
Combinatorics in Banach space theory

Lecture 11

Proposition 11.9. Let X be a finite-dimensional normed space. Then, the range of every
σ-additive vector measure µ : Σ→ X, defined on a σ-algebra Σ, is a closed subset of X.

Proof. Let Σ be a σ-algebra of subsets of Ω and A ⊂ Σ be any maximal family of pairwise
disjoint atoms of a given measure µ : Σ → X. In other words, A is a subset of Σ which
consists of pairwise disjoint atoms and such that the restriction of µ to the σ-algebra
Σ|Ω\⋃A = {A ∩ (Ω \ ⋃A) : A ∈ Σ} is non-atomic. Since µ is bounded, A is at most
countable. Let Y and Z be the ranges of the measure µ restricted to the σ-algebras Σ|⋃A
and Σ|Ω\⋃A, respectively. Then, µ(Σ) = Y + Z and, by the Lyapunov theorem, Z is
a compact (and convex) subset of X. If we prove that Y is also compact, then we will be
done because the algebraic sum of any two compact sets is still compact.

The compactness of Y is obvious whenever A is finite (or empty), so suppose that
A = {A1, A2, . . .} consists of infinitely many atoms of µ and let xn = µ(An). Obviously,
we have Y = {

∑
n∈M xn : M ∈ PN} (every such series is unconditionally convergent

because of the σ-additivity of µ). Observe that Y is the range of a map ϕ : 2N → Y given
by ϕ(M) =

∑
n∈M xn. Moreover, ϕ is continuous with respect to the product topology

on 2N which is compact due to Tychonoff’s theorem. Therefore, Y is also compact and
the proof is completed.

It is worth mentioning that in the infinite-dimensional case the range of a σ-additive
vector measure of bounded variation need not be closed. However, it is not so straight-
forward to build a counterexample (or, to show that a given vector measure is indeed
a counterexample). Below, we present an example due to Uhl [Uhl69] which is a slight
modification of one given much earlier by Lyapunov [Lya40]. First, let us quote the main
result from [Uhl69]:

Theorem 11.10 (Uhl, 1969). Let X be a Banach space which is either reflexive or a sep-
arable dual space. Assume that µ : Σ → X is a σ-additive vector measure of bounded
variation, defined on some σ-algebra Σ. Then, µ(Σ) is relatively (norm) compact. More-
over, if µ is non-atomic, then the closure of µ(Σ) is convex and compact.

Example 11.11. Let Ω = [0, 1], Σ be the σ-algebra of all Borel subsets of Ω and λ be
the Lebesgue measure on Σ. Let (ψn)∞n=0 be a complete (i.e. linearly dense) orthonormal
sequence in L2[0, 1] such that:

• ψ0(x) ≡ 1,
• each ψn takes only the values ±1, for n > 1,
•
∫ 1

0
ψn dλ = 0 for each n > 1.

For instance, we may take (ψn)∞n=0 to be the sequence of all Walsh functions {ϕ0} ∪
{ϕ(j)

n : n ∈ N, 1 6 j 6 2n−1} which are defined (up to measure zero sets) recursively as
follows:

ϕ0(x) ≡ 1, ϕ1(x) =

{
1, 0 6 x < 1

2
,

−1, 1
2
< x 6 1,
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ϕ
(2k−1)
n+1 (x) =

{
ϕ

(k)
n (2x), 0 6 x < 1

2
,

(−1)k+1ϕ
(k)
n (2x− 1), 1

2
< x 6 1

and

ϕ
(2k)
n+1(x) =

{
ϕ

(k)
n (2x), 0 6 x < 1

2
,

(−1)kϕ
(k)
n (2x− 1), 1

2
< x 6 1

for n ∈ N and 1 6 k 6 2n−1. In other words, all the functions ϕ
(j)
n may be arranged into

a binary tree in such a way that ϕ
(j)
n , for 1 6 j 6 2n−1, occupy the nth level and every

ϕ
(k)
n has two direct successors: ϕ

(2k−1)
n+1 and ϕ

(2k)
n+1, whose graphs are formed by two copies

of the graph of ϕ
(k)
n contracted by the scale 1/2 so that the former one is even and the

latter one is odd with respect to the point 1/2.
Now, let

In(E) =
1

2n

∫
E

1 + ψn

2
dλ for n ∈ N0 and E ∈ Σ.

