
Combinatorics in Banach space theory

Lecture 13

Proposition 13.6 (Kalton, 1978). Let X be a quasi-normed space. If limn→∞ n
−1bn(X) =

0, then supn n
−1an(X) <∞ and hence X is isomorphic to a B-convex Banach space.

Proof. First, by the Aoki–Rolewicz Theorem 13.4, we may (and we do) assume that the
given norm on X is a p-norm for some p ∈ (0, 1] (that is, ‖x + y‖p 6 ‖x‖p + ‖y‖p for
all x, y ∈ X) because passing to an equivalent quasi-norm does not affect the condition
limn→∞ n

−1bn(X) = 0.
We claim that the following inequality holds true:

ap2n 6 2papn + bp2n for every n ∈ N. (13.1)

For let (xj)
2n
j=1 be an arbitrary sequence in the unit ball of X and let (εj)

2n
j=1 ∈ {−1, 1}2n

be chosen so that ∥∥∥∥∥
2n∑
j=1

εjxj

∥∥∥∥∥ 6 b2n.

Define E+ = {j ∈ [2n] : εj = +1} and E− = {j ∈ [2n] : εj = −1} and assume, with no
loss of generality, that |E+| 6 n. Then, we have

2n∑
j=1

xj = 2
∑
j∈E+

xj −
2n∑
j=1

εjxj,

hence ∥∥∥∥∥
2n∑
j=1

xj

∥∥∥∥∥
p

6 2p ·

∥∥∥∥∥∑
j∈E+

xj

∥∥∥∥∥
p

+ bp2n 6 2papn + bp2n

and passing to the supremum over all choices of (xj)
2n
j=1 we get the claimed inequality.

Now, let αn = 2−na2n and βn = 2−nb2n for n ∈ N, so that inequality (13.1) translates
into

αpn+1 − αpn 6 βpn+1 for every n ∈ N. (13.2)

In view of Lemmas 12.4 and 12.5, there are some constant c > 0 and q > 1 such that
bn 6 cn1/q for n ∈ N, thus βn 6 c · 2−n(1−1/q). Consequently, the series

∑∞
n=1 β

p
n converges

which, jointly with inequality (13.2), implies that the sequence (αn)∞n=1 is bounded. This
easily implies that the sequence (n−1an)∞n=1 is also bounded, as we shall now demonstrate.

So, let d > 0 satisfy αn 6 d for all n ∈ N. For any natural number m write m = 2k + r
with k ∈ N0 and 0 6 r < 2k. Then, n−1an 6 n−1a2k+1 = n−12k+1 · αk+1 6 2d, so the first
part of our assertion has been proved.

In light of Proposition 13.5, X is isomorphic to a Banach space which is B-convex
because the condition limn→∞ n

−1bn(X) = 0 remains true for any equivalent (quasi-)norm
on X.

We are now prepared to prove the Kalton–Giesy theorem.
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Theorem 13.7 (Giesy, 1966 & Kalton, 1978). Being isomorphic to a B-convex Banach
space is a 3SP property in the category of quasi-normed spaces. In other words, if X is
a quasi-normed space and Y is a closed subspace of X such that both Y and X/Y are
isomorphic to a B-convex Banach space, then X is also isomorphic to a B-convex Banach
space.

Proof. According to Theorem 12.3, we have limn→∞ cn(Y ) = 0 and limn→∞ cn(X/Y ) = 0,
where the quasi-norms considered in Y and X/Y may be assumed to be actually norms
(these two equalities remain true after passing to any equivalent quasi-norms). In view
of Proposition 13.6, our job is to prove that limn→∞ n

−1bn(X) = 0. To this end, it is
enough to show that for at least one n ∈ N we have cn < 1. Indeed, in such a case for all
x1, . . . , xn ∈ BX we have

1

2n

∑
εj=±1

∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥
2

6 n2c2n < n2.

