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Problem: for Schrodinger equations

—12"(€) + V(€)u(€) = EY(E)

find fine properties of the resolvent and the spectral measure
for energies E =~ max V close to the top of the potential barrier, and

obtain accurate representations of the resolvent uniformly in small A.

The potential satisfies:
o decay: V € L}(R)
o regularity: V € CY(R) with v € {oo,w},
@ unique absolute maximum: say at £ = 0, where
V() =1-&+0(&).
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Problem much studied:

Vast literature devoted to this problem (and its higher-dim) , e.g.:
Ramond & al. ('11...'14), Aoki, Kawai & Takei ('09), Bleher ('94), Briet,
Combes & Duclos ('87), de Verdiére & Parisse ('94), Gérard & Gigris
('88), Helfer & Sjostrand ('86), [...] Olver ('59...'75).

Their methods employed vary e.g. analysis of Hamiltonian flow near a
hyperbolic fixed point, microlocal analysis, and complex WKB techniques
(requiring analytic potentials).
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Problem much studied:

Vast literature devoted to this problem (and its higher-dim) , e.g.:
Ramond & al. ('11...'14), Aoki, Kawai & Takei ('09), Bleher ('94), Briet,
Combes & Duclos ('87), de Verdiére & Parisse ('94), Gérard & Gigris
('88), Helfer & Sjostrand ('86), [...] Olver ('59...'75).

Their methods employed vary e.g. analysis of Hamiltonian flow near a
hyperbolic fixed point, microlocal analysis, and complex WKB techniques
(requiring analytic potentials).

But: they do not produce multiplicative control of the errors - needed for
using the spectral measure is applications to wave equations (e.g. the
wave equation on a Schwarzschild black hole).
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Our approach:

we show that for E close enough to max V the Schrédinger eq.

—R2(€) + V()w(€) = Ev(€)

is C¥[C] equivalent to a Weber equation

—12¢"(y) + (8 = y*)(y) = Er¢(y)  for some § = 5(E), Ex close to 3

(eq. of the modified parabolic cylinder functions)
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Step |. Reduction to a perturbed Weber equation

Theorem 1.
Consider

—R"() + V(£)p(€) = Ev(é) (1)
where
o V€ LY(R)and V € CY(R) with v € {co,w},

o V(&) has a unique absolute max: V(£) =1— &2+ 0(£3) (€ — 0).
Then there exist § > 0 and

o B =p(E) of class C" for |[1 — E| < §
o y=y(& B) of class C¥ on R x (—4,9)
so that (1) becomes

//( )= B — y

2

——P2(y) + f(y)a(y)
—

Weber eq. perturbation

Note: smoothness regardless of transition between 2 turning points
(8 > 0), one (8 =0) or none (S < 0).
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Il. Equivalence to Weber equation with fine control of
errors

Theorem 2. ,
Perturbed Weber eq. 9§ = 522}’ 1o + f)o is equivalent to Weber's eq.

2
thy o(y)

¢"(y) =

through a transformation

[:ﬁz ] = H(y; 8, h) [;b/}, H=1+hE(y;,h)

where the error E(y; 3, h) is of class C¥ and behaves like a symbol, i.e.

. G ) *n T if B/|B] S 1
|0kl < |
() Ceg ()R i B/|B] > 1
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lI1. Scattering Matrix

The monodromy matrix My [¢] of the Weber's eq. can be calculated.
Consequence:

M[’(/Jz] = (/ + ﬁEl)Mw[¢] (/ + hEQ)
where
Gni o ifh/|8 S 1

() II%EL2II< ,
In(A=Y) G a7 ifn/|B>1

Working back through the equivalence and the changes of variables, the
monodromy of —h2¢"(€) + V(€)1 (€) = Ev(€) follows ~ scattering:
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lI1. Scattering Matrix

The monodromy matrix My [¢] of the Weber's eq. can be calculated.
Consequence:

M[wz] = (/ + ﬁEl)Mw[¢] (/ + ﬁEQ)
where
. Gh i n/1pl <1
() 0gEL2ll < )
In(h~Y) G h~ ifn/|B8>1
Working back through the equivalence and the changes of variables, the

monodromy of —h2y" (&) + V(€)y(€) = Ev(€) follows ~+ scattering:
Theorem 3. The scattering matrix of the Schrodinger eq.
Su S Sn

S(E,h) = <821 522> , with S11 =82, Si2 = —5215711

is linked to the similar quantities corresponding to the Weber's equation
Sij = Sw,jj(1 + hejj) with ej satisfying ().

