
Combinatorics in Banach space theory

Lecture 14

15 c0 and `∞ are K-spaces

The crucial role in proving that c0 and `∞ are K-spaces is played by the following Kalton–
Roberts theorem [KR83] on nearly additive set functions.

Theorem 15.1 (Kalton, Roberts, 1983). There is an absolute constant K < 45 with the
following property: For every set algebra F and every function ν : F → R that satisfies

|ν(A ∪B)− ν(A)− ν(B)| 6 1 for A,B ∈ F with A ∩B = ∅

there exists a finitely additive measure µ : F → R such that |ν(A)− µ(A)| 6 K for each
A ∈ F .

We already know from Kalton’s Theorem 14.8 that X being a K-space is equivalent
to every real-valued quasi linear map on X being approximated, in an appropriate sense,
by a linear map. The aim of the present section is to show how this type of stability
effect for quasi-linear maps on c0 and `∞ follows from Theorem 15.1, whose proof will be
postponed until the next section.

As a matter of fact, the Kalton–Roberts theorem implies that every quotient of a L∞-
space is a K-space (see [KR82, Theorem 6.5]). We will not go into such generality here;
however, we shall start with a lemma, which is an analogue of Lemma 12.7, and which
may be restated by saying that C(K)-spaces, in particular c0 ' C[0, ω] and `∞ ' C(βN),
are L∞-spaces.

Lemma 15.2. Let K be a compact Hausdorff space. For every finite-dimensional subspace
E of C(K) and every ε > 0 there exists another finite-dimensional subspace H of C(K)
such that E ⊂ H and dBM(H, `m∞) < 1 + ε, where m = dimH.

Proof. Let E = span{fj}nj=1, where ‖fj‖ = 1 for 1 6 j 6 n. Let {Vi}mi=1 be an open
covering of K such that none of Vi’s is contained in the union of all the others and every
fj varies by at most ε on each Vi, where ε > 0 is an arbitrarily small fixed number. Let
{ϕi}mi=1 be a partition of unity corresponding to the covering {Vi}mi=1, that is, ϕi ∈ C(K),
0 6 ϕi 6 1, supp(ϕi) ⊂ Vi for each i ∈ [m] and

∑m
i=1 ϕi(x) ≡ 1 on K. Plainly, for

all scalars λ1, . . . , λm we have ‖
∑m

i=1 λiϕi‖ = max16i6m |λi|, hence the subspace F :=
span{ϕi}mi=1 of C(K) is isometrically isomorphic to `m∞. To see that each fj lies near to
H, for every i ∈ [m] pick any number ξij ∈ fj(Vi) and define gj =

∑m
i=1 ξijϕi. For any

x ∈ K let Ix = {i ∈ [m] : x ∈ Vi}; then

∣∣fj(x)− gj(x)
∣∣ =

∣∣∣∣∣fj(x)−
∑
i∈Ix

ξijϕi(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈Ix

ϕi(x) · (fj(x)− ξij)

∣∣∣∣∣ 6 ε.

Therefore ‖fj − gj‖ 6 ε, so each fj is ‘almost’ contained in the isometric copy F of `m∞.
The rest of the argument, which produces a small perturbation of F containing E, follows
the line of the proof of Lemma 12.7.
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Remark 15.3. To be precise, the property described in the assertion of Lemma 15.2
defines L∞,1+ε-spaces (with any ε > 0). If we replace 1 + ε by some fixed number λ > 1,
then the resulting condition defines L∞,λ-spaces, and L∞-spaces are defined as those
being L∞,λ for some λ > 1. Since c0 is not isometrically isomorphic to C[0, ω], we cannot
conclude directly from Lemma 15.2 that it is L∞,1+ε for every ε > 0. Nonetheless, it is
easily seen that the ‘partition’ + ‘perturbation’ argument goes through for every C0(K)-
space? with K being locally compact and Hausdorff. Therefore c0, being isometrically
isomorphic to C0[0, ω), is a L∞,1+ε-space, with every ε > 0.

Now, using the Kalton–Roberts theorem, we prove that quasi-linear maps defined on
`n∞-spaces may be approximated by linear ones. Subsequently, as a quick corollary, we
will prove that L∞-spaces are K-spaces.

