
Combinatorics in Banach space theory

Lecture 15

Definition 16.4. Let F be a set algebra. By a submeasure we mean any function
ϕ : F → R that satisfies the following three conditions:

(a) ϕ(∅) = 0;
(b) ϕ(A) 6 ϕ(B) for all A,B ∈ F with A ⊂ B;
(c) ϕ(A ∪B) 6 ϕ(A) + ϕ(B) for all A,B ∈ F .

Lemma 16.5 (Kalton, Roberts, 1983). Let F be an algebra of subsets of Ω and ϕ : F →
R be a submeasure such that for some constants α, β > 0 and arbitrary mutually disjoint
sets A1, . . . , An ∈ F we have

∑n
j=1 ϕ(Aj) 6 αn + β. Then, whenever B1, . . . , Bm ∈ F

satisfy 1
m

∑m
j=1 1Bj

> (1− ε)1Ω for some ε > 0, we have

1

m

m∑
j=1

ϕ(Bj) > ϕ(Ω)− αr − βϑ(r, ε) for every r ∈ N, r > 3. (16.1)

Proof. Fix any r ∈ N, r > 3, and let B1, . . . , Bm ∈ F satisfy the above condition. First,
we assume that there exists an (m, p, q, r)-concentrator R : [m] → P [p], where q/m > ε.
We shall then show that inequality (16.1) holds true with p/m in the place of ϑ(r, ε).

Let E = {E ⊂ [m] : |E| 6 q}. By the condition (c2) of the Definition 16.1, and the
Hall marriage lemma (see Problem 5.5), for every E ∈ E there exists a one-to-one map
fE : E → [p] such that fE(j) ∈ R(j) for each j ∈ E. For every E ∈ E define

CE =
⋂
k∈E

(Ω \Bk) ∩
⋂
k 6∈E

Bk;

note that our assumption on B1, . . . , Bm yields
⋃

E∈ECE = Ω. Indeed, every element of
Ω is covered by at least m(1 − ε) > m − q sets among B1, . . . , Bm, that is, it belongs to
at most q sets among Ω \ B1, . . . ,Ω \ Bm, which makes it possible to find an E ∈ E for
which CE contains the element in question.

For any i ∈ [m] and j ∈ [p] define

Aij =
⋃
i∈E

fE(i)=j

CE;

if such a set is non-empty, then necessarily j ∈ R(i) which, in view of the condition (c1)
of Definition 16.1, may happen for at most rm pairs (i, j) ∈ [m] × [p]. Moreover, notice
that for any fixed j ∈ [p] the sets A1j, . . . , Amj are mutually disjoint because whenever
CE ⊂ Aij and CE ⊂ Akj we have fE(i) = j = fE(k), thus i = k. Let nj be the number of
all non-empty sets among A1j, . . . , Amj; then

m∑
i=1

ϕ(Aij) 6 αnj + β for each j ∈ [p],
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whence
p∑

j=1

m∑
i=1

ϕ(Aij) 6 α

p∑
j=1

nj + βp 6 αmr + βp.

We are ready to estimate the average of ϕ(Bi)’s. To this end, observe that since⋃
E∈ECE = Ω, for each i ∈ [m] we have

⋃
i∈ECE = Ω \Bi. Therefore,

ϕ(Ω)− ϕ(Bi) 6 ϕ(Ω \Bi) = ϕ
(⋃
i∈E

CE

)
= ϕ

(⋃
j∈[p]

Aij

)
6

p∑
j=1

ϕ(Aij)

and hence

mϕ(Ω)−
m∑
i=1

ϕ(Bi) 6 αmr + βp,

which gives inequality (16.1) with p/m instead of ϑ(r, ε).
Now, for every δ > ϑ(r, ε), the condition H(r, δ, ε) holds true which produces a se-

quence of (mk, pk, qk, r)-concentrators for which mk →∞, pk/mk 6 δ and qk/mk > ε. So,
if mk > m we may repeat the above argument for the collection of mk sets which consists
of s := bmk/mc repetitions of (B1, . . . , Bm) and mk − sm copies of Ω. By doing so, we
obtain

s

mk

m∑
i=1

ϕ(Bi) +
mk − sm
mk

ϕ(Ω) > ϕ(Ω)− αr − β p

mk

> ϕ(Ω)− αr − βδ

and since s/mk −−−→
k→∞

1/m, we get that 1
m

∑m
i=1 ϕ(Bi) > ϕ(Ω)−αr− βδ, where δ may be

arbitrarily close to ϑ(r, ε). This gives the desired inequality.

Definition 16.6. Let F be an algebra of subsets of Ω and A be a non-empty subfamily
of F . The covering index of A, denoted C(A), is defined by the formula

C(A) = sup

{
δ > 0:

1

n

n∑
j=1

1Aj
> δ1Ω for some sequence (Aj)

n
j=1 ⊂ A

}

(repetitions are allowed in (Aj)
n
j=1). Equivalently, C(A) may be defined as γ(A)−1, where

γ(A) =

{∑
A∈A

xA :
∑
A∈A

xA1A > 1Ω and xA > 0 for every A ∈ A

}
(see Problem 5.12).