RDC

by

6 /27



How do Sy j; look like: for 1 —d < E <1

i . 1 i . —IA
w11 g w21 N

where

A B/ g 2% [14In(2R/]B])] + arg T ( ;i)

and

+oo
1, (E) ::/b (m—ﬁ) d¢ — bVE
I (E) :/ (VE=VIE) - VE) dg + aVE

where a < 0 < b are the two solutions of E — V/(§) = 0.
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How do Sy j; look like: for 1 < £ <149

f+°°(,/E %6) f)dg i 1

S =eh
Wt = Vipw
/ Fom— : —iA
S _ eh ( E-V(¢) f)d{ 727 Lo 610 !
w.,21 — 1 T A2

with v depending C¥ of 1 — E, y=1+ O(1 — E) and
¢, has an explicit expression in terms of the Taylor coefficients of V at

£€=0

(heuristic physical interpretation still needs understood).
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Proof of Theorem 1: Schrodinger ~» perturbed Weber

Use a Liouville transformation: want a change indep. var. £ = {(y) s.t.

2
[V(¢) — E] (Z—f/) = quadratic function of y  (V(§) =1—¢€2+..))

and we want £(y) smooth at both turning points!
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Proof of Theorem 1: Schrodinger ~» perturbed Weber

Use a Liouville transformation: want a change indep. var. £ = {(y) s.t.

2
[V(£) — E] <Z§> = quadratic function of y  (V(§) =1—¢€2+..))

and we want £(y) smooth at both turning points!

Proposition 1.

(3) E = E(E) class C¥ for |1 — E| < 1+ 01 (01 > 0)

(3) £ =&(y, E) 1-to-1, and of class C¥ in (y, E) , |y| < d2 so that

V() - ] (;’f)2=1y2é

Furthermore, £(y, E) can be extended 1-to-1, of class C¥ on R.

Recall: V(£) =1— €24 O(&£3) so for E < 1 eq. has two singularities a, b.
Once we establish Proposition 1. continuation to R is straightforward (no
singularities).
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a b

Figure: E < 1 with two turning points
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Proof of Proposition 1.

In a more convenient notation, and after fidgeting with V(¢):
Proposition 1 in disguise
There exists 3 = [(a) of class C¥ so that eq.

2
3= (2) =l
(w(x) € €Y, w(0) =1) has a solution C¥ on (—0,d) D [/, /.

Remark A. sol. class CV at x = y/a must satisfy y(\/a) = ++/3:
and for x? < « sol. with 4 satisfies:

/y \/B—t2dt—/x w(s)Va—s?ds
VB Va
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Remark A. sol. class CV at x = \/« satisfies:
y

/\/B VB —t2dt = /;aw(s)m ds

and for x° < « the increasing sol

Remark B. sol. class C¥ at x = —\/a must satisfy y(—+/«)

(x) must satisfy

y X
/ VB — t2dt = /
J—VB

+/13:

Va—s?ds
—Vo
Remark C. But generically it is not the same solution!

/ \/7d/

RDC
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Proof of Proposition 1. ...p.2

Remark A. sol. class C¥ at x = /« satisfies:
y X
/ \/B—tzdt:/ w(s)Va—s2ds
VB e

Remark B. sol. class CV at x = —/a must satisfy y(—+/a) = £/5:
and for x> < « the increasing sol. y(x) must satisfy:

/_yﬁmdt:/

X

w(s)Va—s?ds
Ja
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Proof of Proposition 1. ...p.2

Remark A. sol. class C¥ at x = /« satisfies:
y X
/ \/B—tzdt:/ w(s)Va—s2ds
VB e

Remark B. sol. class CV at x = —/a must satisfy y(—+/a) = £/5:
and for x> < « the increasing sol. y(x) must satisfy:

/ VB — t2dt = /f (s)Va — s2 ds

Remark C. But generically it is not the same solution!
It is the same solution iff

/ \/ﬁds—/;ﬁws)mds
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...determines uniquely
Ja
= %/ w(s)v/a — 52 ds = a+ 0(a?)
_\/a

If V € C¥ then f(a) € C¥ for |a] < 81

If V € C* then (a) € C*°[0,01). Continue it C*>°(—d1, d1).
With this 3 we rewrite the equation

, dy :
B—y) =2 =
(B—vy9) (dx>

in a contractive form as follows.

