
Combinatorics in Banach space theory

Lecture 1

1 Almost disjoint families and complementability of c0

There are two basic constructions in the combinatorial set theory which are important in
the structural theory of Banach spaces: almost disjoint families and independent families.
We shall start our considerations by showing how the existence of uncountable almost
disjoint families of subsets of N may be used to derive the uncomplementability of c0

inside `∞. Later, we will see the usefulness of this construction in the definition of the
Johnson–Lindenstrauss space which yields a classical and ground-breaking example in the
theory of the ‘three-space problem’.

Definition 1.1. Let Γ be any set. A family F ⊂ PΓ is called almost disjoint whenever
A ∩B is finite for every A,B ∈ F , A 6= B.

The following ‘folklore’ result has many different proofs. We present three of them;
each is equally elegant and ingenious.

Proposition 1.2. There exists an almost disjoint family consisting of infinite subsets of
N, which has the cardinality c.

First proof. We may identify the set N with the countable set Q. For each real number
x pick any sequence (qn(x))∞n=1 ⊂ Q converging to x and let Ax = {qn(x) : n ∈ N}. Then,
F = {Ax : x ∈ R} ⊂ PQ is almost disjoint and has the cardinality c.

Second proof. Now, we identify the set N with the set Z2 of all lattice points on the plane.
Take any number d > 2 and for each ϑ ∈ [0, π) let Aϑ be the set of all lattice points
lying inside the strip bounded by two parallel lines at the distance d/2 from the origin
and making the angle ϑ with the horizontal axis. Then, F = {Aϑ : 0 6 ϑ < π} ⊂ PZ2 is
almost disjoint and has the cardinality c.

Third proof. In this proof we identify the set N with the set N of all nodes in the complete
binary tree N =

⋃
α<ω{0, 1}α. Let F ⊂ PN be the family of all branches. It has the

cardinality c and is almost disjoint, as every two distinct branches meet only at some
finite initial segment.

Recall that a subspace Y of a Banach space X is called complemented in X provided
that there exists a closed subspace Z of X such that X = Y +Z and Y ∩Z = {0}. In this
case we write X = Y ⊕ Z. It is equivalent to the fact that there is a bounded projection
from X onto Y , that is, a surjective operator P : X → Y satisfying P 2 = P (see, e.g.,
[Rud91, Theorem 5.16]).

By the Hahn–Banach extension theorem, every finite-dimensional subspace of a Ba-
nach space X is complemented (see, e.g., [Rud91, Lemma 4.21]). Let us stress that the
assumption of local convexity of X in this statement is essential. Without assuming local
convexity one may still state that every subspace of finite co-dimension is complemented.
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As c0 is contained in `∞, and is equipped with the same supremum norm, one of
the first questions concerning the notion of complementability was whether there exists
a bounded projection from `∞ onto c0. The negative answer was given by Phillips [Phi40]
and Sobczyk [Sob41]. At that time it was certainly quite a surprising application of large
almost disjoint families.

Theorem 1.3 (Phillips & Sobczyk, 1940-41). c0 is not complemented in `∞.

We shall derive this result from the following fact which will turn out to give somewhat
more than expected. For any set A ⊂ N let us denote `∞(A) the space of all bounded
sequences which are supported on A, that is,

`∞(A) =
{

(ξn)∞n=1 ∈ `∞ : ξn = 0 for each n 6∈ A
}
.

Proposition 1.4. Suppose T : `∞ → `∞ is an operator which vanishes on c0. Then there
exists an infinite set A ⊂ N such that T vanishes on `∞(A).

Proof. Let {Ai}i∈I be an uncountable almost disjoint family of infinite subsets of N.
Suppose, in search of a contradiction, that T does not vanish on any of the subspaces
`∞(Ai), for i ∈ I. Then, for every i ∈ I one may find ξ(i) ∈ `∞(Ai) with ‖ξ(i)‖ = 1 and
natural numbers ki, ni such that |e∗kiTξ

(i)| > n−1
i (where e∗k stands for the kth coordinate

functional on `∞). This implies that for some particular choice of (k, n) ∈ N× N the set

Ik,n :=
{
i ∈ I : |e∗kTξ(i)| > n−1

}
is uncountable.