Theorem 16.7 (Kelley, 1959). Let F be a set algebra and A be a non-empty subfamily of
F . Then there exists a finitely additive set function µ : F → [0, 1] such that µ(A) 6 C(A)
for every A ∈ A and µ(Ω) = 1.

Proof. Of course, we may assume that C(A) > 0, i.e. the family A covers the whole of
Ω. Let X be the linear space of all real-valued bounded functions defined on Ω and let
p : X → [0,∞) be defined by

p(u) = C(A) · inf

{
n∑

j=1

αj :
n∑

j=1

αj1Aj
> u, n ∈ N, αj > 0 and Aj ∈ A for j ∈ [n]

}
.
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It is evident that p(u + v) 6 p(u) + p(v) and p(αu) = αp(u) for all u, v ∈ X and
α > 0. It also follows from the very definition of p that p(1A) 6 C(A) whenever A ∈ A.
Moreover, we claim that p(1Ω) > 1. Suppose not. Then there exist A1, . . . , An ∈ A and
rational numbers α1, . . . , αn > 0 such that

∑n
j=1 αj1Aj

> 1Ω but
∑n

j=1 αj < C(A)−1;
write αj = kj/m for j ∈ [n], where m, k1, . . . , kn ∈ N. Consider the sequence

(Di)i∈I :=
(
A1, . . . , A1︸ ︷︷ ︸

k1 times

; A2, . . . , A2︸ ︷︷ ︸
k2 times

; . . . ; An, . . . , An︸ ︷︷ ︸
kn times

)
which consists of |I| = k1 + . . . + kn = m(α1 + . . . + αn) < mC(A)−1 terms satisfying
1
m

∑
i∈I 1Di

> 1Ω. Hence, 1
|I|
∑

i∈I 1Di
> C(A) · 1Ω which stands in contradiction to the

definition of C(A).
By the Hahn–Banach theorem, there exists a linear functional h : X → R such that

h(1Ω) = p(1Ω) > 1 and h(u) 6 p(u) for every u ∈ X . Therefore, whenever A ∈ A and
B ⊂ A, we have h(1B) 6 p(1B) 6 p(1A) 6 C(A).

The formula ν(A) = h(1A) defines a signed, finitely additive measure on F which
satisfies ν(Ω) > 1 and ν(A) 6 C(A) for every A ∈ A. Consequently, a function µ : F → R
defined by µ(A) = supB⊂A ν(B) is a finitely additive, non-negative measure which satisfies
µ(A) 6 C(A) for every A ∈ A and

1 6 ν(Ω) 6 µ(Ω) = sup
B⊂Ω

h(1B) 6 sup
B⊂Ω

p(1B) 6 p(1Ω) <∞.

Hence, multiplying µ by µ(Ω)−1 we get a normalised, finitely additive, non-negative mea-
sure on F that does not exceed C(A) on any member of A.

Proof of Theorem 15.1. We start with noticing that it is enough to consider only finite
algebras. Indeed, suppose the assertion has been proved for every finite algebra and let F
be an infinite set algebra. Let E be the collection of all finite subalgebras of F , directed
by inclusion. For each G ∈ E there is an additive set function µG : G → R satisfying
|ν(A) − µG (A)| 6 K for each A ∈ G ; extend this map to the whole of F by putting
µG (A) = 0 whenever A ∈ F \ G , and let us denote this extension again by µG . Then,
every term of the net (µG )G∈E belongs to the set {f ∈ RF : |f(A)| 6 |ν(A)| + K} which
is compact with respect to the topology inherited from the product topology on RF . It
is now evident that if µ : F → R is the limit of any convergent subnet of (µG )G∈E , then
µ is an additive set function and |ν(A) − µ(A)| 6 K for every A ∈ F . Thus, from now
on we assume that F is finite and, in fact, we may also assume that F = PΩ for some
finite set Ω.

For any map f : F → R we set V (f) = maxA,B∈F (f(A) − f(B)) and we pick an
additive set function µ : F → R so that V (ν − µ) takes the smallest possible value (see
Problem 5.7). Let g = ν − µ and set

a = max
A∈F

g(A), b = −min
A∈F

g(A).

With no loss of generality we may assume that a > b and then |g(A)| 6 a for every
A ∈ F . Therefore, we are to prove that a < 45.