(o — x?)w(x)?

RDC
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Proof of Proposition 1. ...p.3

...determines uniquely

Ja
8= 3/ w(s)Va —2ds = a+ 0(a?)
)

o If V € C¥ then S(a) € C¥ for |a| < 01
o If V € C* then f(a) € C*[0,01). Continue it C*°(—41, d1).
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Proof of Proposition 1. ...p.3

...determines uniquely

Ja
ﬁ:g/ w(s)Va — 2ds = a+ 0(?)
Ja

™

o If V € C¥ then (a) € C¥ for |a| < 61
o If V € C* then f(a) € C*[0,01). Continue it C*°(—41, d1).
With this 5 we rewrite the equation

- (L) = @ty

in a contractive form as follows.
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Proof of Proposition 1. ...p.4 Analytic case.

In class C¥: denote y = /B/a[x + (o — x?)w]. Eq becomes

w= 2 u(x;a) + w? P (= o)+ (o — xP)wo]

do =
p 0 V1—2xwo + (x2 — a)w2o? 7=Nw)

where (u(x, «) takes on the burden of proving regularity!, | super-regular)

u(x; a) = (a— x2)_3/2 /X [w(s) =7 Va—s2ds (y= g)
V&
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Proof of Proposition 1. ...p.4 Analytic case.

In class C¥: denote y = /B/a[x + (o — x?)w]. Eq becomes

w= 2 u(x;a) + w? P (= o)+ (o — xP)wo]

p 0 V1—2xwo + (x2 — a)w2o?

do = N(w)

where (u(x, «) takes on the burden of proving regularity!, | super-regular)
uxia) = (@ =) [ ule) =y Va-sds (1=9)
—Va

Note: u(x;a) € C¥(polydisk \ (0,0)) (for our 5()!), be. solves

(= x®) = 3xu = w(x) =7t
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Proof of Proposition 1. ...p.4 Analytic case.

In class C¥: denote y = /B/a[x + (o — x?)w]. Eq becomes
1 _ 2

© o) s w? [ L=l (0 = xwo]
p 0 /1-2xwo + (x2 — a)w202

w —=

do = N(w)
where (u(x, «) takes on the burden of proving regularity!, | super-regular)

uxia) = (a =) [ uls) -y Va-stds (1=9)
—va

a

B

Note: u(x;a) € C¥(polydisk \ (0,0)) (for our 5()!), be. solves
(= x®) = 3xu = w(x) =7t

Hartog's extension thm.: C“(polydisk)!
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Proof of Proposition 1. ...p.4 Analytic case.

In class C¥: denote y = /B/a[x + (o — x?)w]. Eq becomes
1 _ 2
! u(x: a) + w? (1—0)[x+ (a — x*)wo]

w=—
p 0 /1-2xwo + (x2 — a)w202

do = N(w)

where (u(x, «) takes on the burden of proving regularity!, | super-regular)

uxia) = (a =) [ uls) -y Va-stds (1=9)
—va

a
B
Note: u(x;a) € C¥(polydisk \ (0,0)) (for our 5()!), be. solves

(= x®) = 3xu = w(x) =7t

Hartog's extension thm.: C“(polydisk)!
Then show N (w) is contractive ~ sol. an. in polydisk. Q.E.D.
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Proof of Proposition 1. ...p.5 C* case.

In class C*°: would like a similar argument, but what is, for a < 0,

u(x: a) = (o — x2)~32 / [w(s) — v~V — 2 ds
_va
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Proof of Proposition 1. ...p.5 C* case.
In class C°°: would like a similar argument, but what is, for a < 0,
u(x; o) = (o — x?)73/2 / [w(s) =7 Va—s2ds
-V

Inspired by the values on R in the C¥“ case, we should define u(x; o) =

(a—xz)_% f;\/a ds [w(s) — v Ve — s2, —Va < x < Ja
—(x2—a)"2 J s dslw(s) - 7 Vs — a, §>x > Ja

—(x2—a)"2 ff\/a ds [w(s) — v 1Vs2 — a, —§ <x < —y/a
~(¢ =) F {3720u(0) + 5 dsfw(s) = IV —a},  a<0
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Proof of Proposition 1. ...p.6 C* case.

