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Abstract

We obtain the variant of maximum principle for radial solutions of, possibly
singular, p-harmonic equations of the form −a(|x|)∆p(w) + h(|x|, w,∇w(x) ·
x
|x|) = φ(w), as well as for solutions of the related ODE. We show that for the
considered class of equations local maximas of |w| form a monotone sequence in |x|
and constant sign solutions are monotone. The results are applied to nonexistence
and nonlinear eigenvalue problems and generalize our previous work.
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1 Introduction

The study of the so-called nonlinear eigenvalue problems is one of the main areas of p-
harmonic theory, e.g. [18, 22, 23, 32, 40, 42]. The starting point for such considerations
is the following equation

−div(|∇u|p−2∇u) = λ|u|p−2u, where λ ∈ R.

Clearly, when p = 2 one retrieves the classical harmonic eigenvalue problem. In the
course of development of this theory various perturbations of the right hand side have
been considered, allowing such functions to depend on points in the domain, solution
and its gradient. In this setting the natural problems include: maximum principles,
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radial solutions and their properties, (non)existence of constant sign solutions.
In this note we investigate the following PDE:

−a(|x|)div
(
|∇w(x)|p−2∇w(x)

)
+ h(|x|, w(x), 〈∇w(x),

x

|x|
〉) = φ(w(x)) a.e. in B, (1)

where B is assumed to be a ball in Rn centered at 0 with radius R and w is a radial
function in the space W 1,1

loc (B \ {0}). We discuss Equation (1) also in the case n = 1,
B = (0, R). Such a weak regularity assumption on w admits solutions to be in the
weighted Sobolev spaces with radial weights; moreover, the admitted weights may
explode or vanish near the origin or the boundary of B.

Our equation is given in the nondivergent form. Function a may change sign, in par-
ticular our PDE can be singular.

In a consequence of radiality of the solutions, Equation (1) reduces to the related ODE:

a(τ)(Φp(u
′
(τ)))

′
+ (n− 1)

a(τ)

τ
|u′

(τ)|p−2u
′
(τ)− h(τ, u(τ), u

′
(τ)) + φ(u(τ)) = 0, (2)

for a.e. τ ∈ (0, R), where Φp(λ) = |λ|p−2λ, for λ 6= 0 and Φp(0) = 0.

Our main result, Theorem 2.1, is the maximum principle for radial solutions of Equation
(1), stating that, under the appropriate additional assumptions, an absolute value of the
solution |w| attains supremum at 0 or at the boundary of B. This maximum principle
is then applied to nonlinear eigenvalue problems and to nonexistence type results.

The result of Theorem 2.1 is developed further in Theorem 3.1. Roughly speaking, it
says that under the assumptions of Theorem 2.1 a constant sign solution is monotone
in |x|. Moreover, in general the local extrema of |w|, together with an upper limits of
|w| at 0 and R form the monotone sequence with respect to |x|.
In the Section 4 we discuss some methods of generating the admissible perturbations
h and give examples.

Our results can be applied directly to the related ODE, Equation (2), see Section 5 for
presentation of results and examples.

This work extends results obtained in [2], where we discussed the case of h ≡ 0, under
stronger assumptions on u and a. Contrary to the previous approach here we do not
assume that the solution w is of class C1 close to the origin; moreover, it may even
be discontinuous at 0. In particular, our goal is to propose the possibly general class
of PDEs to which such maximum principles apply, as well as to consider the possibly
wide class of their radial solutions.
Equations involving p-Laplacian appear in various areas of pure and applied mathemat-
ics including geological sciences [8], fluid dynamics [1, 14, 19, 20, 41], electrostatics [24],
cosmology [30], analysis on Riemannian manifolds ([15, 35], Section 8 in [36]), theory of
Carnot-Carathéodory groups and analysis on metric spaces ([7, 11, 33] and references
therein), as well as in relation to inequalities of Poincaré, Writinger, Sobolev type and
isoperimetric inequalities [9, 22, 23, 31]. Motivations for studying radial solutions can
be found e.g. in [12, 13, 16, 17, 21, 25, 31].
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2 Derivation of the maximum principle

Basic notation. We use the standard notation W k,p(Ω) and W k,p
loc (Ω) to denote

Sobolev spaces, where Ω is a given domain in Rn. By ∇f we denote the distribu-
tional gradient of f . The k–th distributional derivative of a one-variable function is
denoted by f (k). By B(0, R) we denote a ball in Rn centered at 0 with radius R. If
p ∈ (1,∞) we define continuous function

Φp(λ) = |λ|p−2λ, for λ 6= 0, Φp(0) = 0.

Here λ can be either scalar or vector. We follow convention and denote by ωn−1 the
measure of the unit sphere in Rn.