Proposition 15.4 (Kalton, Roberts, 1983). Let Ω be a finite, non-empty set and let
f : `∞(Ω) → R be a quasi-linear map with quasi-linearity constant c (that is, f and c
satisfy inequality (14.2)). Then, there exists a linear map h : `∞(Ω)→ R such that

|f(x)− h(x)| 6 188 c · ‖x‖ for every x ∈ `∞(Ω).

Proof. Define ν : PΩ→ R by ν(A) = f(1A). Then, for all disjoint A,B ⊂ Ω we have

|ν(A ∪B)− ν(A)− ν(B)| = |f(1A + 1B)− f(1A)− f(1B)| 6 c · (‖1A‖+ ‖1B‖) 6 2c

and hence Kalton–Roberts Theorem 15.1 produces a finitely additive measure µ : PΩ→ R
such that |ν(A)− µ(A)| 6 90c for every A ⊂ Ω. Let h : `∞(Ω)→ R be the natural linear
extension of ν and let g = f − h. Of course, g is quasi-linear with the quasi-linearity
constant c and, moreover, |g(1A)| 6 90c for every A ⊂ Ω. We shall show that this implies
|g(x)| 6 188 c · ‖x‖, for every x ∈ `∞(Ω), which will complete the proof.

Every x ∈ `∞(Ω) may be written as x =
∑

α∈Ω x(α)eα, where eα = 1{α}. Notice
that for every A ⊂ Ω we have ‖

∑
α∈A x(α)eα‖ 6 ‖x‖, thus applying the quasi-linearity

inequality (|Ω| − 1) times, we arrive at∣∣∣∣∣g(x)−
∑
α∈Ω

x(α)g(eα)

∣∣∣∣∣ 6 2(|Ω| − 1) c · ‖x‖,

thus
|g(x)| 6 2

(
|Ω|+ 45|Ω| − 1

)
c · ‖x‖. (15.1)

Now, for 0 6 x 6 1Ω and each m ∈ N we may find A1, . . . , Am ⊂ Ω such that∥∥∥∥∥x−
m∑
k=1

1

2k
1Ak

∥∥∥∥∥ 6 2−m. (15.2)

Moreover, using quasi-linearity of g recursively (see Problem 5.4), we get∣∣∣∣∣g
(

m∑
k=1

1

2k
1Ak

)
−

m∑
k=1

1

2k
g(1Ak

)

∣∣∣∣∣ 6 c ·
m∑
k=1

k

2k
6 2c,

?We say that a scalar-valued function f , defined on a locally compact Hausdorff space K, vanishes at
infinity, provided that for every ε > 0 there exists a compact set H ⊂ K such that |f(x)| < ε for every
x ∈ K \H. The space C0(K) consists of all continuous functions vanishing at infinity and is equipped
with the supremum norm.

2



hence ∣∣∣∣∣g
(

m∑
k=1

1

2k
1Ak

)∣∣∣∣∣ 6 2c+ 90c = 92c. (15.3)

Consequently, combining (15.1), (15.2) and (15.3) we get

|g(x)| 6

∣∣∣∣∣g(x)− g

(
m∑
k=1

1

2k
1Ak

)
− g

(
x−

m∑
k=1

1

2k
1Ak

)∣∣∣∣∣
+

∣∣∣∣∣g
(

m∑
k=1

1

2k
1Ak

)∣∣∣∣∣+

∣∣∣∣∣g
(
x−

m∑
k=1

1

2k
1Ak

)∣∣∣∣∣
6
(
1 + 2−m

)
c+ 92c+

(
|Ω|+ 45|Ω| − 1

)
· 2−m+1 c

and, letting m→∞, we obtain |g(x)| 6 93c.
Finally, for every x ∈ `∞(Ω) we may write x = x+ − x−, where x+, x− > 0 and

‖x+‖, ‖x−‖ 6 ‖x‖ and then we have

|g(x)| 6 c · (‖x+‖+ ‖x−‖) + |g(x+)|+ |g(x−)| 6 (2c+ 2 · 93c) · ‖x‖ = 188 c · ‖x‖,

as required.

Theorem 15.5 (Kalton, Roberts, 1983). Every L∞-space is a K-space. In particular,
c0 and `∞ are K-spaces.

