Combinatorics in Banach space theory

Lecture 15

Definition 16.4. Let \mathscr{F} be a set algebra. By a submeasure we mean any function $\varphi: \mathscr{F} \rightarrow \mathbb{R}$ that satisfies the following three conditions:
(a) $\varphi(\varnothing)=0$;
(b) $\varphi(A) \leqslant \varphi(B)$ for all $A, B \in \mathscr{F}$ with $A \subset B$;
(c) $\varphi(A \cup B) \leqslant \varphi(A)+\varphi(B)$ for all $A, B \in \mathscr{F}$.

Lemma 16.5 (Kalton, Roberts, 1983). Let \mathscr{F} be an algebra of subsets of Ω and $\varphi: \mathscr{F} \rightarrow$ \mathbb{R} be a submeasure such that for some constants $\alpha, \beta \geqslant 0$ and arbitrary mutually disjoint sets $A_{1}, \ldots, A_{n} \in \mathscr{F}$ we have $\sum_{j=1}^{n} \varphi\left(A_{j}\right) \leqslant \alpha n+\beta$. Then, whenever $B_{1}, \ldots, B_{m} \in \mathscr{F}$ satisfy $\frac{1}{m} \sum_{j=1}^{m} \mathbb{1}_{B_{j}} \geqslant(1-\varepsilon) \mathbb{1}_{\Omega}$ for some $\varepsilon>0$, we have

$$
\begin{equation*}
\frac{1}{m} \sum_{j=1}^{m} \varphi\left(B_{j}\right) \geqslant \varphi(\Omega)-\alpha r-\beta \vartheta(r, \varepsilon) \quad \text { for every } r \in \mathbb{N}, r \geqslant 3 \tag{16.1}
\end{equation*}
$$

Proof. Fix any $r \in \mathbb{N}, r \geqslant 3$, and let $B_{1}, \ldots, B_{m} \in \mathscr{F}$ satisfy the above condition. First, we assume that there exists an (m, p, q, r)-concentrator $R:[m] \rightarrow \mathcal{P}[p]$, where $q / m \geqslant \varepsilon$. We shall then show that inequality (16.1) holds true with p / m in the place of $\vartheta(r, \varepsilon)$.

Let $\mathscr{E}=\{E \subset[m]:|E| \leqslant q\}$. By the condition (c2) of the Definition 16.1, and the Hall marriage lemma (see Problem 5.5), for every $E \in \mathscr{E}$ there exists a one-to-one map $f_{E}: E \rightarrow[p]$ such that $f_{E}(j) \in R(j)$ for each $j \in E$. For every $E \in \mathscr{E}$ define

$$
C_{E}=\bigcap_{k \in E}\left(\Omega \backslash B_{k}\right) \cap \bigcap_{k \notin E} B_{k} ;
$$

note that our assumption on B_{1}, \ldots, B_{m} yields $\bigcup_{E \in \mathscr{E}} C_{E}=\Omega$. Indeed, every element of Ω is covered by at least $m(1-\varepsilon) \geqslant m-q$ sets among B_{1}, \ldots, B_{m}, that is, it belongs to at most q sets among $\Omega \backslash B_{1}, \ldots, \Omega \backslash B_{m}$, which makes it possible to find an $E \in \mathscr{E}$ for which C_{E} contains the element in question.

For any $i \in[m]$ and $j \in[p]$ define

$$
A_{i j}=\bigcup_{\substack{i \in E \\ f_{E}(i)=j}} C_{E}
$$

if such a set is non-empty, then necessarily $j \in R(i)$ which, in view of the condition (c1) of Definition 16.1, may happen for at most $r m$ pairs $(i, j) \in[m] \times[p]$. Moreover, notice that for any fixed $j \in[p]$ the sets $A_{1 j}, \ldots, A_{m j}$ are mutually disjoint because whenever $C_{E} \subset A_{i j}$ and $C_{E} \subset A_{k j}$ we have $f_{E}(i)=j=f_{E}(k)$, thus $i=k$. Let n_{j} be the number of all non-empty sets among $A_{1 j}, \ldots, A_{m j}$; then

$$
\sum_{i=1}^{m} \varphi\left(A_{i j}\right) \leqslant \alpha n_{j}+\beta \quad \text { for each } j \in[p],
$$

whence

$$
\sum_{j=1}^{p} \sum_{i=1}^{m} \varphi\left(A_{i j}\right) \leqslant \alpha \sum_{j=1}^{p} n_{j}+\beta p \leqslant \alpha m r+\beta p .
$$

We are ready to estimate the average of $\varphi\left(B_{i}\right)$'s. To this end, observe that since $\bigcup_{E \in \mathscr{E}} C_{E}=\Omega$, for each $i \in[m]$ we have $\bigcup_{i \in E} C_{E}=\Omega \backslash B_{i}$. Therefore,

$$
\varphi(\Omega)-\varphi\left(B_{i}\right) \leqslant \varphi\left(\Omega \backslash B_{i}\right)=\varphi\left(\bigcup_{i \in E} C_{E}\right)=\varphi\left(\bigcup_{j \in[p]} A_{i j}\right) \leqslant \sum_{j=1}^{p} \varphi\left(A_{i j}\right)
$$

and hence

$$
m \varphi(\Omega)-\sum_{i=1}^{m} \varphi\left(B_{i}\right) \leqslant \alpha m r+\beta p,
$$