The equation on the ball in Rn. The main subject of our considerations is the
following equation:

−a(|x|)div
(
|∇w(x)|p−2∇w(x)

)
+ h(|x|, w(x), 〈∇w(x),

x

|x|
〉) = φ(w(x)) a.e. in B. (3)

We assume that p > 1, B = B(0, R), R ∈ (0,∞], w(x) = u(|x|) is a radial function
such that w ∈ W 1,1

loc (B \ {0}) and Φp(∇w) ∈ W 1,1
loc (B \ {0},Rn). The expression

div (|∇w(x)|p−2∇w(x)) is understood in the sense of distributions. Next, let h be a
Carathéodory function (i.e. measurable with respect to first variable and continuous
with respect to remaining ones); also let φ be continuous.

The related equation on an interval. Our considerations will be based on the
following observation.

Fact 2.1. Let n > 1, g(x) = v(|x|) for g ∈ W 1,1
loc (B \ {0}). Then we have

1) v ∈ W 1,1
loc ((0, R))

2) If Φp(∇g) ∈ W 1,1
loc (B \ {0}) then Φp(v′) ∈ W 1,1

loc ((0, R)) and |v′|p ∈ W 1,1
loc ((0, R)). In

particular |v′| is continuous on (0, R).

Proof of Fact 2.1.
1) Observe first, that g ∈ W 1,1(Pε,r) for every 0 < ε < r < R, where Pε,r := B(0, r) \
B(0, ε) is a ring. Using the variant of Nikodym ACL Characterization Theorem (see e.g.
Theorem 1, Chapter 1.1.3 in [34]) we deduce that for every θ ∈ Sn−1 the mapping τ 7→
g(τ θ) = v(τ) is an absolutely continuous function on [ε, r]. Since ∇g(x) = v′(|x|) x

|x| ,

then for s ∈ (ε, r) and θ ∈ Sn−1 we have |v′(s)| = |∇g(sθ)|. In particular

ωn−1

∫ r

ε

|v′(s)|ds ≤ ωn−1

εn−1

∫ r

ε

|v′(s)|sn−1ds

=
1

εn−1

∫
Sn−1

∫ r

ε

|∇g(sθ)|sn−1ds dθ =
1

εn−1

∫
Pε,r

|∇g(x)|dx < ∞.
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2) Let

h(λ1) := |λ1|
p

p−1 , λ1 ∈ R. (4)

As p > 1, the mapping is locally Lipshitz. Moreover, as Φp(∇w(x)) = Φp(v′(|x|)) · x
|x| ∈

W 1,1
loc (B(0, R) \ {0},Rn), then Φp(v′(|x|)) = Φp(∇w(x)) · x

|x| ∈ W 1,1
loc (B(0, R) \ {0}).

From the previous part we have that Φp(v′) ∈ W 1,1
loc ((0, R)). Hence |v′|p−1 = |Φp(v

′
)| ∈

W 1,1
loc ((0, R)) and |v′|p = h(|v′|p−1) ∈ W 1,1

loc ((0, R)) by the ACL Characterization Theo-
rem.

Equation (3) together with Fact 2.1 imply that u solves the ODE:

a(τ)(Φp(u
′
(τ)))

′
+ (n− 1)

a(τ)

τ
|u′

(τ)|p−2u
′
(τ)− h(τ, u(τ), u

′
(τ)) + φ(u(τ)) = 0,

a.e. for τ ∈ (0, R), (5)

where (Φp(u
′
(τ)))

′
is understood in the sense of distributions. Moreover,

u ∈ W 1,1
loc ((0, R)) and Φp(u′), |u′|p ∈ W 1,1

loc ((0, R)). In particular |u′|p is continu-
ous on (0, R).

Let us introduce the following set of assumptions.
Assumptions A
1. p > 1, n > 1, R ∈ (0,∞], B = B(0, R) ⊂ Rn (for R = ∞ the ball B is the whole
Rn).
2. w ∈ W 1,1

loc (B \ {0}) and Φp(∇w) ∈ W 1,1
loc (B \ {0}), w is radial function and

w(x) = u(|x|).
3. φ is an integrable odd continuous function on R such that τφ(τ) is either positive
or negative for almost all τ ’s.
4. a ∈ W 1,1

loc ((0, R)).
5. h = h(τ, λ0, λ1) is a Carathéodory function defined on (0, R) ×R2 i.e. measurable
with respect to τ , continuous with respect to the remaining variables. Additionally,
for every K > 0

sup
|λ0|<K, |λ1|<K

|h(τ, λ0, λ1)| ∈ L1
loc(0, R).

