
Combinatorics in Banach space theory

Lecture 12

The next lemma considerably strengthens the assertion of Lemma 12.6(b).

Lemma 12.9. For every Banach space X and any n ∈ N, either all the numbers n−1bn(X),
cn(X) and dn(X) are equal to 1, or they are all less than 1.

Proof. In view of Lemma 12.6(b), we shall only prove that cn = 1 implies dn = 1 and
dn = 1 implies n−1bn = 1, for every n ∈ N.

First, assume cn = 1 and fix any δ > 0. Then, there exist x1, . . . , xn ∈ X such that∑n
j=1 ‖xj‖2 = n and ∫ 1

0

∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥
2

dt > (1− δ)2 · n2. (12.1)

To show that dn = 1 we need to give an upper estimate for maxj ‖xj‖. Namely, we will
show that

max
16j6n

‖xj‖ 6 1 + 2(δn)1/2. (12.2)

To this end, choose k0 ∈ [n] such that ‖xk0‖ = maxj ‖xj‖ and apply Minkowski’s inequality
to get

n1/2 · ‖xk0‖ =

(
n∑
j=1

‖xk0‖2

)1/2

6

(
n∑
j=1

(
‖xk0‖ − ‖xj‖

)2

)1/2

+

(
n∑
j=1

‖xj‖2

)1/2

. (12.3)

Moreover, by (12.1), we have

n∑
j=1

(
‖xk0‖ − ‖xj‖

)2
6

∑
16i,j6n

(
‖xi‖ − ‖xj‖

)2
= 2n ·

n∑
j=1

‖xj‖2 − 2 ·

(
n∑
j=1

‖xj‖

)2

= 2n2 − 2 ·

(
n∑
j=1

‖xj‖

)2

6 2n2 − 2 ·
∫ 1

0

∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥
2

dt

6 2n2 − 2(1− δ)2n2 6 4δn2,

which, jointly with (12.3), yields the claimed inequality (12.2). Combining this inequality
with (12.1) we get(∫ 1

0

∥∥∥∥∥
n∑
j=1

rj(t)xj

∥∥∥∥∥
2

dt

)1/2

>
1− δ

1 + 2(δn)1/2
· n · max

16j6n
‖xj‖,

whence

dn >
1− δ

1 + 2(δn)1/2
−−−→
δ→0

1.
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In the second part of the proof, we assume dn = 1 and we want to show that n−1bn = 1.
By the definition of dn, we have

sup
(xj)nj=1⊂BX

1

2n

∑
εj=±1

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥
2

= n2. (12.4)

For any sequence (xj)
n
j=1 ⊂ BX pick a sequence (ε̂j)

n
j=1 ∈ {−1, 1}n which minimises the

norm of
∑

j ε̂jxj, that is, ‖
∑

j ε̂jxj‖ 6 bn. Then, we have

1

2n

∑
εj=±1

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥
2

=
1

2n

∥∥∥∥∥
n∑
j=1

ε̂jxj

∥∥∥∥∥
2

+
1

2n

∑
εj=±1

(εj)6=(ε̂j)

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥
2

6
1

2n
(
b2
n + (2n − 1)n2

)
.

Taking the supremum over all sequences (xj)
n
j=1 ⊂ BX , and making use of (12.4), we

obtain n2 6 2−n(b2
n + (2n − 1)n2) which forces bn to be equal to n and completes the

proof.

Proof of Theorem 12.3. The equivalence (i) ⇔ (ii) follows directly from Lemmas 12.4
and 12.5. Hence, both (i) and (ii) are in turn equivalent to (iii), in view of Lemma 12.9.
Now, assuming (iii) choose k ∈ N so that σ := ck < 1. By the submultiplicativity of
(cn)∞n=1 (Lemma 12.6(d)), we have ckr 6 σr for each r ∈ N. For an arbitrary n ∈ N we
may write n = kr + s with some r ∈ N0 and 0 6 s < kr+1− kr. Then, by Lemma 12.6(a),
we have

cn
ckr+1

6

√
kr + s+ 1

kr + s
· . . . · kr+1

kr+1 − 1
=

√
kr+1

kr + s
6

√
kr+1

kr
=
√
k,

whence cn 6
√
k · σr+1 for each n ∈ N, which implies (iv). We have proved so far that

all conditions (i)-(iv) are pairwise equivalent.
Now, assume that any of the conditions (i)-(iv) is satisfied (then, all of them are

satisfied). We will show that if X contains `n1 ’s uniformly and λ > 1 is the uniformity
constant, then bn > λ−1n for every n ∈ N which will give a contradiction.

