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Introduction

As it is well known, only very few stochastic control problems with partial
observation admit an analytic solution; it is therefore of great importance to
have efficient numerical methods for their solution. The exact computation
of strictly optimal controls may be very difficult, if not impossible, even in
discrete time. Our goal with this monograph is therefore to present a detailed
description of various possibilities to determine nearly optimal controls for
partially observed stochastic control problems in discrete time, where opti-
mality is in the sense of minimizing the expectation of a given cost functional
(objective function).

By nearly optimal controls we mean a family of controls with the property
that, given any ε > 0, there is a control in the family for which the objective
function takes a value that comes within ε of the optimal one. Constructing
nearly optimal controls is important for applications : while strictly optimal
controls may not always exist and, if they exist, they may be very difficult to
determine explicitly, nearly optimal controls exist by the very definition of
optimality and, from a practical point of view, they may be just as acceptable
as strictly optimal controls. It may also happen that optimal controls have
a very complicated structure, difficult to implement in practice, while nearly
optimal controls may turn out to be rather simple; in fact, various nearly
optimal controls exhibited in this monograph are piecewise constant.

Limiting ourselves to the discrete time case allows us to keep the pre-
sentation within a reasonable size and to present the conceptual aspects of
the problem without excessive technicalities. On the other hand the dis-
crete time case is also important in practical applications : it includes the
partially observed Markov decision problems that have wide applicability,
especially in Operations Research and Management Science (see e.g. [25],
[40]); it includes also various engineering problems, particularly those when
the observations, and therefore also the controls, are taken at discrete time
points. Finally, nearly optimal controls for discrete time problems may be
used to construct nearly optimal controls for continuous time problems, of
which the discrete time problems are an approximation. An approach to this
effect can be found in [3] for finite horizon problems and in [29] for infinite
horizon problems with discounting. We strictly treat the more comprehen-
sive partially observed case using a setting as general as possible. For this
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case the associated filtering problem becomes relevant, allowing the partially
observed problem to be transformed into an equivalent complete observa-
tion problem where the filter becomes the new state (the so-called separated

problem, see e.g. [2] in the context ot continuous time). This monograph
therefore does not only contain results for control problems, but also for con-
trolled filtering problems, in particular on approximations and existence of
invariant measures. Although the partially observed case is a generalization
of the completely observed one, the methods are rather different so that this
monograph has little overlapping with other studies concerning exclusively
the completely observed case (for approximation studies see e.g. [21],[22]).

In order to consider a method to be such that it allows the actual con-
struction of nearly optimal controls, we shall require that it reduces the
given problem to the solution of an associated problem, where all quantities
involved take only a finite number of possible values. Accordingly, in this
monograph we shall generally stop the investigations every time we reach
a step where the only problem left is that of determining an optimal solu-
tion among a finite number of possible ones (an exception is section 4.5.4,
where we present a complete computational analysis of an example for the
ergodic cost case). This last step problem can in principle always be solved
and efficient procedures to this effect are available from the literature, such as
various global optimization methods (see e.g. [33],[41]). The major tools used
in this monograph to obtain approximating problems with a finite number
of possible solutions are either based on discretization-like methods leading
to finite-state Markov chains, or on considering approximations of a given
trasition kernel by kernels separated in the variables. By the very definition

of a family of nearly optimal controls as recalled above, it is clear that the
problem of determining such a family is intimately related to approximations
of stochastic control with partial observations. In fact, the main tool used in
this monograph is the following : approximate the given problem by a family
of problems, for each of which an optimal control can actually be computed
(in line with the foregoing, each problem in the family should thus admit
only a finite number of possible solutions); then show that, if an approxi-
mating problem is sufficiently close in a suitable sense to the original one,
its optimal control can be extended to become a nearly optimal control for
the original problem (given ε > 0, there exists an approximating problem
such that the optimal solution for the latter becomes ε-optimal in the origi-
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nal one). The methods we are going to describe are mainly related to work
performed by the authors and various coauthors over the past years and for
which the results have to a large extent already appeared in the literature
(see [3],[10],[30],[31],[36],[37]). In the monograph we present these results in
a logical order, we also add various new results derived in order to fill in the
gaps still left open, and complement our results with work by other authors.
The main material is presented in three stages corresponding to the three
chapters from 2 to 4.