For a∈W 1,1
loc((0, R)) we define

δa(τ) := (n− 1)
a(τ)

τ
−

(
1− 1

p

)
a
′
(τ) (6)

and consider also the following assumptions:

B1) τφ(τ) > 0, lim infs→0 a(s)|u′(s)|p ≤ 0, lim infs→R a(s)|u′(s)|p ≥ 0 and h(τ, λ0, λ1)λ1 ≤
δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,

B2) τφ(τ) < 0, lim sups→0 a(s)|u′(s)|p ≥ 0, lim sups→R a(s)|u′(s)|p ≤ 0 and h(τ, λ0, λ1)λ1≥
δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,
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C1) τφ(τ) > 0, lim infs→0 a(s)|u′(s)|p ≥ 0, lim infs→R a(s)|u′(s)|p ≤ 0 and h(τ, λ0, λ1)λ1 ≥
δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,

C2) τφ(τ) < 0, lim sups→0 a(s)|u′(s)|p ≤ 0, lim sups→R a(s)|u′(s)|p ≥ 0 and h(τ, λ0, λ1)λ1≤
δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R.

Remark 2.1. 1) Conditions: lim infs→0 a(s)|u′(s)|p ≤ 0, lim infs→R a(s)|u′(s)|p ≥ 0
in B1) are satisfied if we assume for example that a ≥ 0 (ellipticity condition) and
lim infs→0 a(s)|u′(s)|p = 0. Similar comment can be made in relation to the remaining
conditions: B2), C1), C2).
2) The condition a(s)|u′(s)|p → 0 for s converging to 0 or R is satisfied under additional
assumptions or as a consequence of certain regularity results. For example, if we assume
that w ∈ C1(B) then u′ is right-continuous at 0 and u′(0) = 0. If additionally a is
bounded for s close to 0 then we have that lims→0 a(s)|u′(s)|p = 0. The same holds if
we know that u′ is bounded close to 0 and lims→0 a(s) = 0. For C1(B)-solutions and
for a bounded close to R we have that a(s)|u′(s)|p → 0 for s → R under Neumann
condition on the solution w.
3) Conditions of type lims→t a(s)|u′(s)|p → 0 for the appropriate choice of t are often
present in the literature (see e.g. [6]).

We are now in a position to present the main result of this note.

Theorem 2.1. Let Assumptions A be satisfied and w be a radial solution to (3).
If either condition B1) or B2) holds we have

supx∈B|w(x)| = lim sup
x→0

|w(x)|, (7)

while if either condition C1) or C2) holds we have

supx∈B|w(x)| = lim sup
|x|→R

|w(x)|. (8)

Proof of Theorem 2.1.
For the sake of simplicity we will assume that R < ∞. Observe that u solves the ODE:

φ(u(τ))u
′
(τ) = −a(τ)(Φp(u′(τ)))′u′(τ)− (n− 1)

a(τ)

τ
|u′|p + h(τ, u(τ), u

′
(τ))u

′
(τ). (9)

Define

Φ(τ) :=

∫ τ

0

φ(s)ds

and
A(τ1, τ2) := Φ(|u(τ1)|)− Φ(|u(τ2)|) for τ1 > τ2. (10)

In order to prove (7) it suffices to show that lim infε→0 A(τ, ε) ≤ 0 for every τ ∈
(0, R) being the critical point of u and that lim supτ→r lim infε→0 A(τ, ε) ≤ 0. Similarly,
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for the proof of (8) it is enough to show that lim supr→R A(r, τ) ≥ 0 for every τ ∈
(0, R) being the critical point of u and lim supτ→R lim infε→0 A(τ, ε) ≥ 0. Note that
according to Fact 2.1 |u′| is continuous inside (0, R). Observe that under the above
assumptions Φ(|u(τ)|) ∈ W 1,1

loc ((0, R)). Indeed, using Fact 2.1 with w(x) = u(|x|) one
gets u ∈ W 1,1

loc ((0, R)). The Nikodym ACL Characterization Theorem implies that
|u| ∈ W 1,1

loc ((0, R)) and, since Φ is locally Lipshitz, Φ ◦ |u| ∈ W 1,1
loc ((0, R)). Thus, for any

r and ε such that 0 < ε < r < R we have

A(r, ε) =

∫ r

ε

d

dτ
(Φ(|u(τ)|)) dτ =

∫ r

ε

Φ
′
(|u(τ)|)sgnu(τ)u

′
(τ) dτ =

∫ r

ε

φ(u(τ))u
′
(τ) dτ.

(11)
We split the discussion into two cases.
Case 1: τφ(τ) > 0.
If B1) holds, then the right hand side of inequality (9) does not exceed value

−a(τ) (Φp(u′(τ)))
′
u′(τ)−

(
1− 1

p

)
a
′
(τ)|u′

(τ)|p. (12)

To proceed further we consider expression

Ψ(τ, λ1) := −
(

1− 1

p

)
a(τ)|λ1|p. (13)

Applying Fact 2.1 we get
|u′|p ∈ W 1,1

loc ((0, R)).