So, suppose there is a sequence (En)∞n=1 of finite-dimensional subspaces of X such
that for every n ∈ N there exists an isomorphism Un : `n1 → En such that ‖Un‖ = 1
and ‖U−1

n ‖ 6 λ. Fix any n ∈ N and let (εj)
n
j=1 ∈ {−1, 1}n be a sequence of signs that

minimises the norm of
∑n

j=1 εjUn(ej). Then,

n =

∥∥∥∥∥
n∑
j=1

εjej

∥∥∥∥∥
`n1

6 ‖U−1
n ‖ ·

∥∥∥∥∥
n∑
j=1

εjUn(ej)

∥∥∥∥∥
X

6 λ ·

∥∥∥∥∥
n∑
j=1

εjUn(ej)

∥∥∥∥∥
X

= λbn

and so the proof of the implication (i) ⇒ (v) has been completed.
The implication (v) ⇒ (vi) is trivial.
Finally, to complete the proof we shall show that (vi) ⇒ (i). Again, we prove it

by contraposition. So, suppose that X is not B-convex. In light of Lemma 12.7, to
guarantee `1 being finitely representable in X we shall merely show that X contains all
`n1 ’s λ-uniformly, for every λ > 1 (i.e. for every n ∈ N and λ > 1 there exists an n-
dimensional subspace E of X such that dBM(E, `n1 ) 6 λ).
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Fix any n ∈ N and λ > 1, and set δ = 1 − λ−1 ∈ (0, 1). Since X is not B-convex,
there exist x1, . . . , xn ∈ BX such that∥∥∥∥∥

n∑
j=1

εjxj

∥∥∥∥∥ > n− δ for every (εj)
n
j=1 ∈ {−1, 1}n. (12.5)

As shall be expected, the vectors x1, . . . , xn span an ‘almost’ isometric copy of `n1 inside
X. In order to show this, we shall prove that the inequality

1

λ
·

n∑
j=1

|aj| 6

∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥ 6
n∑
j=1

|aj| (12.6)

holds true for arbitrary scalars a1, . . . , an. In fact, this would mean that the sequence
(xj)

n
j=1 is equivalent to the canonical basis (ej)

n
j=1 of `n1 in the sense that there is an isomor-

phism T : span{xj}nj=1 → `n1 satisfying Txj = ej for each j ∈ [n]. Moreover, the estimates
(12.6) would also indicate that ‖T‖ 6 λ and ‖T−1‖ 6 1, thus dBM(span{xj}nj=1, `

n
1 ) 6 λ,

as desired. After these explanations we may proceed to the proof of inequalities (12.6).
The second inequality in (12.6) is obvious, since xj ∈ BX for each j ∈ [n]. For proving

the first one, we may assume with no loss of generality that
∑

j |aj| = 1. Then, in view
of (12.5), we have

n− δ 6

∥∥∥∥∥
n∑
j=1

sgn(aj)xj

∥∥∥∥∥ =

∥∥∥∥∥
n∑
j=1

(
sgn(aj) · (1− |aj|)

)
xj

∥∥∥∥∥
6

n∑
j=1

(1− |aj|) +

∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥ = n− 1 +

∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥,
which gives the first inequality in (12.6). The proof is completed.

Now, when we understand the essence of being B-convex pretty well, we shall quote
the main result from Beck’s paper [Bec62]. We will not prove it here, because it is beyond
the main scope of our interest. However, it must be recalled, since it is a pioneering result
which initiated the study of B-convex spaces.