Proof. Let X be an arbitrary Banach space which is a L∞-space, that is, there is a con-
stant λ > 1 such that for every finite-dimensional subspace E of X we may find a fur-
ther finite-dimensional subspace H of X such that E ⊂ H and dBM(H, `m∞) < λ, where
m = dimH, which implies that there is an isomorphism T : H → `m∞ with ‖T‖·‖T−1‖ 6 λ.
In view of (a part of) Kalton’s Theorem 14.8, we are to prove that for every quasi-linear
map f : X → R there exists a linear map h : X → R such that |f(x)− h(x)| 6 k c‖x‖ for
x ∈ X, where k <∞ is some constant and c is the quasi-linearity constant of f .

Fix any finite-dimensional space E ⊂ X and let H and T be as above. Then, f ◦ T−1

is a quasi-linear map on `m∞ with the quasi-linearity constant not exceeding ‖T−1‖ · c. By
Proposition 15.4, there is a linear map g : `m∞ → R satisfying∣∣f ◦ T−1(y)− g(y)

∣∣ 6 188 c ‖T−1‖·‖y‖ for every y ∈ `m∞.

Define a linear map hE : E → R by hE(x) = g(Tx). Then∣∣f(x)− hE(x)
∣∣ 6 188 c ‖T‖·‖T−1‖·‖x‖ 6 188 c λ‖x‖ for every x ∈ E.

Now, let E be the collection of all finite-dimensional subspaces of X, directed by
inclusion and consider the net (h̃E)E∈E , where h̃E(x) = hE(x) if x ∈ E and h̃E(x) = 0
otherwise. Notice that for every E ∈ E and every x ∈ X we have∣∣h̃E(x)

∣∣ 6 ∣∣f(x)
∣∣+ 188 c λ‖x‖ =: ρx,

which means that each h̃E belongs to the (compact) Cartesian product
∏

x∈X [−ρx,+ρx].
Let h be a limit of any convergent subnet of (h̃E)E∈E . Obviously, h is linear and satisfies∣∣f(x)− h(x)

∣∣ 6 188 cλ‖x‖ for every x ∈ X,

which completes the proof.

3



16 The Kalton–Roberts theorem on nearly additive set
functions

This whole section is devoted to the proof of Theorem 15.1. We begin with introducing
the notion of concentrator and proving an existence result due to Pippenger [Pip77] with
the aid of the probabilistic method. In the sequel, Pippenger’s theorem will produce
some useful estimates for submeasures. For any m, p ∈ N and any multi-valued mapping
R : [m]→ P [p] we set

R[E] =
⋃
j∈E

R(j) for E ⊂ [m].

Definition 16.1. Let m, p, q, r ∈ N and m > p > q. Then, a map R : [m] → P [p] is
called an (m, p, q, r)-concentrator, provided that:

(c1)
1

m

m∑
j=1

|R(j)| 6 r;

(c2) |R[E]| > |E| for every E ⊂ [m] with |E| 6 q.

An (m, p, q, r)-concentrator may be also regarded as a bipartite graph with m inputs and
p outputs; the edges go only between the set of all inputs, identified with [m], and the set
of all outputs, identified with [p]. The set R(j) is simply the set of all outputs that are
connected to the input j. Condition (c1) says that we do not have more than r outputs
on average, whereas conditon (c2) says that every at most q-element subcollection of
(R(1), . . . , R(m)) satisfies Hall’s condition (see Problem 5.5), thus for every k 6 q and
every set of k inputs there exists a k-flow (a set of pairwise disjoint edges) from the given
inputs into a certain set of k outputs.

Theorem 16.2 (Pippenger, 1977). For every m ∈ N there exists a (6m, 4m, 3m, 6)-
concentrator.

Proof. In fact, we will show that there exists a bipartite graph having all the desired
properties and for which every input has out degree at most 6. Of course, this will
guarantee that the condition corresponding to (c1) is fulfilled.

Let M = {0, 1, . . . , 36m − 1} and let π be any permutation of M to which we
attach a bipartite graph G(π) defined as follows. The sets of inputs and outputs are
{0, 1, . . . , 6m − 1} and {0, 1, . . . , 4m − 1}, respectively, and for every x ∈ M we join
(xmod 6m) with (π(x) mod 4m). Since every residue class modulo 6m has exactly 6 el-
ements in M, each input has out-degree at most 6. Therefore, G(π) will always satisfy
the condition corresponding to (c1). Similarly, since every residue class modulo 4m has
exactly 9 elements in M, each output has in-degree at most 9.

The graph G(π) is called ‘bad’, whenever there exists k 6 3m and a set E of k inputs
such that the set of all outputs connected to E has at most k elements; G(π) is called
‘good’ in the opposite case. Any good graph would do the job, so we shall prove that the
fraction of all permutations π, for which G(π) is bad, is less than 1.