This, together with the fact that a(·) ∈ W 1,1
loc ((0, R)) imply that Ψ(τ, u

′
(τ)) ∈

W 1,1
loc ((0, R)). By direct computation we obtain for H(λ) = |λ|

p
p−1 :(

|u′|p
)′

=
(
H

(
Φp(u

′
)
))′

= H
′
(Φp(u

′
)) ·

(
Φp(u

′
)
)′

=

=
p

p− 1

(
|Φp(u

′
)|

1
p−1 sgn(Φp(u

′
))

)
(Φp(u

′
))

′
=

p

p− 1
u
′ · (Φp(u

′
))

′
a.e.

Therefore (12) equals d
dτ

(Ψ(τ, u
′
(τ))) where Ψ(τ, u

′
(τ)) ∈ W 1,1

loc ((0, R)) and Ψ(·, ·) is
given by (13). Hence (11) implies

A(r, ε) ≤ Ψ(τ, u
′
(τ))|rε = −

(
1− 1

p

)
a(r)|u′

(r)|p +

(
1− 1

p

)
a(ε)|u′

(ε)|p. (14)

Thus by B1), if r is a critical point of u, we get

Φ(|u(r)|)− lim sup
ε→0

Φ(|u(ε)|) = lim inf
ε→0

A(r, ε) ≤ lim inf
ε→0

(1− 1

p
)a(ε)|u′

(ε)|p ≤ 0.
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Moreover, (14) shows that

lim sup
r→R

Φ(|u(r)|)− lim sup
ε→0

Φ(|u(ε)|) = lim sup
r→R

lim inf
ε→0

(Φ(|u(r)|)− Φ(|u(ε)|)) ≤

≤ lim sup
r→R

lim inf
ε→0

((
1− 1

p

) (
−a(r)|u′

(r)|p + a(ε)|u′
(ε)|p

))
=

=

(
1− 1

p

)
lim sup

r→R

(
−a(r)|u′

(r)|p + lim inf
ε→0

a(ε)|u′
(ε)|p

)
=

=

(
1− 1

p

) (
− lim inf

r→R
a(r)|u′

(r)|p + lim inf
ε→0

a(ε)|u′
(ε)|p

)
≤ 0.

If C1) holds then the inequalities at (12) become reversed, and therefore for 0 < r <
s < R

A(s, r) ≥ Ψ(τ, u
′
(τ))|sr = −

(
1− 1

p

)
a(s)|u′

(s)|p +

(
1− 1

p

)
a(r)|u′

(r)|p.

Hence, if r is a critical point of u

lim sup
s→R

Φ(|u(s)|)−Φ(|u(r)|) = lim sup
s→R

A(s, r) ≥ lim sup
s→R

(
−

(
1− 1

p

)
a(s)|u′

(s)|p
)
≥ 0.

Furthermore

lim sup
s→R

Φ(|u(s)|)− lim sup
r→0

Φ(|u(r)|) ≥

≥
(

1− 1

p

) (
− lim inf

s→R
a(s)|u′

(s)|p + lim inf
r→0

a(r)|u′
(r)|p

)
≥ 0

and Case 1 follows.
Case 2: τφ(τ) < 0. Consider φ̃(τ) := −φ(τ), Ψ̃ = −Ψ, Φ̃(τ) :=

∫ τ

0
φ̃(τ)dτ and

Ã(x1, x2) := Φ̃(|u(x1)|)− Φ̃(|u(x2)|). Under assumption C2) we arrive at inequality

φ̃(u(τ))u
′
(τ) ≥ d

dτ
Ψ̃(τ, u

′
(τ)), where τ ∈ (0, R). (15)

Upon integration over (s, r) with 0 < s < r < R the inequality gives that if r is a
critical point of u or r is close to R, we have

Ã(r, s) ≥ Ψ̃(τ, u
′
(τ))|rs =

(
1− 1

p

)
a(r)|u′

(r)|p −
(

1− 1

p

)
a(s)|u′

(s)|p ≥

≥ −
(

1− 1

p

)
a(s)|u′

(s)|p. (16)

Therefore, lim supr→R Ã(r, s) ≥ 0 provided u
′
(s) = 0. To complete the proof it suffices

to note that

lim sup
r→R

Φ̃(|u(r)|)− lim sup
s→0

Φ̃(|u(s)|) ≥

≥
(

1− 1

p

) (
lim sup

r→R
a(r)|u′

(r)|p − lim sup
s→0

a(s)|u′
(s)|p

)
≥ 0.
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In the case B2) instead of (15) the converse inequality holds. Again, we integrate it
over (s, r) to obtain:

Ã(r, s) ≤ Ψ̃(τ, u
′
(τ))|rs =

(
1− 1

p

)
a(r)|u′

(r)|p −
(

1− 1

p

)
a(s)|u′

(s)|p (17)

and the computations follow than the same lines as in the case C2). This completes
the proof.

We will apply the above result to the nonlinear eigenvalue problems. For this purpose
we consider the following set of assumptions.