Recall that if (Ω,Σ, µ) is a measure space and X is a Banach space, then a map
f : Ω → X is called µ-measurable (or µ-strongly measurable), provided that there exists
a sequence (gn)∞n=1 of Σ-measurable step functions such that limn→∞ ‖f − gn‖ = 0 holds
true µ-almost everywhere?. The map f is Bochner integrable if and only if

∫
Ω
‖f‖ dµ <∞;

see [DU77, §II.2]. Now, if (Ω,Σ,P) is a probabilistic space, then any P-measurable function
ξ : Ω→ X is called a random variable. If it is Bochner integrable, then the integral

∫
Ω
ξ dP

is called its expectation value and is denoted as Eξ. We also define the variation D2ξ of
the random variable ξ by D2ξ =

∫
Ω
‖ξ − Eξ‖2 dP. We say that ξ is symmetric, if there

exists a measure preserving map φ : Ω → Ω such that ξ ◦ φ = −ξ. A sequence (ξn)∞n=1

of X-valued random variables is called independent, whenever for every finite sequence

?By the classical Pettis’ measurability theorem, a function f : Ω → X is µ-measurable if and
only if it is essentially separably valued (i.e. for some µ-measure zero set E ∈ Σ the range f(Ω \ E) is
a separable subset of X) and weakly µ-measurable (i.e. for every x∗ ∈ X∗ the scalar function x∗ ◦ f is
Σ-measurable); see [DU77, §II.1].

3



n1 < . . . < nk of natural numbers, and every choice of Borel sets B1, . . . , Bk ⊂ X, we
have

P(ξn1 ∈ B1 ∧ . . . ∧ ξnk
∈ Bk) =

k∏
j=1

P(ξnj
∈ Bj).

The main results of Beck’s paper [Bec62] may be summarised in the following theorem
which, roughly speaking, asserts that the strong law of large numbers forX-valued random
variables is valid if and only if X is B-convex.

Theorem 12.10 (Beck, 1962). Let (Ω,Σ,P) be a probabilistic space and X be a Banach
space. If X is B-convex, then for every independent sequence (ξn)∞n=1 of Bochner integrable
random variables ξn : Ω→ X satisfying Eξn = 0 for n ∈ N and supnD2ξn <∞ we have∥∥∥∥∥ 1

n

n∑
j=1

ξj

∥∥∥∥∥ −−−→n→∞
0 P-almost everywhere.

Moreover, if X fails to be B-convex, then there exists an independent sequence (ξn)∞n=1

of Bochner integrable, symmetric random variables ξn : Ω → X satisfying Eξn = 0 and
‖ξn‖ 6 1 almost everywhere (n ∈ N) and such that

ess sup
Ω

lim sup
n→∞

∥∥∥∥∥ 1

n

n∑
j=1

ξj

∥∥∥∥∥ = 1.

At the end of this section, we derive another infinite-dimensional counterpart of
the Lyapunov convexity theorem for vector measures taking values in B-convex Banach
spaces. The proof is essentially the same as the proof of the quantitative Theorem 11.6;
just instead of Steinitz’s lemma we use the basic property of B-convex spaces.

Theorem 12.11 (V. Kadets, 1991). If µ : Σ → X is a σ-additive, non-atomic vector
measure of bounded variation, defined on a σ-algebra Σ and taking values in a B-convex
Banach space X, then the closure of µ(Σ) is convex.

Proof. Of course, it is enough to show that co(µ(Σ)) = 0. This will follow from Lemma 11.8,
if we prove that for every A ∈ Σ and ε > 0 there exists Aε ⊂ A, Aε ∈ Σ, such that
‖µ(Aε)− 1

2
µ(A)‖ 6 ε. So, fix any A ∈ Σ and ε > 0.