For any n, r ∈ N we denote [n]r the descending product n(n − 1) · . . . · (n − r + 1).
Fix, for a moment, any set A of k inputs and any set B of k outputs. They correspond
to appropriate sets A,B ⊂ M, where |A| = 6k and |B| = 9k. Given a permutation π
of M, every edge in G(π) that is directed out of A hits B if and only if π sends every
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member of A into B. There are exactly [9k]6k · (36m − 6k)! such permutations. For any
fixed k 6 3m there are also

(
6m
k

)
choices for A and

(
4m
k

)
choices for B. Consequently,

when picking randomly a permutation π ofM, the probability that π will produce a bad
graph G(π) is at most

Im =
1

(36m)!

3m∑
k=1

(
6m

k

)(
4m

k

)
· [9k]6k · (36m− 6k)! =

3m∑
k=1

(
6m

k

)(
4m

k

)(
9k

6k

)
(

36m

6k

) .

In order to estimate Im, observe that(
36m

6k

)
>

(
6m

k

)(
4m

k

)(
26m

4k

)
because there are more ways of choosing 6k elements out of 36m than the ways of choosing
k out of the first 6m, k out of the next 4m and 4k out of the last 26m. Therefore,

Im 6 Jm :=
3m∑
k=1

(
9k

64

)
(

26m

4k

) ;

let Lk stand for the kth factor in the product above. We claim that the largest factor,
among L1, . . . , L3m, is either the first one or the last one. To see this, write Lk+1/Lk in
the form

(9k+9)·...·(9k+7)(9k+6)·...·(9k+1)(4k+4)(4k+3)·...·(4k+1)
(6k+6)·...·(6k+1) (3k+3)·...·(3k+1)(26m−4k)·...·(26m−4k−3)

and notice that each fraction, with numerator and denominator being vertically aligned,
is an increasing function of the variable k. Hence, Lk+1/Lk is increasing as well, which
means that Lk−1Lk+1 > L2

k. Consequently, the largest factor in Jm is, indeed, either L1

or L3m. Let us distinguish these two cases.

Case 1. If L1 = max{L1, . . . , L3m}, then

Jm 6 3mL1 = 3m

(
9

6

)
(

26m

4

) =
3024

13(26m− 1)(26m− 2)(26m− 3)
< 1

for every m ∈ N.

Case 2. If L3m = max{L1, . . . , L3m}, then

Jm 6 3mL3m = 3m

(
27m

18m

)
(

26m

12m

) = 3m · (27m)!(12m)!(14m)!

(18m)!(9m)!(26m)!
.

Now, Stirling’s formula

(2πn)1/2e−nnn 6 n! 6 e1/12n(2πn)1/2e−nnn,
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jointly with the inequality ex 6 (1− x)−1, for x ∈ (0, 1), gives

(2πn)1/2e−nnn 6 n! 6
( 12n

12n− 1

)
· (2πn)1/2e−nnn.

Therefore,

3mL3m 6 3m·
( 324m

324m− 1

)( 144m

144m− 1

)( 168m

168m− 1

)(27 · 12 · 14

18 · 9 · 26

)1/2(2727 · 1212 · 1414

1818 · 99 · 2626

)m
,

which is less than 1 for m = 3. Moreover, if m is increased by 1, then the first factor gets
multiplied by at most 4/3, whereas the next three factors decrease and the last factor
decreases by a factor which exceeds 2. Hence, the right-hand side of the above inequality
is a decreasing function of m and, consequently, Im < 1 for all m > 3. It may be easily
verified that also I1 < 1 and I2 < 1.

For any r ∈ N and δ, η ∈ (0, 1) we shall say that H(r, δ, η) holds true if and only if
there exist sequences (mk)

∞
k=1, (pk)

∞
k=1 and (qk)

∞
k=1 of natural numbers such that mk →∞

and for each k ∈ N we have: pk/mk 6 δ, qk/mk > η and there exists an (mk, pk, qk, r)-
concentrator. For r ∈ N and η ∈ (0, 1) we set

ϑ(r, η) = inf
{
δ ∈ (0, 1) : H(r, δ, η) holds true

}
.

Now, the following inequality follows immediately from Pippenger’s theorem.

Corollary 16.3. ϑ(6, 1
2
) 6 2

3
.
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