B′
1) λ > 0, lim infs→0 a(s)|u′(s)|p ≤ 0, lim infs→R a(s)|u′(s)|p ≥ 0 and h(τ, λ0, λ1)λ1 ≤

δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,

B′
2) λ < 0, lim sups→0 a(s)|u′(s)|p ≥ 0, lim sups→R a(s)|u′(s)|p ≤ 0 and h(τ, λ0, λ1)λ1 ≥

δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,

C′
1) λ > 0, lim infs→0 a(s)|u′(s)|p ≥ 0, lim infs→R a(s)|u′(s)|p ≤ 0 and h(τ, λ0, λ1)λ1 ≥

δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R,

C′
2) λ < 0, lim sups→0 a(s)|u′(s)|p ≤ 0, lim sups→R a(s)|u′(s)|p ≥ 0 and h(τ, λ0, λ1)λ1 ≤

δa(τ)|λ1|p for a. e. τ ∈ (0, R) and every λ0, λ1 ∈ R.

We have the following result.

Corollary 2.1. Let q > 1, Assumptions A be satisfied and w be a radial solution of

−a(|x|)div
(
|∇w(x)|p−2∇w(x)

)
+ h(|x|, w(x), 〈∇w(x),

x

|x|
〉) = λ|w|q−2w, a.e. in B.

(18)
If B′

1) holds or if B′
2) holds then

sup
x∈B

|w(x)| = lim sup
x→0

|w(x)|.

Whereas, if C′
1) holds or C′

2) holds then

sup
x∈B

|w(x)| = lim sup
|x|→R

|w(x)|.

Direct application of Theorem 2.1 gives us also the following nonexistence result.

Proposition 2.1 (nonexistence of nontrivial solutions). Under the assumptions of The-
orem 2.1 the following problems admit only the trivial solutions:

1. {
−a(|x|)div (|∇w(x)|p−2∇w(x)) + h(|x|, w(x), 〈∇w(x), x

|x|〉) = φ(w(x)) a.e. in B,

w(0) = 0

in the case B1) or B2) and for w ∈ C(B).
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2. {
−a(|x|)div (|∇w(x)|p−2∇w(x)) + h(|x|, w(x), 〈∇w(x), x

|x|〉) = φ(w(x)) a.e. in B,

w ≡ 0 on ∂B(0, R) for R < ∞ or lim|x|→∞ w(x) = 0 for R = ∞.

in the case C1) or C2) and w ∈ C(B) for R < ∞.

If h ≡ 0 one can find some other nonexistence results in [2] derived from the radial
variant of Derrick-Pokhozhaev identity.

3 Qualitative properties of solutions

Our techniques allow us to study the oscillations of solutions to the considered class of
equations. For this purpose let us introduce the following.

Γ = {r ∈ (0, R) : every x ∈ ∂B(r) is a critical point for w} ∪ {0} ∪ {R}

M : Γ → [0,∞], M(r) =


|w|{|x|=r}, 0 < r < R

lim supx→0 |w(x)|, r = 0
lim sup|x|→R |w(x)|, r = R

(19)

With the above notation we have the following variant of Theorem 2.1.

Theorem 3.1. Let Assumptions A hold and w be a radial solution to Equation (3).
If either condition B1) or B2) holds then the mapping M |Γ is nonincreasing with respect
to r, while if either condition C1) or C2) holds then the mapping M |Γ is nondecreasing.
In particular if w is nonpositive or nonnegative then it is monotone.

Proof. We prove the case B1) only. Take an arbitrary τ1, τ2 ∈ Γ such that τ1 > τ2.
Then Inequality (14) implies M(τ1)−M(τ2) ≤ 0.

We also have the following observation. The easy proof follows the same lines as the
one of Corollary 2.2 in [2] and therefore is omitted.

Corollary 3.1. Let Assumptions A hold and w(x) = u(|x|) be a radial solution to
Equation (3).

i) Let either condition B1) or B2) hold and w(x) = 0 for |x| = τ0 ∈ (0, R). Then
either w ≡ 0 for every x with τ0 ≤ |x| ≤ R or the function u(r) has an isolated
zero at τ0, in particular u must change sign at τ0.

ii) If either condition B1) or B2) holds, w is either nonpositive or nonnegative and
there exists τ0 ∈ (0, R) such that w(x) = 0 for |x| = τ0 then w ≡ 0 for |x| ∈ [τ0, R).

iii) If either condition C1) or C2) holds and there exists τ0 ∈ (0, R] such that w(x) = 0
for |x| = τ0 (lim|x|→∞ w(x) = 0 if τ0 = ∞) then w ≡ 0 for |x| ∈ [0, τ0].
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4 The admissible perturbations

The purpose of this section is to extract and analyze features of functions h considered
in Assumptions A and Theorem 2.1.