Let M = |µ|(Ω) be the total variation of µ. In view of Proposition 11.2, applied to
the variation of µ, there exists a partition {A1, . . . , An} ∈ Π(A) such that |µ|(Aj) 6 ε
for each j ∈ [n] and n is the least natural number for which nε > |µ|(A). Hence,
(n − 1)ε < |µ|(A) 6 M , so n < ε−1M + 1 < 2ε−1M for ε small enough. Now, repeating
the calculation from the proof of Theorem 11.6, with the notation AJ =

⋃
j∈JAj for

J ⊂ [n], we obtain

min
J⊂[n]

∥∥∥∥∥µ(AJ)− 1

2
µ(A)

∥∥∥∥∥ =
1

2
min
εj=±1

∥∥∥∥∥
n∑
j=1

εjµ(Aj)

∥∥∥∥∥ 6
1

2
bn · max

16j6n
‖µ(Aj)‖ 6

1

2
bnε < Mn−1bn.

By the characterisation of B-convexity (see Theorem 12.3), the last expression goes to
zero as n→∞, thus the proof is completed.
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Remark 12.12. It is by no means straightforward to state what precisely the relation
is between Theorem 12.11 and Uhl’s Theorem 11.10. While it is easy to see that the
latter does not follow from the former (for instance, `1 is a separable dual space which
is not B-convex), it appears to be quite difficult to show that there exists any B-convex
Banach space which is not reflexive (if it was not true, then Theorem 12.11 would be
a direct consequence of Theorem 11.10). In 1964, after discovering that B-convexity
and reflexivity have much in common, James conjectured that every B-convex space is
necessarily reflexive. Some partial confirmation of this conjecture was given in terms of
(k, ε)-convexity. We say that a Banach space X is (k, ε)-convex (for some k > 2 and
ε > 0), if

sup
(xj)kj=1⊂BX

min
εj=±1

∥∥∥∥∥
k∑
j=1

εjxj

∥∥∥∥∥ 6 (1− ε)k.

James [Jam64] showed that (2, ε)-convexity implies reflexivity, for every ε > 0. In 1973,
Giesy confirmed James’ conjecture for Banach lattices ([Gi73]) and then he proved that
for every k > 3 and ε > 1− 9

4
k every (k, ε)-convex Banach space must be reflexive. Finally,

in 1974, James [Jam74] himself disproved his conjecture by constructing a non-reflexive
Banach space XJ such that for some λ > 1 there is no isomorphism T from `3

1 into XJ
satisfying

1

λ
· ‖x‖ 6 ‖Tx‖ 6 λ‖x‖ for x ∈ `3

1

(hence, `1 is not finitely representable in XJ and therefore XJ is B-convex). He im-
proved his construction later in [Jam78]. Consequently, Theorems 11.10 and 12.11 are
incomparable.

13 B-convexity is a 3SP property

In Section 8 we described the general framework for the three-space problem. Now,
we turn our attention to the question whether B-convexity is a 3SP property, to which
an affirmative answer, in the category of Banach spaces, was obtained by Giesy [Gie66].
Precisely saying, if X, Y and Z are all Banach spaces which form a short exact sequence

0→ Y → Z → X → 0

and if X and Y are B-convex, then Z also must be B-convex. Giesy’s result was later
expanded by Kalton [Kal78] who showed that it is not essential to assume that Z is
a Banach space (which is, in fact, equivalent to assuming that Z is locally convex; see
Proposition 13.1 below and recall the classical result, e.g. [Rud91, Theorem 1.39], which
says that a linear topological space is normed iff it is locally bounded and locally convex).
Instead, we may merely assume that Z is a locally bounded F -space (that is, a linear
topological space having a bounded zero neighbourhood and being completely metrisable).
Therefore, for the time being, we move to the world of linear topological spaces (not
necessarily locally convex) and we aim to prove in this section the Kalton–Giesy theorem,
in particular to show how local convexity of Z follows from B-convexity of X and Y in
the exact sequence above.

Let us start with a simple result, due to Roelcke and Dierolf [RD81], which justifies
our interest in locally bounded F -spaces.
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Proposition 13.1 (Roelcke, Dierolf, 1981). Let X be a linear topological space and Y be
a closed subspace of X.

(a) If both Y and X/Y are F -spaces, then so is X.
(b) If both Y and X/Y are locally bounded, then so is X.