In the C¥ case, by analytic cont. in a from a > 0 to a < 0:

i) =02 =) 5 e+ [ aslots) oV
where

bule) =i [ ! et/ o) VI Bt

Q: How do we define iwogd(ity/—a) if w € C*°(R) only?

le., for v < 0 define iwodq(ix)!
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Proof of Proposition 1. ...p.7 C* case.

Define iwodd(ix) for w € C>°(—0,9):

Wodd(X) = X@even(X) = xg,(x?) where g, € C>([0,6?])

©

Take g€ any C>(—42,6%) continuation of g,

(+]

Define woqd(ix) = ixgS(—x?) which is in C®([-4, d]).

[~]

o Note: iwodd(ix) € R

(+]

The Taylor coeff. at x = 0 of ¢, are explicit
and this is all we need (as we will see).
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Proof of Proposition 1. ...p.8 C* case.

u(x;a) =
(a—x2)72 [ o dslw(s) — v Va— s, —Va<x<Ja
—(x2—a)"3 [ dslw(s) - 7 Vs — a, §>x > o

—(x2—a)3 I /& dslw(s) - 7 Vs — a, —§ <x < —y/a
~(¢—a) {yau(a) + [ dsfu(s) — v VS —a), a <0
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Proof of Proposition 1. ...p.8 C* case.

u(x;a) =
(a—x2)72 [ o dslw(s) — v Va— s, —Va<x<Ja
—(x2—a)"3 [ dslw(s) - 7 Vs — a, §>x > o

—(x2—a)3 I /& dslw(s) - 7 Vs — a, —§ <x < —y/a
~(¢—a) {yau(a) + [ dsfu(s) — v VS —a), a <0

u(x; ) € C® for (x,a) # (0,0) bc. (o — x?)v’ — 3xu = w(x) —y7L.
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Proof of Proposition 1. ...p.8 C* case.

u(x;a) =
(a—x2)72 [ o dslw(s) — v Va— s, —Va<x<Ja
—(x2—a)73 [ dslw(s) — v VST —a, 5 >x > Ja

—(x2—a)3 J7 /& dslw(s) - 7 Vs — a, —§ <x < —y/a

—(x?> —a)™2 {7—1¢w(a) + [ ds[w(s) — v 1Vs? - a} , a<0

u(x; ) € C® for (x,a) # (0,0) bc. (o — x?)v’ — 3xu = w(x) —y7L.
Showing C* at (0,0) - looks deceivingly simple - but a new adventure!
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Proof of Proposition 1. ...p.8 C* case.

u(x;a) =
(a—x2)72 [ o dslw(s) — v Va— s, —Ja<x<ia
—(x2—a)73 [ dslw(s) — v VST —a, 5 >x > Ja

—(x2—a)3 J7 /& dslw(s) - 7 Vs — a, —§ <x < —y/a

—(x? - a)*% {’y_lg[)w(a) + f; ds [w(s) — vy 1Vs? — oz} , a<0
u(x; a) € C* for (x,a) # (0,0) be. (o — x?)u' —3xu = w(x) — L.

Showing C* at (0,0) - looks deceivingly simple - but a new adventure!
After that AV is contractive ~» unique C* solution. Q.E.D.
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Lemma u(x; o) is C* at (0,0). Proof:

o u(x;a) = Ja(w —~71) with J,=integral op

Note: J,(Chebyshev polyn.)=Gegenbauer polyn.
+2) X
c@ (X ) _ (n : X
n—1 (ﬁ fj ﬁ
Approximate w(x) —y~! =

Taylory(x, @) + Ry(x)
Expand Chebyshev pol: Taylory(x, a)

X(l

@) = S0 adva) Ui ()
=S
Q.E.D.

) + Ja[RnN] then show

RDC
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Proof of Proposition 1. ...p.9 C* case.

Lemma u(x; o) is C* at (0,0). Proof:

o u(x;a) = Jo(w —vy71) with J,=integral op.
o Note: J,(Chebyshev polyn.)=Gegenbauer polyn.

()52 e o)

RDC Weber Normal Form

19 / 27



Proof of Proposition 1. ...p.9 C* case.