Let ε ∈ {+,−} and a ∈ W 1,1
loc ((0, R)). Also let h satisfy Assumption A.5. Define

Hε (= Hε(a)) := {h(τ, λ0, λ1) : ε (h(τ, λ0, λ1)λ1 − δa|λ1|p) ≤ 0},

where δa is as in (6).
The following observation summarizes several properties of members of Hε.

Proposition 4.1. Let ε ∈ {+,−} and a ∈ W 1,1
loc ((0, R)).

i) If {φi}i∈N is a partition of unity defined on [0, R]×R2 and hi ∈ Hε then
∑

i φihi ∈ Hε.
In particular Hε is convex.
ii) Hε is invariant under addition of elements from the class

Rε := {r = r(τ, λ0, λ1) : r satisfies Assumption A.5, εr(τ, λ0, λ1)λ1 ≤ 0},

i. e. if h ∈ Hε and r ∈ Rε then h + r ∈ Hε.
iii) Let b satisfy Assumption A.4. If b ≥ 0 and h ∈ H+, then bh ∈ H+. Whereas, if
b ≤ 0 and h ∈ H−, then bh ∈ H−.
iv) Let

h(τ, λ0, λ1) = s(τ, λ0, λ1)|λ1|p−2λ1, (20)

for s satisfying Assumption A.5. If sup(λ0, λ1) s(τ, λ0, λ1) ≤ δa(τ) we have h ∈ H+,
while if inf(λ0, λ1) s(τ, λ0, λ1) ≥ δa(τ) we have h ∈ H−.

Let us illustrate the above proposition with a couple of examples.

Example 4.1.
1. Let s(τ) = sa(τ) := αb(τ)− (1− 1/p)τb

′
(τ), b(τ) = a(τ)/τ , α ∈ R, a ∈ W 1,1

loc ((0, R))

and h be as in (20). Then for α ≤ n − 2 + 1
p

function h belongs to H+, while for

α ≥ n− 2 + 1
p

it holds that h ∈ H−.
2. Consider α1, α2, α3 ≥ 0 and s as in part 1 of this example. Then

h(τ, λ0, λ1) = s(τ)
|λ1|p−2λ1

1 + τα1 + |λ0|α2 + |λ1|α3
∈ H+

h(τ, λ0, λ1) = s(τ) (1 + τα1 + |λ0|α2 + |λ1|α3) |λ1|p−2λ1 ∈ H−.

3. Consider α1, α2, α3 ≥ 0, s as in part 1 of this example and r satisfying Proposition
4.1 ii). Then

h(τ, λ0, λ1) =

(
s(τ)

1 + τα1 + |λ0|α2 + |λ1|α3
+ r(τ, λ0, λ1)

)
|λ1|p−2λ1 ∈ H+

h(τ, λ0, λ1) = (s(τ) (1 + τα1 + |λ0|α2 + |λ1|α3) − r(τ, λ0, λ1)) |λ1|p−2λ1 ∈ H−.
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5 The ODE and special functions

All the results presented in this paper can be applied to solutions of Equation (5)
considered for n = 1. Namely, instead of n-dimensional ball we consider assumptions
B1),B2),C1) and C2) on the interval (0, R). Furthermore, we substitute all the condi-
tions for w,∇w with the corresponding conditions for u, u′. In particular one can link
our results with several results which deal with ODEs, e.g. [3, 4, 10, 22, 28, 29, 39].
For this purpose we consider the following set of assumptions (compare with Assump-
tions A).
Assumptions A1
1. p > 1, R ∈ (0,∞], B = (0, R) (for R = ∞ the ball B = (0,∞)).
2. u, Φp(u

′
) ∈ W 1,1

loc ((0, R)).
3. φ is an integrable odd continuous function on R such that τφ(τ) is either positive
or negative for almost all τ ’s.
4. a ∈ W 1,1

loc ((0, R)).
5. h = h(τ, λ0, λ1) is a Carathéodory function defined on (0, R) ×R2 i.e. measurable
with respect to τ , continuous with respect to the remaining variables. Additionally, for
every K > 0

sup
|λ0|<K, |λ1|<K

|h(τ, λ0, λ1)| ∈ L1
loc(0, R).

Note that for n = 1 Equation (5) reduces to the following:

−a(τ)(Φp(u
′
(τ)))

′
+ h(τ, u(τ), u

′
(τ)) = φ(u(τ)) a.e. for τ ∈ (0, R), (21)

where (Φp(u
′
(τ)))

′
is understood in the sense of distributions, u, Φp(u′), |u′|p ∈

W 1,1
loc ((0, R)). Therefore, by using exactly the same arguments as for n > 1 we ob-

tain the following results.