Proof. (a): Recall that a linear topological space Z is metrisable if and only if it has
a countable basis of zero neighbourhoods and in such a case there exists an invariant
metric d on Z (i.e. d(x+z, y+z) = d(x, y) for all x, y, z ∈ Z) which is consistent with the
given topology on Z (see [Rud91, Theorem 1.24]). So, there exists a decreasing sequence
(Vn)∞n=1 of open subsets of X such that (Y ∩ Vn)∞n=1 is a basis of zero neighbourhoods in
Y and (π(Vn))∞n=1 is a basis of zero neighbourhoods in X/Y , where π : X → X/Y is the
canonical map. Fix any zero neighbourhood U ⊂ X; we are to prove that Vm ⊂ U for
some m ∈ N.

Pick any zero neighbourhood W ⊂ X with W + W ⊂ U . There exist m,n ∈ N with
m > n such that

Y ∩ Vn ⊂ W and π(Vm) ⊂ π(W ∩ Vn+1),

hence Vm ⊂ (W ∩ Vn+1) + Y . Fix any v ∈ Vm; v = w + y for some w ∈ W ∩ Vn+1 and
y ∈ Y . Then

y = v − w ∈ Y ∩ [Vm − (W ∩ Vn+1)] ⊂ Y ∩ (Vm − Vn+1)

and, consequently,

Vm ⊂ (W ∩ Vn+1) ∩ [Y ∩ (Vm − Vn+1)] ⊂ (W ∩ Vn+1) + [Y ∩ (Vn+1 − Vn+1)]

⊂ (W ∩ Vn+1) + (Y ∩ Vn) ⊂ W +W ⊂ U.

Therefore, (Vn)∞n=1 is a (countable) basis of zero neighbourhoods in X.
Now, assume that Y and X/Y are F -spaces and let dX be an invariant metric on X.

Then, the formula

dX/Y (π(x), π(y)) = inf{dX(x− y, z) : z ∈ Y } (13.1)

defines an invariant metric on X/Y which is consistent with the quotient topology on
X/Y (see [Rud91, Theorem 1.41]). It follows that if (xn)∞n=1 is a Cauchy sequence in X,
then (π(xn))∞n=1 is a Cauchy sequence in X/Y . Hence, there exists ξ ∈ X/Y such that
limn→∞ dX/Y (π(xn), ξ) = 0. Choose any x0 ∈ X with ξ = π(x0). Then, in view of formula
(13.1), there exists a sequence (zn)∞n=1 ⊂ Y satisfying limn→∞ dX(xn − x0, zn) = 0. The
inequality

dX(zn, zm) 6 dX(xn − x0, zn) + dX(xm − x0, zm) + dX(xn, xm)

shows that (zn)∞n=1 is a Cauchy sequence in Y and hence it is convergent to some z0 ∈ Y .
Then limn→∞ dX(xn − x0, z0) = 0, thus the sequence (xn)∞n=1 converges to x0 + z0.

(b): Assume that both Y and X/Y are locally bounded. Then, there is a zero neigh-
bourhood U ⊂ X such that both π(U) and Y ∩U are bounded. Let V ⊂ X be a balanced
zero neighbourhood such that V +V ⊂ U . We claim that V is bounded. Assume not and
let (xn)∞n=1 be a sequence in V such that ( 1

n
xn)∞n=1 is unbounded. Then 1

n
π(xn)→ 0 and

hence 1
n
xn + yn → 0 for some sequence (yn)∞n=1 ⊂ Y . Therefore, for n’s large enough we

have 1
n
xn + yn ∈ V , so yn ∈ V − 1

n
V ⊂ V + V ⊂ U , which means that (yn)∞n=1 is bounded

and forces the sequence ( 1
n
xn)∞n=1 to be bounded as well; a contradiction.
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To prepare for the proof of the Kalton–Giesy theorem we need to recall some material
on geometric properties of locally bounded spaces.

Definition 13.2. Let X be a real or complex vector space. By a quasi-norm we mean
any function X 3 x 7→ ‖x‖ that satisfies the following three conditions:

(i) ‖x‖ > 0 for every x ∈ X, x 6= 0;
(ii) ‖λx‖ = |λ| · ‖x‖ for every x ∈ X and every scalar λ;
(iii) ‖x+ y‖ 6 k · (‖x‖+ ‖y‖) for all x, y ∈ X, where k > 1 is a constant independent of

x and y. Any such constant is called the modulus of concavity of X.