The first stage (chapter 2) concerns an approach that appears to be most
efficient for the finite horizon case and that is based on measure transforma-
tion, for which, under a suitable reference probability measure, the observa-
tions become i.i.d. random variables, independent of the state process. As a
consequence, one can have the same admissible controls in the original and
the approximating problems and thus compare the cost functions (expressed
as expectations with respect to the same reference probability measure) of
the original and the approximating problems corresponding to a same con-
trol law, the main objective in this first stage being an approximation that is
uniform in the control. This method is thus particularly appropriate for our
purposes, but measure transformation requires certain regularity assump-
tions on the model that may not always be satisfied.

The second stage (chapter 3) is mainly concerned with the infinite hori-

zon with discounting case and here we present an approach without the
use of measure transformation and thus without the ensuing major bene-
fit that allows to have the same admissible control laws in the original and
the approximating problems. As a consequence, we have to proceed along
two steps : on a first step, after showing that we may restrict ourselves to
Markov controls obtained as functions of the current filter values, we deter-
mine nearly optimal control laws (control functions) which, when applied to
the true filter values, yield nearly optimal controls. For the actual construc-
tion of the nearly optimal control laws we approximate the original problem
by simpler ones, for which the associated filter process, based on fictitious
discrete-valued observations, takes values in a finite-dimensional space of
measures thus making the construction feasible. Extending then suitably
these functions to the space of measures where the original filtering process
takes its values, we show that they become the desired nearly optimal con-
trol functions for the original problem. Since the true (infinite-dimensional)
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filter values can generally not be computed in practice, on a second step and
under additional assumptions guaranteeing the continuity of the nearly opti-
mal control laws, we construct a real finite-dimensional approximating filter
process and show that the nearly optimal control laws, when applied to the
approximating filter values, still lead to nearly optimal controls. It is worth
pointing out that the real approximating filter process can unfortunately
not also be used for the construction of the nearly optimal control laws; in
fact, a major theoretical problem arising with this real approximating filter
is that it is not Markov, a difficulty that we overcome by considering pairs of
processes, each pair consisting of the real approximating filter and a ”true”
filter. In connection with this second stage notice also that, for bounded cost
functions, a nearly optimal control law obtained for the finite horizon case
can always be extended to become nearly optimal for the infinite horizon
case with discounting. On the other hand, the method presented in this sec-
ond stage and that does not require the regularity assumptions to perform
measure transformation, can also be applied to the finite horizon case and
it becomes important in the following third stage that concerns the infinite
horizon ergodic case. In fact, while under measure transformation one can
work with unnnormalized filters, without measure transformation one has to
use the more complicated normalized filters that on the other hand however
have the advantage of being uniformly bounded measures and this is useful
in the ergodic case.

For the third stage (chapter 4) that concerns the infinite horizon ergodic

cost case (infinite horizon problem with long run average cost criterion), the
basic approach follows the lines of that of chapter 3, namely without the
use of measure transformation and thus proceeding along two steps. While
the second step concerning the construction of a real approximating filter
parallels that of chapter 3, for the first step, that concerns the construction
of nearly optimal control functions, we present two possible approaches. In
the first approach we give various conditions under which, when the discount
factor is close to one, a nearly optimal control function computed for the
infinite horizon discounted problem is nearly optimal also for the infinite
horizon ergodic cost problem (discounted cost approximation). The second
approach is specific to the ergodic case: using continuous control functions,
the filter process itself becomes Markov-Feller, so that under some additional
assumptions there exist invariant measures for the filter process. The ergodic
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cost functional can then be expressed as integral of the cost function with
respect to an invariant measure. In order to construct nearly optimal con-
trol functions, results on approximation, convergence as well as uniqueness
of invariant measures for controlled filtering processes become then of great
importance. The general problem of uniqueness is hard. We thus study two
situations, where for the invariant measure it is not only possible to show
uniqueness, but also to obtain an explicit representation and this is obviously
very useful for approximation purposes. The two situations just mentioned
are the following: the first one is when the state process is completely ob-
served on a given recurrent subset of the state space and partially outside;
the second concerns all those cases when the filter process admits an embed-
ded i.i.d. process. This latter case arises typically when the filter process
returns periodically, with bounded average time, to a same measure so that,
when costs are bounded, a strong Law of Large Numbers applies.