Hence, for some choice of (εj)
n
j=1 ∈ {−1, 1}n we must have ‖

∑
j εjxj‖ < n, so bn < n and

the desired inequality follows now from Lemmas 12.4 and 12.5.
Fix any m,n ∈ N, {xij : i ∈ [m], j ∈ [n]} ⊂ BX and let {θij : i ∈ [m], j ∈ [n]} be

the set of the first mn Rademacher functions (rj)
∞
j=1 on [0, 1]. We want to find an upper

bound for cmn, thus we shall estimate the average

1

2mn

∑
εij=±1

∥∥∥∥∥ ∑
16i6m
16j6n

εijxij

∥∥∥∥∥
2

=

∫ 1

0

∥∥∥∥∥ ∑
16i6m
16j6n

θij(t)xij

∥∥∥∥∥
2

dt. (13.3)

Define

ui(t) =
n∑
j=1

θij(t)xij for i ∈ [m] and t ∈ [0, 1]

and

A(t) =

{∫ 1

0

∥∥∥∥∥
m∑
i=1

ri(s)ui(t)

∥∥∥∥∥
2

ds

}1/2

for t ∈ [0, 1],

and notice that the both sides of equality (13.3) are equal to
∫ 1

0
|A(t)|2 dt (see the proof of

Lemma 12.6(d)). Since each ui(t) is an X-valued step function, there are step functions
vi : [0, 1] → Y such that ‖ui(t) + vi(t)‖ 6 2‖π(ui(t))‖ for each i ∈ [m]. Hence, denoting
by k the modulus of concavity of the underlying quasi-norm on X, we obtain

‖vi(t)‖ 6 k ·
(
‖ui(t) + vi(t)‖+ ‖ui(t)‖

)
6 3k‖ui(t)‖ for i ∈ [m] and t ∈ [0, 1]

and∥∥∥∥∥
m∑
i=1

ri(s)ui(t)

∥∥∥∥∥ 6 k ·

(∥∥∥∥∥
m∑
i=1

ri(s)
(
ui(t) + vi(t)

)∥∥∥∥∥+

∥∥∥∥∥
m∑
i=1

ri(s)vi(t)

∥∥∥∥∥
)

for s, t ∈ [0, 1].

2



Therefore, using Minkowski’s inequality and the definition of the numbers cm(X) and
cm(Y ), we get

A(t) 6 k ·

{∫ 1

0

∥∥∥∥∥
m∑
i=1

ri(s)
(
ui(t) + vi(t)

)∥∥∥∥∥
2

ds

}1/2

+ k ·

{∥∥∥∥∥
m∑
i=1

ri(s)vi(t)

∥∥∥∥∥
2

ds

}1/2

6 k
√
m ·

[
cm(X) ·

(
m∑
i=1

‖ui(t) + vi(t)‖2
)1/2

+ cm(Y ) ·

(
m∑
i=1

‖vi(t)‖2
)1/2]

6 k
√
m ·

[
2cm(X) ·

(
m∑
i=1

‖π(ui(t))‖2
)1/2

+ 3kcm(Y ) ·

(
m∑
i=1

‖ui(t)‖2
)1/2]

.

Applying Minkowski’s inequality once again, we get{∫ 1

0

|A(t)|2 dt

}1/2

6 k
√
m ·

[
2cm(X) ·

(
m∑
i=1

∫ 1

0

‖π(ui(t))‖2 dt

)1/2

+ 3kcm(Y ) ·

(
m∑
i=1

∫ 1

0

‖ui(t)‖2 dt

)1/2]

6 k
√
mn ·

[
2cm(X)cn(X/Y ) ·

(
m∑
i=1

n∑
j=1

‖π(xij)‖2
)1/2

+ 3kcm(Y )cn(X) ·

(
m∑
i=1

n∑
j=1

‖xij‖2
)1/2]

.

Consequently,

cmn(X) 6 k ·
(
2cm(X)cn(X/Y ) + 3kcm(Y )cn(X)

)
for all m,n ∈ N,

whence, in particular,

cm2(X) 6
(
2kcm(X/Y ) + 3k2cm(Y )

)
· cm(X) for every m ∈ N.

By the assumption, the term in the bracket above goes to zero, thus cm(X) < 1 for m’s
large enough. As it was explained before, this inequality concludes the proof.

Let us stress once again that the local convexity of X in the above theorem was a part
of the assertion, not a part of the assumption. This suggests to ask whether B-convexity
of the subspace Y and the quotient X/Y is really essential to derive the local convexity of
X. In other words, we may ask whether local convexity is a 3SP property in the category
of locally bounded F -spaces. This way, we can smoothly move to our next subject, that
is, K-spaces.