For each i ∈ Ik,n choose a scalar αi with |αi| = 1 and αie
∗
kTξ

(i) = |e∗kTξ(i)|. Now, for
any finite subset F of Ik,n put

y =
∑
i∈F

αiξ
(i) ∈ `∞.

Since the intersection of any two members of {Ai}i∈F is finite, we may write y = u + v,
where ‖u‖∞ 6 1 and v is finitely supported. In particular, v ∈ c0, hence Tv = 0 by the
assumption, so ‖Ty‖ = ‖Tu‖ 6 ‖T‖. On the other hand,

e∗kTy =
∑
i∈F

αie
∗
kTξ

(i) > |F |n−1

and, consequently, |F | < n‖T‖. However, this would mean that the set Ik,n is finite which
is not the case.

Proof of Theorem 1.3. Suppose, towards a contradiction, that there is a bounded projec-
tion P : `∞ → c0. Since P is the identity on c0, the operator T = I`∞ − P vanishes on c0

and it maps `∞ into `∞. According to Proposition 1.4, there is an infinite set A ⊂ N such
that P (ξ) = ξ for every sequence ξ ∈ `∞ which is supported on A. But this would mean
that the range of P is not contained in c0; a contradiction.

We have thus shown that c0 is not complemented in its bidual c∗∗0 = `∞. Moreover,
since every dual Banach space is complemented in its bidual and being complemented in
its bidual is an isomorphic invariant (see Problems 1.1 and 1.2), we may formulate the
following corollary.
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Corollary 1.5. c0 is not isomorphic to any dual space.

Notice that if Y is a complemented subspace of a Banach space X then the quotient
space X/Y is isomorphic to a subspace of X which is complementary to Y . This follows
directly from the algebraic ‘isomorphism theorem’ and the Open Mapping Theorem ap-
plied to the canonical projection from X onto a subspace complementary to Y (Y is the
kernel of this projection). So, in this case there is an embedding operator from X/Y into
X. Proposition 1.4 implies that this is impossible for X = `∞ and Y = c0, even if the
desired embedding is not required to have a closed range.

Corollary 1.6. There is no injective operator from `∞/c0 into `∞.

Proof. Suppose S : `∞/c0 → `∞ is such an operator and let P : `∞ → `∞/c0 be the
canonical quotient map. Then P |c0 = 0, hence the operator SP : `∞ → `∞ also vanishes
on c0. However, since S is one-to-one, we would have SPξ 6= 0 for every ξ 6∈ c0, which
contradicts the assertion of Proposition 1.4.

2 Rosenthal’s lemma

If Σ is a σ-algebra, (En)∞n=1 is a sequence of pairwise disjoint members of Σ, and µ : Σ→
[0,∞) is a bounded, finitely additive measure, then for every ε > 0 we may certainly
extract a subsequence (Enj)

∞
j=1 such that µ(Enj) < ε. Of course, generally this cannot be

done simultaneously for infinitely many measures (µn)∞n=1, even if we require that they
are uniformly bounded. However, it is possible to find subsequences (Enj)

∞
j=1 and (µnj)

∞
j=1

such that the values of all the measures µnj at Enj ’s are arbitrarily small, with spikes only
on the diagonal, that is, only µnj(Enj) may be possibly large.

This is a classical ‘sliding-hump’ type result, called Rosenthal’s lemma. It was proved
in [Ros70] in order to characterise non-weakly compact operators acting on injective Ba-
nach spaces (we will discuss this topic in Section 4). The statement may look a bit
innocent but in fact it is a powerful tool. Among various of its consequences we will
derive Nikodým’s boundedness principle and Phillips’ lemma which concern sequences of
finitely additive scalar measures defined on a discrete set. In the monograph [DU77], by
Diestel and Uhl, Rosenthal’s lemma is used to derive many of the major results in the
theory of vector measures.

The original proof by Rosenthal is quite complicated and uses an uncoutable analogue
of Proposition 1.2 (see [Ros70, Proposition]). We shall present a much shorter proof, due
to Kupka [Kup74]. For transparency, we will first focus on the countable case.

Lemma 2.1 (Rosenthal, 1970). Let Σ be a σ-algebra of subsets of some set Ω and (µn)∞n=1

be a uniformly bounded sequence of finitely additive, non-negative measures defined on Σ.
Then, for every pairwise disjoint sequence (En)∞n=1 ⊂ Σ and every ε > 0 there exists
a strictly increasing sequence (nk)

∞
k=1 ⊂ N such that

µnk

(⋃
j 6=k

Enj

)
< ε for each k ∈ N.