We define a vector measure µ : Σ → `2 by µ(E) = (In(E))∞n=0 for E ∈ Σ. Plainly,
µ is finitely additive and non-atomic, whereas the obvious inequality ‖µ(E)‖ 6 2λ(E)
immediately implies that it is also σ-additive and has bounded variation. Hence, if the
range of µ was closed, then Theorem 11.10 would imply that it is also convex. However,
we will now show that this is not the case (disproving the closedness of µ(Σ) by hand
would be a heroic feat). To this end it is enough to show that there is no set E ∈ Σ
satisfying µ(E) = 1

2
µ(Ω) = 1

2
(1, 1/4, 1/8, . . .). So, suppose on the contrary that E ∈ Σ

satisfies the last equality.
Since I0(E) =

∫
E

dλ, we have λ(E) = 1/2. Moreover, for every n ∈ N we have

1

2n+2
= In(E) =

1

2n

∫
E

1 + ψn

2
dλ =

λ(E ∩ Un)

2n
,

where Un = {s ∈ Ω: ψn(s) = +1}. Hence, λ(E ∩ Un) = 1/4 for n ∈ N. Since λ(Un) =
λ(E) = 1/2, we obtain also the following three equalities: λ(Un\E) = 1/4, λ(E\Un) = 1/4
and λ(Ω \ (E ∪ Un)) = 1/4 for every n ∈ N. Define a function ϕ ∈ L2[0, 1] by ϕ(x) = +1

for x ∈ E and ϕ(x) = −1 for x 6∈ E. Then,
∫ 1

0
ϕψ0 dλ = 0 and for every n ∈ N we have∫ 1

0

ϕψn dλ =λ(E ∩ Un) + λ(Ω \ (E ∪ Un))

− λ(Un \ E)− λ(E \ Un) = 0,

which means that ϕ is orthogonal to each of the functions (ψn)∞n=0. This is impossible as
the Walsh system is complete in L2[0, 1].

12 B-convex spaces

In this section, we turn our attention to the notion of B-convex space, which is defined
by a Steinitz-type condition, introduced by Beck [Bec62]. The primary motivation for
considering B-convex spaces stemmed from the probability theory; this will be briefly
expained in what follows. Next, we will come back to Kadets’ Theorem 11.6 and convince
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ourselves that the method based on Steinitz’s lemma may be applied to derive an infinite-
dimensional analogue of Lyapunov’s theorem for vector measures taking values in B-
convex spaces. In the next step, the notion of B-convexity will be a pretext for returning
to our study of the ‘three-space problem’ which has been broached in Section 8.

To formulate the definition of B-convexity, and for further discussion, it is convenient
to introduce for any Banach space X the following four quantities:

an = an(X) = sup
(xj)nj=1⊂BX

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥,
bn = bn(X) = sup

(xj)nj=1⊂BX

min
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥,
cn = cn(X) = sup

{
1√
n
·

(
1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2)1/2

: xj ∈ X and
n∑

j=1

‖xj‖2 6 1

}
,

and

dn = dn(X) = sup

{
1

n
·

(
1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2)1/2

: xj ∈ X and max
16j6n

‖xj‖ 6 1

}
.

In other words, cn is the infimum of all those constants c > 0 for which the inequality(
1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2)1/2

6
√
n · c ·

(
n∑

j=1

‖xj‖2

)1/2

(12.1)

holds true for all x1, . . . , xn ∈ X, whereas dn is the infimum of all those constants d > 0
for which the inequality(

1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2)1/2

6 n · d · max
16j6n

‖xj‖

holds true for all x1, . . . , xn ∈ X.

Definition 12.1. A Banach space X is called B-convex, if bn < n for at least one n ∈ N.