Theorem 5.1. Let Assumptions A1 be satisfied and u be a solution of (21).
If either condition B1) or B2) holds for n = 1 then

sup
τ∈(0,R)

|u(τ)| = lim sup
τ→0

|u(τ)|, (22)

while if either condition C1) or C2) holds for n = 1 then

sup
τ∈(0,R)

|u(τ)| = lim sup
τ→R

|u(τ)|. (23)

Corollary 5.1. Let Assumptions A1 be satisfied, n = 1, p > 1 and u be a solution of
(21).
If B′

1) holds or if B′
2) holds then

sup
τ∈(0,R)

|u(τ)| = lim sup
τ→0

|u(τ)|.
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Whereas, if C′
1) holds or C′

2) holds then

sup
τ∈(0,R)

|u(τ)| = lim sup
τ→R

|u(τ)|.

Proposition 5.1. Under the assumptions of Theorem 5.1 the following problems admit
only the trivial solutions:

1. {
−a(τ)(Φp(u

′
(τ)))

′
+ h(τ, u(τ), u

′
(τ)) = φ(u(τ)) a.e. in (0, R),

u(0) = 0

in the case B1) or B2) and for u ∈ C([0, R)).

2. {
−a(τ)(Φp(u

′
(τ)))

′
+ h(τ, u(τ), u

′
(τ)) = φ(u(τ)) a.e. in (0, R),

u(R) = 0 for R < ∞ or limτ→∞ u(τ) = 0 for R = ∞.

in the case C1) or C2) and u ∈ C((0, R]) for R < ∞.

For our next purpose we set

Γ = {r ∈ (0, R) : r is a critical point for, u} ∪ {0} ∪ {R}

M : Γ → [0,∞], M(r) =


|u(r)|, 0 < r < R
lim supτ→0 |u(τ)|, r = 0
lim supτ→R |u(τ)|, r = R.

(24)

Theorem 5.2. Let Assumptions A1 hold and u be a solution to Equation (21). Also,
assume that assumptions B1), B2), C1), C2) are satisfied for n = 1.
If either condition B1) or B2) holds then the mapping M |Γ given by (24) is nonincreas-
ing with respect to r, while if either condition C1) or C2) holds then the mapping M |Γ
is nondecreasing. In particular if w is nonpositive or nonnegative then it is monotone.

Corollary 5.2. Let Assumptions A1 hold and u be a solution to Equation (21). Fur-
thermore, assume that assumptions B1), B2), C1), C2) are satisfied for n = 1.

i) Let either condition B1) or B2) hold and u(τ0) = 0 for τ0 ∈ (0, R). Then either
u ≡ 0 for every τ with τ0 ≤ τ ≤ R or the function u(τ) has an isolated zero at
τ0, in particular must change sign at τ0.

ii) If either condition B1) or B2) holds, u is either nonpositive or nonnegative and
there exists τ0 ∈ (0, R) such that u(τ0) = 0 then u ≡ 0 for τ ∈ [τ0, R).

iii) If either condition C1) or C2) holds and there exists τ0 ∈ (0, R] such that u(τ0) = 0
(limτ→∞ u(τ) = 0 if τ0 = ∞) then u ≡ 0 for τ ∈ [0, τ0].

Let us illustrate our discussion with the following two examples.
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Example 5.1 (nonlinear eigenvalue problems and Bessel functions). Following Walter
[40] we define the operator

Lα
p u = τ−α(ταΦp(u

′
))

′
= (Φp(u

′
))

′
+

α

τ
Φp(u

′
),

where τ ∈ R is an independent variable, α ≥ 0, p > 1. Consider the following eigenvalue
problem [40]:

Lα
p u + (q(τ) + λs(τ))Φp(u) = 0 in [0, R], u

′
(0) = 0, u(R) = 0, (25)

where the functions q(τ) and s(τ) are continuous and s(τ) is positive on [0, R]. In our
setting this equation reads

−a(τ)(Φp(u
′
(τ)))

′
+ h(τ, u(τ), u

′
(τ)) = φ(u(τ)), a.e. for τ ∈ (0, R), (26)

where a(τ) = 1
q(τ)+λs(τ)

, h(τ, λ0, λ1) = −αa(τ)
τ

Φp(λ1) and φ(λ0) = Φp(λ0).

On page 183 in [40] Walter shows that the above eigenvalue problem has a countable
number of simple eigenvalues β1 < β2 < . . . , such that limm→∞ βm = ∞, and no other
eigenvalues. Each eigenfunction um has m − 1 simple zeros in (0, R). Between 0 and
the first zero of um, between two consecutive zeros of um and between the last zero of
um and R there is one and only one zero of um+1. Similar result with s ≡ 1 and q ≡ 0
was obtained by del Pino and Manásevich in [18], by Anane in [5] and by Binding and
Volkmer in [10] for p = 2 (in the latter case the solution is the generalization of Bessel’s
function). For a given m let us consider the function bm(τ) := 1

am(τ)
:= q(τ) + βms(τ)

and assume additionally that am, q, s ∈ W 1,1
loc ((0, R)). We find δam defined as in (6)

δam(τ) := (1− 1

p
)(q

′
+ βms

′
)a2

m.