Lemma u(x; o) is C* at (0,0). Proof:

o u(x;a) = Jo(w —vy71) with J,=integral op.
o Note: J,(Chebyshev polyn.)=Gegenbauer polyn.

()52 e o)

o Approximate w(x) — ! = Taylory(x, @) + Ry(x).
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Proof of Proposition 1. ...p.9 C* case.

Lemma u(x; o) is C* at (0,0). Proof:

o u(x;a) = Jo(w —vy71) with J,=integral op.
o Note: J,(Chebyshev polyn.)=Gegenbauer polyn.

() - 42w ()
o Approximate w(x) — v~ = Taylory(x, a) + Ry(x).

o Expand Chebyshev pol: Taylory(x, @) = Zivzl ck (v ) Uy (%)
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Proof of Proposition 1. ...p.9 C* case.

Lemma u(x; o) is C* at (0,0). Proof:

o u(x;a) = Jo(w —vy71) with J,=integral op.
o Note: J,(Chebyshev polyn.)=Gegenbauer polyn.

() - 25 o ()

o Approximate w(x) — ! = Taylory(x, @) + Ry(x).
o Expand Chebyshev pol: Taylory(x, @) = Zivzl ck (v ) Uy (%)

o ~ u(x,a) = de )CIS )1 (}) + Ja[RN] then show:
~——

N+1/2
order xN+1,/gN Y/

polynomial in (x,«a)

Q.E.D.
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Proof of Theorem 2.

Theorem 2 is:

Weber eq. perturbation

perturbed Weber is equivalent to Weber ¢”(y) = %y—qu(y).
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Proof of Theorem 2.

Theorem 2 is:

_ 2
—
Weber eq. perturbation

perturbed Weber is equivalent to Weber ¢”(y) = jgy—qu(y).

Done by showing that for a fd. system of solutions 1/);’2:

1,2 1,2
[5;2,2/ ] = [ (fl,z/ ] (I +nh E(y; B, h))

Weber Normal Form
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Proof of Theorem 2.

Theorem 2 is:

1) =2 ywz() Fr aly)
—

Weber eq. perturbation

perturbed Weber is equivalent to Weber ¢”(y) = ﬁgf o(y).

Done by showing that for a fd. system of solutions z,b;’2:

wl,Z ¢1’2
wlz,zl = [ pL27 ] (I +h E(y; 8,h))
2
where the error E(y; 3, h) is of class C¥ and satisfies
o Cj (y)*n if /|8l S 1
|0k < |
In(A=1)  Cjly)*n= ifn/|B] >1

RDC
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Modified Parabolic Cylinder Functions

Modified Parabolic Cylinder Functions: ¢"(y) = —g2ﬁ¢)(y)
Figure NIST, Digital Libr. of Spec. Func.

For 8 >0
eq. has two turning points: £/f.

Weber Normal Form
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Modified Parabolic Cylinder Functions

Modified Parabolic Cylinder Functions: ¢"(y) = —g2ﬁ¢(y)
Figure NIST, Digital Libr. of Spec. Func.

For 8 >0
. . 1.6
eq. has two turning points: £/f. 2
o For y > \/j3: oscillatory character E;i
o For |y| < +/B: exponential character 0
—0.4
—0.8
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Modified Parabolic Cylinder Functions

Modified Parabolic Cylinder Functions: ¢"(y) = %2¢)(y)
Figure NIST, Digital Libr. of Spec. Func.

For 8 >0
eq. has two turning points: £/f.

o For y > +/j3: oscillatory character
o For |y| < +/B: exponential character

o Study perturbation for y > /j, for
y € (—¢€,+/B], matching at y = /3
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Modified Parabolic Cylinder Functions

Modified Parabolic Cylinder Functions: ¢"(y) = 2= ¢(y)
Figure NIST, Digital Libr. of Spec. Func.

For 3 >0
eq. has two turning points: £/f.

o For y > +/j3: oscillatory character

o For |y| < +/B: exponential character

o Study perturbation for y > /j, for
y € (—¢€,+/B], matching at y = /3

@ Similar solutions for y < 0. Matching
at y = 0 ~ monodromy.
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Modified Parabolic Cylinder Functions: ¢"(y) = 2= ¢(y)
Figure NIST, Digital Libr. of Spec. Func.

