{\frac{1}{2}}\right] + \frac{\sqrt{-1}}{2}F_{n,j}\right\} + O(E^{-\frac{1}{3}}), \ F_{n,j} = \log\frac{\Gamma[(1+n-j)]}{\Gamma[(1+n+j)]}$$

Solving the approximate equation, we find the α up to an error $O(E^{-\frac{4}{3}})$. Since the spacing among them is $O(E^{-1})$, all roots such that $|1 - \alpha^2| > c > 0$ are resolved.

We also computed the behavior for $\alpha \rightarrow \pm 1$ but there is no simple formula.

Asymptotics Vs. Numerics.

D. Masoero (Universidade de Lisboa)

Pisa, CRM 23 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Layers of zero

In the large *m* limit, zeroes condensate on the curves $\Im \alpha = f_{i,n,m}(\Re \alpha)$

- We charatcterised poles and zero of Hermite solutions and computed its asymptotic distribution for $m \to \infty$ and n bounded (in case $|1 \alpha^2| > 0$ and $1 \alpha^2 \sim 0$).
- Computations for $m o \infty$ and m/n o c > 0 are underway

- We charatcterised poles and zero of Hermite solutions and computed its asymptotic distribution for $m \to \infty$ and n bounded (in case $|1 \alpha^2| > 0$ and $1 \alpha^2 \sim 0$).
- \bullet Computations for $m \to \infty$ and $m/n \to c > 0$ are underway
- Preliminary results for rational solutions of Okamoto type: related to finite families of Nevanlinna functions with 12 asymptotic values (anharmonic oscillators of order 10).

A B < A B </p>

- We charatcterised poles and zero of Hermite solutions and computed its asymptotic distribution for $m \to \infty$ and n bounded (in case $|1 \alpha^2| > 0$ and $1 \alpha^2 \sim 0$).
- \bullet Computations for $m \to \infty$ and $m/n \to c > 0$ are underway
- Preliminary results for rational solutions of Okamoto type: related to finite families of Nevanlinna functions with 12 asymptotic values (anharmonic oscillators of order 10).

A B < A B </p>

- We charatcterised poles and zero of Hermite solutions and computed its asymptotic distribution for $m \to \infty$ and n bounded (in case $|1 \alpha^2| > 0$ and $1 \alpha^2 \sim 0$).
- \bullet Computations for $m \to \infty$ and $m/n \to c > 0$ are underway
- Preliminary results for rational solutions of Okamoto type: related to finite families of Nevanlinna functions with 12 asymptotic values (anharmonic oscillators of order 10).
- Rational solutions of PII are related to finite families of functions with 6 asymptotic values (oscillators of order 4) [Eremenko, M].

A B F A B F

- We charatcterised poles and zero of Hermite solutions and computed its asymptotic distribution for $m \to \infty$ and n bounded (in case $|1 \alpha^2| > 0$ and $1 \alpha^2 \sim 0$).
- \bullet Computations for $m \to \infty$ and $m/n \to c > 0$ are underway
- Preliminary results for rational solutions of Okamoto type: related to finite families of Nevanlinna functions with 12 asymptotic values (anharmonic oscillators of order 10).
- Rational solutions of PII are related to finite families of functions with 6 asymptotic values (oscillators of order 4) [Eremenko, M].
- Rational solutions and finite families of meromorphic functions: Is there any reason for this phenomenon?

• • = • • = •

MANY THANKS FOR THE ATTENTION!

-

• • • • • • • • • • • •