Obviously, in every Banach space we have b1 = 1, 0 < bn 6 n and bn 6 bn+1 for every
n ∈ N. It is also very easy to see that `1 is not a B-convex space. In fact, if n ∈ N and
x1, . . . , xn are the standard unit basis vectors, then no matter how we choose the signs
εj = ±1 we always have ‖

∑
j εjxj‖ = n, thus bn = n. Of course, the essential point lies

in the local structure of `1. Namely, to guarantee that a given Banach space X is not B-
convex it suffices to ensure that X contains isomorphic copies of all the finite-dimensional
spaces `n1 (n ∈ N) which are arbitrarily close to being isometric copies. This is formalised
by the notion of finite representability which we have already met in Problem 2.12.
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Definition 12.2. Let X and Y be Banach spaces. We say that X is finitely representable
in Y , provided that for every finite-dimensional subspace E of X and every ε > 0 there
exists a finite-dimensional subspace F of Y with dimE = dimF and such that dBM(E,F ) <
1 + ε, where dBM stands for the Banach–Mazur distance defined by the formula

dBM(E,F ) = inf
{
‖T‖ · ‖T−1‖ | T : E → F is an isomorphism

}
(of course, the above definition of dBM makes sense for any two isomorphic Banach spaces
E and F ).

In this spirit, we say that X contains `n1 ’s uniformly, provided that there is a constant
λ > 1 and a sequence (En)∞n=1 of finite-dimensional subspaces of X such that En ' `n1
and dBM(En, `

n
1 ) 6 λ for each n ∈ N. The following result reveals the mystery behind

B-convexity:

Theorem 12.3. Let X be a Banach space. The following assertions are equivalent:

(i) X is B-convex;
(ii) limn→∞ n

−1bn = 0;
(iii) cn < 1 for at least one n ∈ N;
(iv) limn→∞ cn = 0;
(v) X does not contain `n1 ’s uniformly;

(vi) `1 is not finitely representable in X.

Before proving this theorem, let us isolate several useful lemmas.

Lemma 12.4. For every Banach space X we have bmn(X) 6 bm(X)bn(X) for all m,n ∈ N
(that is, the sequence (bn(X))∞n=1 is submultiplicative).

Proof. For simplicity, we write bn instead of bn(X). Fix any set {xij : i ∈ [m], j ∈ [n]} of
mn vectors from the unit ball of X. We may find signs θij = ±1 such that∥∥∥∥∥

n∑
j=1

θijxij

∥∥∥∥∥ 6 bn for each i ∈ [m].

Therefore, applying the formula for bm to the sequence (
∑n

j=1 θijxij)
m
i=1 we get some signs

ηi = ±1 such that ∥∥∥∥∥
m∑
i=1

ηi

n∑
j=1

θijxij

∥∥∥∥∥ 6 bmbn.

Consequently, by putting εij = ηiθij for i ∈ [m] and j ∈ [n] we obtain∥∥∥∥∥ ∑
16i6m
16j6n

εijxij

∥∥∥∥∥ 6 bmbn

and the result follows.

Lemma 12.5. If (tn)∞n=1 is a submultiplicative, monotone increasing sequence of positive
numbers such that tk < k for some k > 2, then there exist constants c > 0 and p > 1 such
that tn 6 cn1/p for every n ∈ N.
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Proof. Since tk < k, there is some p > 1 such that tk 6 k1/p. For any n ∈ N write
n = kr + s with some r ∈ N0 and 0 6 s < kr+1− kr. Then, by the submultiplicativity, we
have

tn 6 tkr+1 6 tr+1
k 6 k(r+1)/p = k1/p · kr/p 6 k1/p · n1/p,

whence the result follows with c = k1/p.

Lemma 12.6. For every Banach space X we have:

(a) cn(X)/cn+1(X) 6
√

(n+ 1)/n for each n ∈ N;
(b) n−1bn(X) 6 dn(X) 6 cn(X) 6 1 for each n ∈ N;
(c) cn(X) > n−1/2 for each n ∈ N;
(d) cmn(X) 6 cm(X)cn(X) for all m,n ∈ N.