14 K-spaces

In order to build an example, which would show that Y and X/Y may be both locally
convex despite the fact that X is not locally convex, it is most natural to set Y or X/Y to
be `1, the canonical instance of a non-B-convex Banach space. In fact, we will be looking
for a ‘non-trivial’ exact sequence of the form 0 → R → Z → `1 → 0. To put this into
action, we need a few notions from the theory of twisted sums.
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Definition 14.1. Let X and Y be linear topological spaces. By a twisted sum of Y and X
(the order is important) we mean any exact sequence of the form 0→ Y → Z → X → 0.

If Z is a linear topological space that contains a subspace Y1 isomorphic to Y such that
Z/Y1 ' X, then sometimes Z itself is called a twisted sum, provided that the structure
of the underlying exact sequence is known from the context. However, let us stress that
what is really hidden behind a twisted sum of Y and X is not only the space Z as above,
but also the way in which Y embeds into Z. Plainly, we may always produce the trivial
(in fact, direct) twisted sum Y ⊕X together with the exact sequence

0 −→ Y
i−→ Y ⊕X q−→ X −→ 0, (14.1)

where i is the canonical injection from Y into Y ⊕X and q is the canonical quotient map
from Y ⊕X onto X.

Definition 14.2. We say that two exact sequences (twisted sums) of linear topological
spaces 0 → Y → Z1 → X → 0 and 0 → Y → Z2 → X → 0 are equivalent if there exists
a continuous linear operator T : Z1 → Z2 such that the diagram

0 // Y // Z1
//

T
��

X // 0

0 // Y // Z2
// X // 0

is commutative.

One may easily prove that T in the diagram above must be bijective (the ‘3-lemma’
in [CG97, §1.1]) and hence the Open Mapping Theorem forces T to be an isomorphism,
provided that X and Y are F -spaces (then, in view of Proposition 13.1, Z1 and Z2 are
also F -spaces).

Definition 14.3. We say that an exact sequence 0 → Y → Z → X → 0 of linear
topological spaces Y and X splits (or that this twisted sum is trivial), if it is equivalent
to the direct sum (14.1).

Proposition 14.4. Let X and Y be F -spaces and 0 −→ Y
i−→ Z

q−→ X −→ 0 be
an exact sequence. Splitting of this sequence is equivalent to any one of the following
mutually equivalent conditions:

(i) i admits a retraction, that is, a continuous linear map r : Z → Y such that r◦i = IY ;
(ii) q admits a lifting, that is, a continuous linear map s : X → Z such that q ◦ s = IX ;

(iii) the subspace i(Y ) is complemented in Z.

0 // Y i // Z
q //

r��

X // 0

Y X

s

``

Proof. First, note that by the Open Mapping Theorem and the exactness of the sequence
above, i(Y ) is isomorphic to Y . The clause (i) is nothing else but a precise way of saying
that i(Y ) is complemented in Z, so clauses (i) and (iii) are tautologically equivalent.
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We will show that clause (i) is equivalent to splitting of the given exact sequence; the
analogous equivalence for clause (ii) is left to the reader.

Suppose that the exact sequence above splits and let T be an isomorphism which
makes the diagram below commute:

0 // Y
i // Z

q //

r

{{
T
��

X // 0

0 // Y
j // Y ⊕X πX // X // 0

where j and πX are the canonical injection and projection, respectively. Let πY : Y ⊕X →
Y be the canonical projection onto the Y -coordinate and define r : Z → Y as r = πY ◦ T .
Then, r ◦ i = πY ◦ T ◦ i = πY ◦ j = IY , thus r is a retraction of i.

