COMBINATORICS IN BANACH SPACE THEORY
Lecture 15

Definition 16.4. Let % be a set algebra. By a submeasure we mean any function
¢: % — R that satisfies the following three conditions:

(a) (@) =0;
(b) ¢(A) < ¢(B) for all A, B € . with A C B;
(c) 9 (AUB) < ¢(A)+ ¢(B) for all A, B € #.

Lemma 16.5 (Kalton, Roberts, 1983). Let .% be an algebra of subsets of Q and p: .F —
R be a submeasure such that for some constants a, 8 = 0 and arbitrary mutually disjoint
sets Ay,..., A, € F we have Z;;l ©(A;) < an+ B. Then, whenever By, ..., B, € F
satisfy - Y 1, > (1 —¢)lq for some e > 0, we have

S Z ©(Bj) = p(Q) —ar — BI(r,e) for everyr € N, r > 3. (16.1)

Proof. Fix any r € N, r > 3, and let By, ..., B,, € % satisfy the above condition. First,
we assume that there exists an (m, p, ¢, r)-concentrator R: [m] — P[p|, where q/m > «.
We shall then show that inequality (16.1) holds true with p/m in the place of J(r,¢).

Let & = {FE C [m]: |E| < q}. By the condition (c¢2) of the Definition 16.1, and the
Hall marriage lemma (see Problem 5.5), for every E € & there exists a one-to-one map
fe: E — [p] such that fg(j) € R(j) for each j € E. For every E € & define

Cp = () (Q\ Be) N [ By

keE k¢E

note that our assumption on By, ..., B, yields UgcoCr = €. Indeed, every element of
Q) is covered by at least m(1 —¢e) > m — ¢ sets among By, ..., B, that is, it belongs to
at most ¢ sets among Q \ By,...,Q\ B,,, which makes it possible to find an F € & for
which Cg contains the element in question.

For any i € [m] and j € [p] define

A = U Cp;
icE
fe()=j

if such a set is non-empty, then necessarily j € R(i) which, in view of the condition (cl)
of Definition 16.1, may happen for at most rm pairs (i, j) € [m] x [p]. Moreover, notice

that for any fixed j € [p] the sets Ayj, ..., A,,; are mutually disjoint because whenever
Cg C A;j and Cg C Ay we have fp(i) = j = fr(k), thus i = k. Let n; be the number of
all non-empty sets among Ay, ..., A,,;; then

Z@(Aij) <anj+ [ foreach j € [p],

=1



whence
p
ZZ@(Aij) < aan + Bp < amr + Bp.
j=1 i=1 j=1

We are ready to estimate the average of ¢(B;)’s. To this end, observe that since
UgreseCE = Q, for each i € [m] we have |J,c;Cr = Q\ B;. Therefore,

P() — 0(B) < p(@\ B) = (UCE)_go(UAm)siMAm)

JEP]

and hence

me() — Z ©(B;) < amr + Ap,

which gives inequality (16.1) with p/m instead of J(r,¢).

Now, for every 6 > ¥(r,e), the condition H(r,d,e) holds true which produces a se-
quence of (my, pr, gk, 7)-concentrators for which my, — oo, pp/my, < d and qp/my, > €. So,
if my > m we may repeat the above argument for the collection of my, sets which consists

of s := |my/m| repetitions of (By,..., By;,) and my — sm copies of Q2. By doing so, we
obtain
L M= sm
—Zso TETRG(@) > 9(Q) - ar = B > p(Q) - ar — B
My My my,

and since s/my, — 1/m, we get that L 37" o(B;) = ¢(Q) — ar — 5§, where § may be
—00
arbitrarily close to ¥(r, ). This gives the desired inequality. O

Definition 16.6. Let .# be an algebra of subsets of ) and A be a non-empty subfamily
of .Z. The covering indez of A, denoted C(A), is defined by the formula

1 n
C(A) = sup{é >0: — E 14; = 0l for some sequence (A;)7_; C A}
n
j=1

(repetitions are allowed in (A;)7_,). Equivalently, C(A) may be defined as v(A)~", where

{ZxA ZxA]lA 1g and x4 > OforeveryAeA}

AcA AcA

(see Problem 5.12).