The class of quasi-normed spaces and the class of locally bounded spaces coincide. In
fact, if X is quasi-normed by a quasi-norm ‖ · ‖, then the collection {εBX : ε > 0}, where
BX = {x ∈ X : ‖x‖ 6 1}, is a base of bounded zero neighbourhoods for some linear
topology on X. Conversely, if X is a locally bounded linear topological space, then the
Minkowski functional of any bounded, balanced zero neighbourhood defines a quasi-norm
on X which is consistent with the original topology.

For quasi-normed spaces the notions of equivalent norms, quotient space, operator
norm etc. are defined in a very the same way as for normed spaces.

Definition 13.3. Let X be a quasi-normed space and 0 < p 6 1. We say that X is locally
p-convex, provided that there exists a quasi-norm ‖ · ‖ on X, equivalent to the original
one, such that

‖x+ y‖p 6 ‖x‖p + ‖y‖p for all x, y ∈ X.
In such a case, the quasi-norm ‖ · ‖ is called a p-norm.

Let us now quote the fundamental result proved independently by Aoki and Rolewicz.
The proof of the version presented below is explained in details in the hint to [Gra08,
Exercise 1.4.6].

Theorem 13.4 (Aoki, 1942 & Rolewicz, 1957). Let ‖ · ‖ be a quasi-norm on a vector
space X with modulus of concavity k > 1 and let 0 < p 6 1 be the solution of (2k)p = 2.
Then, there exists a p-norm | · | on X which is equivalent to ‖ · ‖. More precisely, the
quasi-norm ‖ · ‖ satisfies the inequality

‖x1 + . . .+ xn‖p 6 4
(
‖x1‖p + . . . ‖xn‖p

)
for all x1, . . . , xn ∈ X

and the quasi-norm | · | given by the formula

|x| = inf

{( n∑
j=1

‖xj‖p
)1/p

: x1, . . . , xn ∈ X and x =
n∑
j=1

xj

}

is a p-norm equivalent to ‖ · ‖.

Let X be a quasi-normed space and ‖ · ‖ be a quasi-norm on X. Certainly, all the
formulas defining the quantities: an(X), bn(X), cn(X) and dn(X) (see Section 12) make
sense in this more general setting. We are ready to make the first essential step towards
the proof of the Kalton–Giesy theorem.

Proposition 13.5 (Kalton, 1978). A quasi-normed space X is locally convex if and only
if supn n

−1an(X) <∞.
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Proof. The ‘only if’ part is obvious. For the ‘if’ part the only thing to be proved is that the
convex hull of the unit ball {x ∈ X : ‖x‖ 6 1} is bounded. So, assume there is a constant
C < ∞ such that an 6 Cn for each n ∈ N and fix arbitrary vectors x1, . . . , xn ∈ X with
‖xj‖ 6 1 (for j ∈ [n]) and arbitrary non-negative numbers α1, . . . , αn with

∑n
j=1 αj = 1.

For every j ∈ [n] and m ∈ N set kj,m = bmαjc. Plainly, limm→∞m
−1kj,m = αj. For

every m ∈ N we have ∥∥∥∥∥
n∑
j=1

kj,mxj

∥∥∥∥∥ 6 a∑n
j=1 kj,m

6 C ·
n∑
j=1

kj,m,

hence ∥∥∥∥∥
n∑
j=1

kj,m
m

xj

∥∥∥∥∥ 6 C.

Letting m→∞, and denoting k the modulus of concavity, we arrive at∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥ 6 k ·

(∥∥∥∥∥
n∑
j=1

kj,m
m

xj

∥∥∥∥∥+

∥∥∥∥∥
n∑
j=1

(
αj −

kj,m
m

)
xj

∥∥∥∥∥
)

6 k · C + k ·

∥∥∥∥∥
n∑
j=1

(
αj −

kj,m
m

)
xj

∥∥∥∥∥ −−−→m→∞
k · C,

so the result follows.
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