Conversely, assume r : Z → Y is a retraction of i. Then, z − i(r(z)) ∈ ker(r) and
i(r(z)) ∈ i(Y ) for every z ∈ Z. Hence, we have the decomposition Z = ker(r) + i(Y )
given by z = i(r(z)) + (z − i(r(z))). Moreover, both ker(r) and i(Y ) = ker(q) are closed
subspaces of Z and whenever z ∈ i(Y ), z = i(y) for some y ∈ Y , we have z − i(r(z)) =
i(y) − i(r(i(y))) = i(y) − i(y) = 0 which proves that Z = ker(r) ⊕ i(Y ). Therefore, the
restriction q|ker(r) yields an injective continuous linear map from ker(r) onto X which, in
view of the Open Mapping Theorem, is an isomorphism. Finally, using the identifications
ker(r) ' X and i(Y ) ' Y , it is straighforward to define an isomorphism T : Z → Y ⊕X
for which the corresponding diagram, like the one above, commutes.

One more word of warning: a glance at condition (iii) may suggest that a given
exact sequence, like the one in Proposition 14.4, splits whenever Y is (isomorphic to)
a complemented subspace of Z. This is resoundingly false. One may even construct
a non-trivial twisted sum which is of the form 0→ X → X⊕X → X → 0 with a certain,
single Banach space X. Such an example follows from a negative answer to Harte’s
problem; see Appendix 1.10 in [CG97]. Again, while comparing a given exact sequence
to the trivial one (14.1), not only is it important that Y is a complemented subspace of
X, but also the way in which Y sits inside X.

The first construction of a non-trivial twisted sum of R and `1 was given, indepen-
dently, by Kalton [Kal78], Ribe [Rib79] and Roberts [Rob77]. It involves a brilliant idea
of using so-called quasi-linear maps which was later developed by Kalton and Peck [KP79]
to give fundamentals of the theory of twisted sums. This is an appropriate moment to
define that class of maps.

Definition 14.5. Let X and Y be quasi-normed spaces. We say that a map f : X → Y
is quasi-linear, if it is homogeneous (i.e. f(λx) = λf(x) for any x ∈ X and any scalar λ)
and there exists a constant c <∞ such that

‖f(x+ y)− f(x)− f(y)‖ 6 c
(
‖x‖+ ‖y‖

)
for all x, y ∈ X. (14.2)

The map f is called zero-linear, if it is homogeneous and satisfies the following, stronger
inequality:∥∥∥∥∥f(

n∑
j=1

xj

)
−

n∑
j=1

f(xj)

∥∥∥∥∥ 6 C
n∑
j=1

‖xj‖ for all n ∈ N and x1, . . . , xn ∈ X,

with some constant C <∞.
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It is easily verified that f is zero-linear if and only if there is a constant C ′ <∞ such
that ∥∥∥∥∥

n∑
j=1

f(xj)

∥∥∥∥∥ 6 C ′
n∑
j=1

‖xj‖ whenever
n∑
j=1

xj = 0,

and the the zero-linearity constant C in Definition 14.5 satisfies C 6 2C ′.

Theorem 14.6 (Kalton, Ribe, Roberts, 1977-79). There exists a non-locally convex
twisted sum of R and `1.

Proof. Let c00 be the linear space of all finitely supported real sequences, considered
with the `1-norm, so that c00 becomes a dense subspace of `1. Our intention is to define
a quasi-linear, but not zero-linear, map F : c00 → R.

First, define a function ϕ : R→ R by ϕ(t) = t·log |t| (with the convention 0·log 0 = 0).
For any s, t > 0 the concavity of the logarithm yields:

|ϕ(s+ t)− ϕ(s)− ϕ(t)| = s · log
s+ t

s
+ t · log

s+ t

t

= (s+ t) ·
( s

s+ t
· log

s+ t

s
+

t

s+ t
· log

s+ t

t

)
6 (s+ t) · log 2.

If s > 0, t < 0 and s+ t > 0 then, since ϕ is an odd function, we get

|ϕ(s+ t)− ϕ(s)− ϕ(t)| = |ϕ(s)− ϕ(−t)− ϕ(s+ t)| 6 (s− t) · log 2.

Arguing similarly in any other case, we conclude that

|ϕ(s+ t)− ϕ(s)− ϕ(t)| 6
(
|s|+ |t|

)
· log 2 for all s, t ∈ R. (14.3)

Now, we define a map f : c00 → R by

f(x) =
∞∑
j=1

xj log |xj| −
( ∞∑
j=1

xj

)
log
∣∣∣ ∞∑
j=1

xj

∣∣∣ for every x = (xj)
∞
j=1 ∈ c00.