Theorem 16.7 (Kelley, 1959). Let .F be a set algebra and A be a non-empty subfamily of
F . Then there exists a finitely additive set function p: F — [0,1] such that u(A) < C(A)
for every A € A and u(Q) = 1.

Proof. Of course, we may assume that C(.A) > 0, i.e. the family A covers the whole of
Q. Let X be the linear space of all real-valued bounded functions defined on 2 and let
p: X — [0,00) be defined by

p(u) = 1nf{2a] Zaﬂ]l“‘ u, neN, a; > OandAjGAforjE[n]}.
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It is evident that p(u + v) < p(u) + p(v) and p(au) = ap(u) for all u,v € X and
a > 0. It also follows from the very definition of p that p(14) < C(A) whenever A € A.
Moreover, we claim that p(1g) > 1. Suppose not. Then there exist A;,..., A, € A and
rational numbers aq,...,a, > 0 such that Z?zl a;ly, > 1o but Z?Zl a; < C(A)™!

write a; = k;/m for j € [n], where m, ki,...,k, € N. Consider the sequence
(Di)iel = (Al, e ,Al; AQ, e ,AQ; ceey An;- .. ,An)
k1 times ko times ky, times

which consists of |I| = ky + ...+ k, = m(a; + ... +a,) < mC(A)™! terms satisfying
L5 erlp, = 1q. Hence, |71‘ > icr Ip, > C(A) - 1g which stands in contradiction to the
definition of C(A).

By the Hahn—Banach theorem, there exists a linear functional h: X — R such that
h(1lg) = p(lg) > 1 and h(u) < p(u) for every u € X. Therefore, whenever A € A and
B C A, we have h(1g) < p(1g) < p(14) < C(A).

The formula v(A) = h(14) defines a signed, finitely additive measure on .# which
satisfies (2) > 1 and v(A) < C(A) for every A € A. Consequently, a function p: .# — R

defined by p(A) = supg 4 v(B) is a finitely additive, non-negative measure which satisfies
pu(A) < C(A) for every A € A and

1< v(Q) < pu(Q) = sup A1) < sup p(1p) < p(lo) < o0
BCQ BCQ

Hence, multiplying u by u(2)~! we get a normalised, finitely additive, non-negative mea-

sure on .% that does not exceed C(.A) on any member of A. O

Proof of Theorem 15.1. We start with noticing that it is enough to consider only finite
algebras. Indeed, suppose the assertion has been proved for every finite algebra and let .%#
be an infinite set algebra. Let & be the collection of all finite subalgebras of .%, directed
by inclusion. For each ¢ € & there is an additive set function pg: ¢4 — R satisfying
|V(A) — pg(A)| < K for each A € ¥; extend this map to the whole of .# by putting
pg(A) = 0 whenever A € # \ ¢4, and let us denote this extension again by ug. Then,
every term of the net (ug)gcs belongs to the set {f € R7: |f(A)] < |v(A)| + K} which
is compact with respect to the topology inherited from the product topology on R”. It
is now evident that if p: .% — R is the limit of any convergent subnet of (ug)gecs, then
p is an additive set function and |[v(A) — p(A)| < K for every A € #. Thus, from now

on we assume that .% is finite and, in fact, we may also assume that .# = P for some
finite set ().

For any map f:.% —) R we set V(f) = maxy pes(f(A) — f(B)) and we pick an
additive set function p: % — R so that V(v — ) takes the smallest possible value (see

Problem 5.7). Let g = v — p and set

a=maxg(A), b= —ming(A).