Proof. (a): Fix any vectors x1, . . . , xn ∈ X satisfying
∑n

j=1 ‖xj‖2 6 1 and consider
n + 1 vectors x1, . . . , xn, 0. Applying inequality (12.1) to these vectors and replacing
c bycn+1 and n by n + 1 we get the upper estimate

√
n+ 1 · cn+1 for the average

(2−n
∑

εj=±1 ‖
∑

j εjxj‖2)1/2 (observe that each combination
∑

j εjxj appears twice, for

εn+1 = −1 and εn+1 = +1, so the corresponding coefficient equals 2 · 2−(n+1) = 2−n).
Hence, by the definition of cn, we arrive at

√
(n+ 1)/n · cn+1 > cn.

(b): The inequalities dn 6 cn 6 1 are obvious. For proving that n−1bn 6 dn fix any
sequence x1, . . . , xn in BX and recall that by the definition of dn we have

1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2

6 n2 · d2
n.

Hence, for a certain choice of signs εj = ±1 it has to be ‖
∑

j εjxj‖2 6 n2 ·d2
n which means

that bn 6 n · dn.
(c): First, let us make an observation which will be also important in our future

investigations. Namely, the square of the left-hand side of inequality (12.1) is nothing else
but the expectation value of ‖

∑
j ξjxj‖2, where (ξj)

n
j=1 is any sequence of independent

random variables such that for every j ∈ [n] both of the equalities ξj = −1 and ξj = +1
hold true with probability 1/2. Recall that these properties are shared by the sequence
(rj)

n
j=1 of the Rademacher functions (see Definition 7.2). Therefore,

1

2n

∑
εj=±1

∥∥∥∥∥
n∑

j=1

εjxj

∥∥∥∥∥
2

=

∫ 1

0

∥∥∥∥∥
n∑

j=1

rj(t)xj

∥∥∥∥∥
2

dt. (12.2)

Now, setting x1 = . . . = xn = x with some x ∈ X such that ‖x‖ = 1 and using the fact
that the Rademacher functions are orthogonal in L2[0, 1] (see formula (7.1)) we see that
the square of the left-hand side of (12.1) equals∫ 1

0

∣∣∣∣∣
n∑

j=1

rj(t)

∣∣∣∣∣
2

dt =

∥∥∥∥∥
n∑

j=1

rj

∥∥∥∥∥
L2

=
n∑

j=1

‖rj‖L2 = n,

whereas
∑

j ‖xj‖2 = n·‖x‖2 = n. Hence, c2
n must be at least n−1 which gives the assertion.

(d): This one is a bit tricky. Fix arbitrary x1, . . . , xmn ∈ X and define

yk(t) =
∑

(k−1)m<j6km

rj(t)xj for 1 6 k 6 n and t ∈ [0, 1].
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Let also

I =

∫ 1

0

∫ 1

0

∥∥∥∥∥
n∑

j=1

rj(s)yj(t)

∥∥∥∥∥
2

ds dt.

Note that for any fixed t ∈ [0, 1] the definition of cn combined with formula (12.2) gives

∫ 1

0

∥∥∥∥∥
n∑

j=1

rj(s)yj(t)

∥∥∥∥∥
2

ds 6 nc2
n ·

n∑
j=1

‖yj(t)‖2.

Hence, integrating with respect to t and using the definition of cm we get

I 6 nc2
n ·

n∑
j=1

∫ 1

0

‖yj(t)‖2 dt 6 nc2
n ·

n∑
k=1

mc2
m ·

∑
(k−1)m<j6km

‖xj‖2 = mnc2
m c

2
n ·

mn∑
j=1

‖xj‖2.

On the other hand, for every s ∈ [0, 1] we have

∫ 1

0

∥∥∥∥∥
n∑

j=1

rj(s)yj(t)

∥∥∥∥∥
2

dt =

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk(s)
∑

(k−1)m<j6km

rj(t)xj

∥∥∥∥∥
2

dt =

∫ 1

0

∥∥∥∥∥
mn∑
j=1

rj(u)xj

∥∥∥∥∥
2

du.