Fix any x, y ∈ c00 and choose N ∈ N so that xj = yj = 0 for all j > N . In view of
inequality (14.3), we have

|f(x+ y)− f(x)− f(y)|

=

∣∣∣∣∣
N∑
j=1

ϕ(xj + yj)− ϕ
( N∑
j=1

(xj + yj)
)
−

N∑
j=1

ϕ(xj)−
N∑
j=1

ϕ(yj)+ϕ
( N∑
j=1

xj

)
+ϕ
( N∑
j=1

yj

)∣∣∣∣∣
6

N∑
j=1

|ϕ(xj + yj)− ϕ(xj)− ϕ(yj)|+

∣∣∣∣∣ϕ(
N∑
j=1

(xj + yj)
)
− ϕ

( N∑
j=1

xj

)
− ϕ

( N∑
j=1

yj

)∣∣∣∣∣
6 log 2 ·

N∑
j=1

(
|xj|+ |yj|

)
+ log 2 ·

(∣∣∣∣∣
N∑
j=1

xj

∣∣∣∣∣+

∣∣∣∣∣
N∑
j=1

yj

∣∣∣∣∣
)

6 2 log 2 ·
N∑
j=1

(
|xj|+ |yj|

)
= 2 log 2 ·

(
‖x‖+ ‖y‖

)
,
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which means that f is quasi-linear.
Define Z0 = R⊕ c00 and let

‖(t, x)‖f := ‖x‖+ |t− f(x)| for (t, x) ∈ Z0.

The so-defined function ‖·‖f is obviously positive for non-zero (t, x) ∈ Z0 and is positively
homogeneous. Moreover, by the just proved quasi-linearity of f , we easily get

‖(s+ t, x+ y)‖f 6
(
1 + 2 log 2

)
·
(
‖(s, x)‖f + ‖(t, y)‖f

)
for (s, x), (t, y) ∈ Z0.

Therefore, ‖ · ‖f is a quasi-norm on Z0 with modulus of concavity 1 + 2 log 2. Let d
be any invariant metric on Z0 which is equivalent to that quasi-norm (for instance,
d(x,y) = |||x − y|||p for x,y ∈ Z0, where ||| · ||| is a p-norm produced by the Aoki–
Rolewicz Theorem 13.4) and let Z be the completion of Z0 with respect to that metric. It
is evident that Z is a quasi-normed space with a quasi-norm (still denoted ‖·‖f ) defined

in the obvious way. Plainly, the continuous and linear map Z0 3 (t, x)
q7−−→ x ∈ c00 ⊂ `1

extends uniquely to a continuous and linear operator having the range `1 and the kernel

{(t, 0) : t ∈ R} which is in turn equal to the range of the map R 3 t i7−−→ (t, 0) ∈ Z0 ⊂ Z.
Consequently, the quasi-normed space Z gives rise to a twisted sum

0 −→ R i−→ Z
q−→ `1 −→ 0.

Suppose Z is locally convex, that is, there exists a norm ‖·‖ on Z which is equivalent to
the quasi-norm ‖·‖f ; with no loss of generality we may assume that ‖x‖ 6 ‖x‖f 6M ·‖x‖
for every x ∈ Z and some constant M > 1. Then, for all x1, . . . , xn ∈ c00 which satisfy∑

j xj = 0 we have∣∣∣∣∣
n∑
j=1

f(xj)

∣∣∣∣∣ =

∥∥∥∥∥
n∑
j=1

(f(xj), xj)

∥∥∥∥∥
f

6M
n∑
j=1

‖(f(xj), xj)‖f = M
n∑
j=1

‖xj‖,

which would imply that f is zero-linear. However, it is not true because f(ej) = 0 for
each j ∈ N,

∑n
j=1 ‖ej‖ = n for any n ∈ N, but f(

∑n
j=1 ej) = n log n. Consequently, Z is

not locally convex and the proof is completed.

Definition 14.7. A Banach space X is called a K-space, if every twisted sum of R and
X is trivial.