Let us verify that assumption B1) holds in our case. First, observe that τΦp(τ) > 0 for
τ 6= 0 and lim infs→0 am(s)|u′

(s)|p = 0 provided that am is bounded in the neigh-
borhood of 0. Next, if we assume that am ≥ 0 close to R then the condition
lim infs→R am(s)|u′

(s)|p ≥ 0 is satisfied trivially. Moreover, we verify the condition
h(τ, λ0, λ1)λ1≤δam(τ)|λ1|p which in our case reads

−γ

τ
≤ (q

′
+ βms

′
)am, (27)

where γ = α
1− 1

p

. Equivalently, (ln(bm))
′ ≥ −γ

τ
.

Corollary 5.1 reveals that if (27) holds for every τ ∈ (0, R) then each |um| attains
its maximum at 0. Moreover, the sequence of maximas of |um(τ)| is nonincreasing in
τ , as a consequence of Theorem 5.2.
Another conclusion can be deduced if q ≡ 0, bm = βms and βm < 0. In such a case
Proposition 5.1 infers that Equation (25) admits no nontrivial solutions.
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In the next example we deal with hipergeometric functions. Our presentation is
based on [29] where this problem is considered for linear equations.

Example 5.2. (1) Let us assume that p = 2 and a, b, c ∈ R are given numbers and
u ∈ C1([0, 1]) ∩ C2((0, 1)) satisfies the hypergeometric equation of Gauss

τ(1− τ)u′′(τ) + (c− (1 + a + b)τ)u′(τ)− abu(τ) = 0, τ ∈ (0, 1).

With our notation a(τ) = τ(τ −1), φ(λ0) = abλ0 and h(τ, λ0, λ1) = (c− (1+a+b)τ)λ1.
Henceforth, δa(τ) = −(1− 1/p)(2τ − 1) = −τ + 1

2
. If ab < 0, then τφ(τ) < 0 for τ 6= 0.

Since the weight a is negative continuous on (0, 1) and equal to 0 at the endpoints of
this interval, the limsup conditions in C2) hold. Moreover, h(τ, λ0, λ1)λ1 ≤ δa(τ)|λ1|2
in this case reads

c− 1

2
≤ (a + b)τ, τ ∈ [0, 1].

The above inequality is satisfied for all τ ∈ [0, 1] provided that c ≤ 1
2

and a + b > 0.
From this C2) follows and we retrieve the maximum principles obtained in Corollary
3.1 1) in [29].

(2) The Legendre polynomials satisfy the equation:

(1− τ 2)u′′(τ)− 2τu′(τ) + n(n + 1)u(τ) = 0, τ ∈ (−1, 1).

With our notation a(τ) = τ 2 − 1, φ(λ0) = −n(n + 1)λ0 and h(τ, λ0, λ1) = −2τλ1.
Similarly to the previous example we verify that τφ(τ) < 0 for all τ 6= 0. Also, a ≤ 0
on [−1, 1] and the continuity of a gives us the limsup conditions in C2). The inequality
h(τ, λ0, λ1)λ1≤δa(τ)|λ1|2 reduces to −2 ≤ −1. Hence our techniques allow us to prove
that the maximum of Legendre polynomials is attained at x = 1. (The same reasoning
gives us that the maximum is attained also at x = −1.)

(3) We will now consider Laguerre polynomials, an important example of so-
called Jacobi polynomials (see [29]). Recall, that the class of Laguerre functions
contain for instance Hermite polynomials. The governing equation for Laguerre
polynomials is

τu′′(τ) + (1 + a− τ)u′(τ) + nu(τ) = 0, τ ∈ R.

Assume wlog that τ > 0. Then, the discussion similar to the above examples gives
us that τφ(τ) = −nτ 2 < 0 and h(τ, λ0, λ1)λ1 ≥ (≤) δa(τ)|λ1|2 holds if a + 1

2
≥ (≤

) τ respectively. Therefore assumptions B2) ( C2) respectively ) hold and hence the
sequence of maximas decreases for a + 1

2
≥ τ , whereas for a + 1

2
≤ τ this sequence

increases (compare to Corollary 3.4 in [29]).
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[6] R. P. Agarwal, D. O’Regan, B. Yan, Nonlinear boundary value problems on semi-
infinite intervals using weighted spaces: an upper and lower solution approach, Positivity
11 (2007), no. 1, 171–189.
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[35] J. Mossino, Inégalités isopérimétriques et applications en physique (French), Travaux
en Cours. Paris: Hermann (1984).

[36] P. Pucci, J. Serrin, The strong maximum principle revisited, J. Diff. Equations 196
(2004), 1–66.
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