To convince the reader that our approach is not only theoretical, we
intended to present in chapter 4, more precisely in section 4.5.4, a complete
computational analysis of a given (nonlinear) problem with an ergodic cost
functional. The corresponding programs were worked by dr A. Zemla from
IMPAN in Warsaw. The computations were performed along two possible
variants: one fully exploiting our approximation approach, the other being
partly based on Monte Carlo simulations. In both cases the search for the
optimal solution is based on a simulated annealing algorithm. The interested
readers may obtain the programs via FTP by contacting the second author
for the instructions.

The monograph is intended to be as much as possible self-contained. In
chapter 1 we therefore summarize background material concerning proper-
ties of the filtering process associated with a partially observed stochastic
control problem, as well as basic facts related to measure transformation
techniques. Given the generality of our setting, this background material
contains partially new results.

Finally, in an Appendix we discuss bibliographical references trying to
present in a hopefully comprehensive way the connections between the ma-
terial presented in the monograph and the existing literature. We apologize
for possible omissions.

The monograph may be used as textbook for courses in subjects like
Control, Optimization and Applied Stochastic Analysis; furthermore, it may
serve not only researchers but also practitioners in areas such as Control En-
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gineering, Operation Research and Management Science, Applied Stastistics
and Decision Theory. No particular backgrounds is required, except some
basic notions from Probability Theory. Introductory notions from Control
(as in [4]) and or Markov Decision Theory (as e.g. [17],[24],[40]) may be
useful, but are not required.

This monograph is not only the result of our own work, but also of the
interaction with other scientists, mainly those with whom we had a chance
to cooperate (see References) and we are grateful to them for all their sug-
gestions and advice. In this context we would also like to mention Professors
H. J. Kushner and J. Zabczyk who, although they did not contribute di-
rectly to this monograph, had a strong influence on our scientific formation
in particular on control and approximations.

Great help was given to us by dr Adam Zem la from IMPAN, who not only
wrote the programs, but also tested extensively our methods in particular
those for the ergodic control cost problem. The numerical experience that
he thus gained allowed him to give us useful advice concerning the methods
themselves and to enhance our intuition.

We would probably not have begun working on this monograph, had we
not been invited to do so by the Applied Mathematics Committee (CAM)
of the Italian National Research Council (CNR) that is editing this series of
Applied Mathematics Monographs. Our sincere thanks for the encourage-
ment go therefore to all its members, in particular to Professors G.F. Capriz
and F. Giannessi who follow more closely the Monographs series. We par-
ticularly appreciate the extremely careful typing of our manuscript by Mrs.
Joanna Zem la, secretary in chief at IMPAN and the prompt handling of our
monograph by the publisher Giardini from Pisa.

To work on this monograph it was very important to have had the op-
portunity to meet periodically. Our sincere thanks go therefore also to the
host Institutions and funding Agencies and Organizations. The host Institu-
tions were the Institute of Mathematics (IMPAN) of the Polish Academy of
Sciences in Warsaw and the Mathematics Department of the University and
the Laboratory LADSEB of the Italian National Research Council (CNR) in
Padova. The funding for our mutual visits came from GNAFA-CNR through
its visiting professors program, from KBN grant 2 2043 91 02, from the
project “40% Processi Stocastici e Calcolo Stocastico” of the Italian Ministry
for the Universities and Scientific Research, and finally from the exchange
program CNR-PAN.
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List of basic symbols

A(E) : denotes the set of analytic subsets of E;
B(E) : the set of Borel subsets of E;
bB(E) : the set of real valued, bounded Borel functions on E;
C(E) : the set of real valued, bounded continuous functions

on E;
P (E) : the set of probability measures on E, endowed with

the weak convergence topology;
B(P (E)) : the set of Borel subsets of P (E);
bB(P (E)) : the set of real valued, bounded Borel functions

on P (E);
C(P (E)) : the set of real valued, bounded continuous functions

on P (E);
A(P (E), U): the set of analytic functions from P (E) in U ;
B(P (E), U) : the set of Borel functions from P (E) in U ;
C(P (E), U) : the set of continuous functions from P (E) in U ;
ν(f) for ν ∈ P (E) and f ∈ bB(E) :

ν(f) =
∫

E

f(x)ν(dx)

P (ν, f) for ν ∈ P (E) and f ∈ bB(E) :

P (ν, f) =
∫

E

∫

E

f(z)P (x, dz)ν(dx)
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