In other words, X is a K-space if and only if every quasi-normed space Z for which
there exists an exact sequence 0 → R → Z → X → 0 is locally convex. Indeed, if that
exact sequence splits, then Z is isomorphic to the direct sum R⊕X which is locally convex.
Conversely, if Z happens to be locally convex, then every finite-dimensional subspace of Z
is complemented?; in particular, every copy of R inside Z is complemented which means
that every exact sequence 0→ R→ Z → X → 0 splits. The Kalton–Giesy Theorem 13.7
implies that every B-convex space (like each `p with 1 < p < ∞) is a K-space, whereas
Theorem 14.6 says that `1 is not a K-space. Now, the question arises whether there

?See, e.g, [Rud91, Lemma 4.21]. The proof of this fact requires the Hahn–Banach theorem. This is
why the local convexity of Z is important. On the other hand, every finite-codimensional subspace of
a linear topological space is always complemented.
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are any K-spaces which are not B-convex. What springs to mind are the two natural
candidates: c0 and `∞. In order to prove that they are, in fact, both K-spaces, we need to
develop quite sophisticated combinatorial techniques. But before that, we shall see that
the method of the proof of Theorem 14.6 carries over to more general situations. The
following result comes from [Kal78].

Theorem 14.8 (Kalton, 1978). Let X and Y be complete quasi-normed spaces and X0

be a dense subspace of X. Then, the following assertions are equivalent:

(i) every twisted sum of Y and X splits;
(ii) for every quasi-linear map f : X0 → Y there exist a linear (not necessarily continu-

ous) map h : X0 → Y and L <∞ such that

‖f(x)− h(x)‖ 6 L‖x‖ for every x ∈ X0;

(iii) there is a constant B < ∞ such that for every quasi-linear map f : X0 → Y there
exists a linear (not necessarily continuous) map h : X0 → Y such that

‖f(x)− h(x)‖ 6 B ·∆(f)‖x‖ for every x ∈ X0,

where ∆(f) stands for the least possible constant c > 0 for which inequality (14.2)
holds true.

Proof of the implication (iii) ⇒ (i). Assume Z is a (complete) quasi-normed space which
produces an exact sequence

0 −→ Y
i−→ Z

q−→ X −→ 0

and let T : ker(q) → Y be an isomorphism. There exists a linear (we do not require any
continuity at the moment) lifting ρ : X → Z of q, that is, q◦ρ = IX . Since q is a surjective
operator, the Open Mapping Theorem implies that there is a constant C < ∞ so that
for any x ∈ X we may pick z ∈ Z for which q(z) = x and ‖z‖ 6 C‖x‖. Therefore, there
is a map σ : X → Z satisfying q ◦ σ = IX , σ(λx) = λσ(x) and ‖σ(x)‖ 6 C‖x‖ for any
x ∈ X and any scalar λ. Define a map f : X → Y by f(x) = T (σ(x) − ρ(x)); note that
the difference σ(x)− ρ(x) always lies in ker(q). Plainly, f is homogeneous and

‖f(x+ y)− f(x)− f(y)‖ = ‖T (σ(x+ y)− σ(x)− σ(y))‖
6 k2C · ‖T‖ · (‖x+ y‖+ ‖x‖+ ‖y‖) 6 2k3C · ‖T‖ · (‖x‖+ ‖y‖),

where k is the modulus of concavity of the quasi-norm on Y . Hence, f is quasi-linear.
By (iii), there exist a constant L <∞ and a linear map h : X0 → Y such that

‖f(x)− h(x)‖ 6 L‖x‖ for x ∈ X0.

Define s : X0 → Z by s(x) = ρ(x) + T−1h(x); this is a linear map. Since

s(x) = ρ(x) + T−1f(x) + T−1(h(x)− f(x)) = σ(x) + T−1(h(x)− f(x)),

for every x ∈ X0 we have

‖s(x)‖ 6 k ·
(
‖σ(x)‖+ ‖T−1‖ · ‖h(x)− f(x)‖

)
6 k ·

(
C + ‖T−1‖ · L

)
· ‖x‖,

which shows that s is continuous. Therefore, there is a continuous and linear extension
S : X → Z of s. Of course, q ◦ S = IX which means that S is a lifting of q. An appeal to
Proposition 14.4 completes the proof.
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