Indeed, the last but one term is the expectation value of ‖
∑mn

j=1 ξjxj‖2, where each ξj is
either +rj or −rj (depending on whether rk(s) = +1 or rk(s) = −1, where k ∈ [n] is
selected so that (k − 1)m < j 6 km), that is, (ξj)

mn
j=1 is a realization of the Rademacher

random variables. The same may be said about the last term, so they are both equal to
the average 2−mn

∑
εj=±1 ‖

∑mn
j=1 εjxj‖2. Integrating the above equality with respect to s

we obtain ∫ 1

0

∥∥∥∥∥
mn∑
j=1

rj(u)xj

∥∥∥∥∥
2

du = I 6 mnc2
m c

2
n ·

mn∑
j=1

‖xj‖2

which yields cmn 6 cmcn, as desired.

Lemma 12.7. For every finite-dimensional subspace E of `1 and every ε > 0 there exists
another finite-dimensional subspace H of `1 such that E ⊂ H and dBM(H, `m1 ) < 1 + ε,
where m = dimH.

Proof. Suppose that E = span{xj}nj=1, where ‖xj‖ = 1 for 1 6 j 6 n. Since all norms in
any finite-dimensional linear space are equivalent, there is a constant k > 1 such that∥∥∥∥∥

n∑
j=1

λjxj

∥∥∥∥∥ > k−1 max
16j6n

|λj| (12.3)

for any scalars λ1, . . . , λn. Fix any δ ∈ (0, 1) and define ε = δ/2kn. Since every
element in `1 is a norm limit of a sequence of step functions, there exists a parti-
tion N =

⋃m
j=1Nj, with some non-empty pairwise disjoint sets N1, . . . , Nm, and a set

{yj}nj=1 ∈ F := span{1Nj
: 1 6 j 6 m} such that ‖yj‖ = 1 and ‖xj − yj‖ < ε. It is

evident that F is isometrically isomorphic to `m1 . Therefore, the subspace E is ‘almost’
contained in an isometric copy F of `m1 . Now, we will show that there is an almost
isometric perturbation H of F which contains E and this will complete the proof.
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In view of inequality (12.3), for any scalars λ1, . . . , λn we have∥∥∥∥∥
n∑

j=1

λjyj

∥∥∥∥∥ >

∥∥∥∥∥
n∑

j=1

λjxj

∥∥∥∥∥−
n∑

j=1

|λj| · ‖xj − yj‖

> (k−1 − εn) max
16j6n

|λj| > (2k)−1 max
16j6n

|λj|.

Therefore, by the Hahn–Banach extension theorem there exist functionals x∗j ∈ `∗1 such
that ‖x∗j‖ 6 2k and x∗jyi = δij for all i, j ∈ [n]. Define an operator T : F → `1 by

Tz = z +
n∑

j=1

x∗j(z)(xj − yj).

Obviously, Tyj = xj for each j ∈ [n], thus E is contained in the m-dimensional subspace
H := T (F ) of `1. Moreover, for every z ∈ F we have ‖z‖−2kn·ε‖z‖ 6 ‖Tz‖ 6 ‖z‖+2kn·
ε‖z‖, hence (1− δ)‖z‖ 6 ‖Tz‖ 6 (1 + δ)‖z‖ which yields dBM(H, `m1 ) 6 (1 + δ)/(1− δ).
So, H is the desired perturbation of F and the proof is completed.

Remark 12.8. The same proof works, with obvious changes, for every `p-space with any
p ∈ [1,∞) and, more generally, for every Lp(µ)-space with any non-negative measure µ.
The assertion of Lemma 12.7 says that `1 belongs to the Lindenstrauss–Peďż˝czyďż˝ski
class of L1-spaces (more generally, every Lp(µ)-space is a Lp-space). The interested
reader may consult, e.g., Chapter 5 in [LT73].
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