AeF AeF

With no loss of generality we may assume that a > b and then |g(A)| < a for every
A € Z. Therefore, we are to prove that a < 45.
Pick a set S C Q such that ¢(S) = a and define a map ¢: PS — R by

_f 1+supgea9(B) if A# o,
¢<A)_{ 0 ifA=a.
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Obviously, ¢ is monotone and since g satisfies the same inequality as v, i.e.
|g(AUB) — g(A) —g(B)| <1 for A,B € .Z with ANB = g,

the map ¢ is also subadditive. Hence, ¢ is a submeasure. Moreover, if A;,... A, C S
are non-empty and mutually disjoint, then for some sets B; C A; (j € [n]) we have

> pA)=n+Y g(B)<n+g(BiU...UB,)+n—1<2n+ (a—1),
j=1 j=1

which means that ¢ satisfies the assumption of Lemma 16.5 with « =2 and § = a — 1.
Note also that p(S) =a + 1.
Now, define

A={Aacs: o)< g}

The essential part of the proof consists in showing that the so-defined collection A contains
a sequence of sets which yields a ‘good’ covering of S. This will be done in two steps.

Cram 1. C(A) > L.

2

Suppose this is not true. Then, by Kelley’s Theorem 16.7, there exists a finitely additive
measure A: PS — [0, 1] such that A(A) < 3 for every A € A and A(S) = 1. If so, consider
amap h: .# — R given by

h(A) =g(A) —A(ANS) for ACQ

of course, this is still a difference between v and some additive set function. By our choice
of p, we have V(h) > V(g) = a + b. However, as we shall now show,

1 1
—b—§<h(A)<a—§ for every A € .Z.

First, suppose that h(A) > a— 3 for some A € .Z. Then also g(A4) > a— % Moreover,
g(A\S) <1+ g(AuUS)—g(S) <1

(recall that ¢(5) is the maximal value of ¢g) and hence

g(ANS) = g(A) —g(A\S) —1>a—

N | Ot

Therefore, for every B C S\ A we have

7
9(B) <g((ANS)UB) —g(ANS)+1<a— (a—%) +1=-.
Hence, ¢(S\ A) < § which means that S\ A € A, thus A(S\ A) < 5 and so A(ANS) > 3.
Consequently, h(A) < a — % contrary to our supposition.
Now, suppose that i(A) < —b—1 for some A € .Z. Then g(A) < —b+3. If B C ANS,
then

1 3
9(B) < g(A) = g(A\ B) + 1< =b+ 5 +b+ 1=,



thus ¢(ANS) < 3. Consequently, ANS € A and hence A(ANS) < I which yields
h(A) > —b— 3; a contradiction.

In this way, Claim 1 has been proved. Next, we claim that since the collection A is
finite, its covering index is realised by a certain finite sequence of its elements. We shall

formulate this assertion taking into account the just proved estimate C(A) > %:

CLAIM 2. There exists a sequence (A;)7y C A such that =3 " 14, > 11g.
Let

Z(A) = {(wA)Ae,pf e RH: Z xply > 1g and x4 > 0 for every A € A};
AcA

this is an unbounded polygon in the finite-dimensional linear space RMI. The set of all
those points (24)4ea from Z(A) for which ), x4 is minimal is either a singleton or
a polygon being a face of Z(A). In each case there is an extreme point (z4)4e (a vertex)
of Z(A) for which ), , x4 is minimal. Such a point is a unique solution of a system of
linear equations with rational coefficients, hence every its coordinate is rational. Therefore

(see Definition 16.6),
1 1

7(A) N ZAeA LA

Since > 4o 42ala > 1g and C(A) > 3, we have

C(A) = € Q.

1
> C(A)zaly > 51s,
A€A

where C(A)z 4 (for A € A) are rational numbers summing up to one. Let C(A)x 4 = ka/m,
where k4 € N and m € N is a common denominator of those numbers. Then, repeating
the sets from A as required (each A € A should be repeated k4 times) we get the desired
sequence (A4;), C A. Claim 2 has been proved.

By virtue of Lemma 16.5, applied to the submeasure ¢ and the constants a = 2,
ﬂ:a—landSZ%,weget

| ©

1« 1
>3 p(A)za+1-2r- —10(,-) f >3,
2 0(A;) = a+ r—(a—1)0(r 5 or every r >3

Putting » = 6 and appealing to Corollary 16.3 we arrive at a < % < 45. O]