For 3 >0
eq. has two turning points: £/f.

o For y > +/j3: oscillatory character

o For |y| < +/B: exponential character

o Study perturbation for y > /j, for
y € (—¢€,+/B], matching at y = /3

@ Similar solutions for y < 0. Matching
at y = 0 ~ monodromy.

@ Works only for /3 < 1.
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Modified Parabolic Cylinder Functions

Modified Parabolic Cylinder Functions: ¢”(y) = 2= (y)
Figure NIST, Digital Libr. of Spec. Func.

For 3 >0 2
. . 1.6

eq. has two turning points: 4+//3. 2
o For y > +/f3: oscillatory character Ej

o For |y| < v/B: exponential character 0
~04

o Study perturbation for y > /3, for os

y € (—¢€,+/B], matching at y = /3

@ Similar solutions for y < 0. Matching
at y = 0 ~ monodromy.

@ Works only for /3 < 1.

For 5 < 0 solutions are purely oscillatory. Similar. Matching only at y = 0.
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Proof of Theorem 2: a few technical remarks
For h/5 S 1:

o Olver ('59) approximation from +oo and through one turning point,
and beyond 0, using Airy functions. (But with additive errors.)
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Proof of Theorem 2: a few technical remarks

For h/5 S 1:

o Olver ('59) approximation from +oo and through one turning point,
and beyond 0, using Airy functions. (But with additive errors.)

o We turn the perturbed Weber into an integral equation, then use
Voltera iterations and lemmas from Costin, O., Donninger, R.,
Schlag, W., Tanveer, S. Semiclassical low energy scattering for
one-dimensional Schrodinger operators with exponentially decaying
potentials. Ann. Henri Poincaré 13 (2012).
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For /|| > 1:
The approach above does not apply.
WKB is very involved.
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Proof of Theorem 2: a few technical remarks

For h/5 S 1:

o Olver ('59) approximation from +oo and through one turning point,
and beyond 0, using Airy functions. (But with additive errors.)

o We turn the perturbed Weber into an integral equation, then use
Voltera iterations and lemmas from Costin, O., Donninger, R.,
Schlag, W., Tanveer, S. Semiclassical low energy scattering for
one-dimensional Schrodinger operators with exponentially decaying
potentials. Ann. Henri Poincaré 13 (2012).

For h/|B| > 1:

The approach above does not apply.
WKB is very involved.
We turn the differential equation into an integral eq. with a kernel
involving modified parabolic cylinder functions and show it is contractive
on [0, +00).
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Equivalence for h/|5| > 1:

A few steps below.

Rescale: y = x\/i/2, ¢a(y) = ¥(xy/h/2) = u(x), a = B/(2h) to get

u(x)" = (a - %2) u(x) + g’f (x h/2) u(x) (2)

Weber eq. perturbation

Approximate solutions by the complex sol. of Weber eq.: E(a, x), E*(a, x).
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Theorem

Let x >0, h/|B| > 1. Perturbed Weber eq. has two independent
solutions ug(x), ug(x)

ue(x) = E(a,x) (L+e(x; h, ), up(x) = E*(a,x) (1+€*(x;h, B)) (3)
]8§+18f;e(x; i, B)| S x3kht < x7IkpTH Y for x > \/2/h

|0x T 95e(x; b, B)| S x7 1KY for x € [vV/2,/2/h]

|0x T 95e(x; b, B) S hEHH for x € [0,v/2]

(4)

v

(uniform errors, behaving like a symbol)
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Technique of the proof:

Contractive argument:

1 [5h ,
e(x) = / )/zf(t\/%)E(a,t) (1+ e(t)) dt ds

E(a,s
e\ _ WIEE"] _ 2
change order of [ [ and use (f) = 5 = 5 toget
_ih 2 2E*(a,x) .
()= 1 /oo (1+e(t)) F(t/72) (|E(a. )2~ E(a.t) E(a’x)>dt—. Je](x

Known estimates for E(a, x) were improved to show symbol behavior, then
we proved contraction.
Then inductively, contraction for all derivatives of e(x). Q.E.D.
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Conclusions

Scattering for energies near the top of the barrier of the potential is well

approximated by the one for a quadratic potential, and the latter can be
calculated explicitly.

Having obtained multiplicative errors behaving like a symbol, the
quantities can now be used in further calculations.
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Thank You!
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