Pick a set S ⊂ Ω such that g(S) = a and define a map ϕ : PS → R by

ϕ(A) =

{
1 + supB⊂A g(B) if A 6= ∅,

0 if A = ∅.
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Obviously, ϕ is monotone and since g satisfies the same inequality as ν, i.e.

|g(A ∪B)− g(A)− g(B)| 6 1 for A,B ∈ F with A ∩B = ∅,

the map ϕ is also subadditive. Hence, ϕ is a submeasure. Moreover, if A1, . . . , An ⊂ S
are non-empty and mutually disjoint, then for some sets Bj ⊂ Aj (j ∈ [n]) we have

n∑
j=1

ϕ(Aj) = n+
n∑

j=1

g(Bj) 6 n+ g(B1 ∪ . . . ∪Bn) + n− 1 6 2n+ (a− 1),

which means that ϕ satisfies the assumption of Lemma 16.5 with α = 2 and β = a − 1.
Note also that ϕ(S) = a+ 1.

Now, define

A =
{
A ⊂ S : ϕ(A) 6

9

2

}
.

The essential part of the proof consists in showing that the so-defined collectionA contains
a sequence of sets which yields a ‘good’ covering of S. This will be done in two steps.

Claim 1. C(A) > 1
2
.

Suppose this is not true. Then, by Kelley’s Theorem 16.7, there exists a finitely additive
measure λ : PS → [0, 1] such that λ(A) < 1

2
for every A ∈ A and λ(S) = 1. If so, consider

a map h : F → R given by

h(A) = g(A)− λ(A ∩ S) for A ⊂ Ω;

of course, this is still a difference between ν and some additive set function. By our choice
of µ, we have V (h) > V (g) = a+ b. However, as we shall now show,

−b− 1

2
< h(A) < a− 1

2
for every A ∈ F .

First, suppose that h(A) > a− 1
2

for some A ∈ F . Then also g(A) > a− 1
2
. Moreover,

g(A \ S) 6 1 + g(A ∪ S)− g(S) 6 1

(recall that g(S) is the maximal value of g) and hence

g(A ∩ S) > g(A)− g(A \ S)− 1 > a− 5

2
.

Therefore, for every B ⊂ S \ A we have

g(B) 6 g
(
(A ∩ S) ∪B

)
− g(A ∩ S) + 1 6 a−

(
a− 5

2

)
+ 1 =

7

2
.

Hence, ϕ(S \A) 6 9
2

which means that S \A ∈ A, thus λ(S \A) < 1
2

and so λ(A∩S) > 1
2
.

Consequently, h(A) < a− 1
2

contrary to our supposition.
Now, suppose that h(A) 6 −b− 1

2
for some A ∈ F . Then g(A) 6 −b+ 1

2
. If B ⊂ A∩S,

then

g(B) 6 g(A)− g(A \B) + 1 6 −b+
1

2
+ b+ 1 =

3

2
,
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thus ϕ(A ∩ S) 6 5
2
. Consequently, A ∩ S ∈ A and hence λ(A ∩ S) < 1

2
which yields

h(A) > −b− 1
2
; a contradiction.

In this way, Claim 1 has been proved. Next, we claim that since the collection A is
finite, its covering index is realised by a certain finite sequence of its elements. We shall
formulate this assertion taking into account the just proved estimate C(A) > 1

2
:

Claim 2. There exists a sequence (Ai)
m
i=1 ⊂ A such that 1

m

∑m
i=1 1Ai

> 1
2
1S.

Let

Z(A) =

{
(xA)A∈A ∈ R|A| :

∑
A∈A

xA1A > 1S and xA > 0 for every A ∈ A

}
;

this is an unbounded polygon in the finite-dimensional linear space R|A|. The set of all
those points (xA)A∈A from Z(A) for which

∑
A∈A xA is minimal is either a singleton or

a polygon being a face of Z(A). In each case there is an extreme point (xA)A∈A (a vertex)
of Z(A) for which

∑
A∈A xA is minimal. Such a point is a unique solution of a system of

linear equations with rational coefficients, hence every its coordinate is rational. Therefore
(see Definition 16.6),

C(A) =
1

γ(A)
=

1∑
A∈A xA

∈ Q.

Since
∑

A∈A xA1A > 1S and C(A) > 1
2
, we have∑

A∈A

C(A)xA1A >
1

2
1S,

where C(A)xA (for A ∈ A) are rational numbers summing up to one. Let C(A)xA = kA/m,
where kA ∈ N and m ∈ N is a common denominator of those numbers. Then, repeating
the sets from A as required (each A ∈ A should be repeated kA times) we get the desired
sequence (Ai)

m
i=1 ⊂ A. Claim 2 has been proved.

By virtue of Lemma 16.5, applied to the submeasure ϕ and the constants α = 2,
β = a− 1 and ε = 1

2
, we get

9

2
>

1

m

m∑
i=1

ϕ(Ai) > a+ 1− 2r − (a− 1)ϑ
(
r,

1

2

)
for every r > 3.

Putting r = 6 and appealing to Corollary 16.3 we arrive at a 6 89
2
< 45.
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