Proof. Let us suppose, with no loss of generality, that µn(Ω) 6 1 for each n ∈ N. Consider
any sequence (Mp)

∞
p=1 of pairwise disjoint infinite subsets of N such that N =

⋃∞
p=1Mp.

We shall distinguish two cases.
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Case 1. First, if there is some p ∈ N for which

µk

( ⋃
j∈Mp

j 6=k

Ej

)
< ε for each k ∈Mp,

then we get the assertion by simply enumerating Mp = {n1 < n2 < . . .}.
Case 2. Now, suppose that for every p ∈ N there is kp ∈Mp such that

µkp

( ⋃
j∈Mp

j 6=kp

Ej

)
> ε. (2.1)

Fix, for a moment, any p ∈ N. Since
⋃
qEkq is disjoint from the set

⋃
j∈Mp,j 6=kpEj, we have⋃

j∈Mp,j 6=kp

Ej ⊂
⋃
n∈N

En \
⋃
q∈N

Ekq . (2.2)

Obviously, we have

µkp

(⋃
q∈N

Ekq

)
+ µkp

( ⋃
n∈N

En \
⋃
q∈N

Ekq

)
6 1,

so (2.2) and (2.1) imply

µkp

(⋃
q∈N

Ekq

)
6 1− ε,

and this inequality is valid for every p ∈ N.
Consequently, we could repeat the same argument replacing the sequences (µn)∞n=1

and (En)∞n=1 by (µkp)
∞
p=1 and (Ekp)

∞
p=1, respectively. By continuing this we would get

subsequent upper bounds 1 − 2ε, 1 − 3ε, . . . for some of the measures µn. Since this
process has to terminate, we will end up with Case 1 in which the assertion has been
proved.

Now, let us see how this type of argument goes through in the uncountable case. For
simplicity, the pairwise disjoint sets given in the assumption may be identified with points
of a discrete set Γ, and all the given measures may be assumed to act on the σ-algebra of
all subsets of Γ.

Lemma 2.2 (Rosenthal, 1970). Let Γ be an infinite set and let {µγ : γ ∈ Γ} be a uniformly
bounded family of finitely additive, non-negative measures defined on PΓ. Then, for every
ε > 0 there exists a set ∆ ⊂ Γ with |∆| = |Γ| and such that

µδ
(
∆ \ {δ}

)
< ε for each δ ∈ ∆.

Proof. Assuming the Axiom of Choice (no choice of not assuming it!), we have |Γ| = |Γ×Γ|
for every infinite cardinal number Γ (see, e.g., [Jec00, Theorem 3.5]). Hence, we may write
Γ =

⋃
γ∈Γ∆γ, where ∆γ’s are pairwise disjoint and |∆γ| = |Γ| for each γ ∈ Γ. Again, we

distinguish two cases.
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Case 1. First, if for every γ ∈ Γ there is some xγ ∈ ∆γ such that µxγ
(
Γ \ ∆γ

)
< ε,

then the set ∆ := {xγ : γ ∈ Γ} does the job.
Case 2. So, suppose that there is some γ0 ∈ Γ such that

µx
(
Γ \∆γ0

)
> ε for every x ∈ ∆γ0 .

Then, repeating this argument with ∆γ0 in the place of Γ we must arrive at Case 1 after
finitely many steps, since otherwise the uniform boundedness of the measures µγ would
be violated.

Regarding Lemma 2.1 one may ask whether a similar conclusion holds true for mea-
sures defined on a set algebra F which is not necessarily a σ-algebra. The answer is
positive and it follows quite directly from the σ-algebra case and the Hahn–Banach the-
orem. This will not be used in the sequel, so we omit the proof. The interested reader
should consult [DU77, p. 19].

Corollary 2.3. Let F be a set algebra and (µn)∞n=1 be a uniformly bounded sequence
of finitely additive, non-negative measures defined on F . Then, for every pairwise dis-
joint sequence (En)∞n=1 ⊂ F and every ε > 0 there exists a strictly increasing sequence
(nk)

∞
k=1 ⊂ N such that

µnk

( ⋃
j 6=k, j∈∆

Enj

)
< ε

for every k ∈ N and every finite set ∆ ⊂ N.
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