which gives inequality (16.1) with p / m instead of $\vartheta(r, \varepsilon)$.
Now, for every $\delta>\vartheta(r, \varepsilon)$, the condition $H(r, \delta, \varepsilon)$ holds true which produces a sequence of (m_{k}, p_{k}, q_{k}, r)-concentrators for which $m_{k} \rightarrow \infty, p_{k} / m_{k} \leqslant \delta$ and $q_{k} / m_{k} \geqslant \varepsilon$. So, if $m_{k} \geqslant m$ we may repeat the above argument for the collection of m_{k} sets which consists of $s:=\left\lfloor m_{k} / m\right\rfloor$ repetitions of $\left(B_{1}, \ldots, B_{m}\right)$ and $m_{k}-s m$ copies of Ω. By doing so, we obtain

$$
\frac{s}{m_{k}} \sum_{i=1}^{m} \varphi\left(B_{i}\right)+\frac{m_{k}-s m}{m_{k}} \varphi(\Omega) \geqslant \varphi(\Omega)-\alpha r-\beta \frac{p}{m_{k}} \geqslant \varphi(\Omega)-\alpha r-\beta \delta
$$

and since $s / m_{k} \xrightarrow[k \rightarrow \infty]{\longrightarrow} 1 / m$, we get that $\frac{1}{m} \sum_{i=1}^{m} \varphi\left(B_{i}\right) \geqslant \varphi(\Omega)-\alpha r-\beta \delta$, where δ may be arbitrarily close to $\vartheta(r, \varepsilon)$. This gives the desired inequality.

Definition 16.6. Let \mathscr{F} be an algebra of subsets of Ω and \mathcal{A} be a non-empty subfamily of \mathscr{F}. The covering index of \mathcal{A}, denoted $\mathrm{C}(\mathcal{A})$, is defined by the formula

$$
\mathrm{C}(\mathcal{A})=\sup \left\{\delta \geqslant 0: \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{A_{j}} \geqslant \delta \mathbb{1}_{\Omega} \text { for some sequence }\left(A_{j}\right)_{j=1}^{n} \subset \mathcal{A}\right\}
$$

(repetitions are allowed in $\left.\left(A_{j}\right)_{j=1}^{n}\right)$. Equivalently, $\mathbb{C}(\mathcal{A})$ may be defined as $\gamma(\mathcal{A})^{-1}$, where

$$
\gamma(\mathcal{A})=\left\{\sum_{A \in \mathcal{A}} x_{A}: \sum_{A \in \mathcal{A}} x_{A} \mathbb{1}_{A} \geqslant \mathbb{1}_{\Omega} \text { and } x_{A} \geqslant 0 \text { for every } A \in \mathcal{A}\right\}
$$

(see Problem 5.12).
Theorem 16.7 (Kelley, 1959). Let \mathscr{F} be a set algebra and \mathcal{A} be a non-empty subfamily of \mathscr{F}. Then there exists a finitely additive set function $\mu: \mathscr{F} \rightarrow[0,1]$ such that $\mu(A) \leqslant C(\mathcal{A})$ for every $A \in \mathcal{A}$ and $\mu(\Omega)=1$.

Proof. Of course, we may assume that $\mathrm{C}(\mathcal{A})>0$, i.e. the family \mathcal{A} covers the whole of Ω. Let \mathcal{X} be the linear space of all real-valued bounded functions defined on Ω and let $p: \mathcal{X} \rightarrow[0, \infty)$ be defined by

$$
p(u)=\mathrm{C}(\mathcal{A}) \cdot \inf \left\{\sum_{j=1}^{n} \alpha_{j}: \sum_{j=1}^{n} \alpha_{j} \mathbb{1}_{A_{j}} \geqslant u, n \in \mathbb{N}, \alpha_{j} \geqslant 0 \text { and } A_{j} \in \mathcal{A} \text { for } j \in[n]\right\} .
$$

It is evident that $p(u+v) \leqslant p(u)+p(v)$ and $p(\alpha u)=\alpha p(u)$ for all $u, v \in \mathcal{X}$ and $\alpha \geqslant 0$. It also follows from the very definition of p that $p\left(\mathbb{1}_{A}\right) \leqslant \mathrm{C}(\mathcal{A})$ whenever $A \in \mathcal{A}$. Moreover, we claim that $p\left(\mathbb{1}_{\Omega}\right) \geqslant 1$. Suppose not. Then there exist $A_{1}, \ldots, A_{n} \in \mathcal{A}$ and rational numbers $\alpha_{1}, \ldots, \alpha_{n}>0$ such that $\sum_{j=1}^{n} \alpha_{j} \mathbb{1}_{A_{j}} \geqslant \mathbb{1}_{\Omega}$ but $\sum_{j=1}^{n} \alpha_{j}<\mathrm{C}(\mathcal{A})^{-1}$; write $\alpha_{j}=k_{j} / m$ for $j \in[n]$, where $m, k_{1}, \ldots, k_{n} \in \mathbb{N}$. Consider the sequence

$$
\left(D_{i}\right)_{i \in I}:=(\underbrace{A_{1}, \ldots, A_{1}}_{k_{1} \text { times }} ; \underbrace{A_{2}, \ldots, A_{2}}_{k_{2} \text { times }} ; \ldots ; \underbrace{A_{n}, \ldots, A_{n}}_{k_{n} \text { times }})
$$

which consists of $|I|=k_{1}+\ldots+k_{n}=m\left(\alpha_{1}+\ldots+\alpha_{n}\right)<m \mathrm{C}(\mathcal{A})^{-1}$ terms satisfying $\frac{1}{m} \sum_{i \in I} \mathbb{1}_{D_{i}} \geqslant \mathbb{1}_{\Omega}$. Hence, $\frac{1}{|I|} \sum_{i \in I} \mathbb{1}_{D_{i}}>\mathrm{C}(\mathcal{A}) \cdot \mathbb{1}_{\Omega}$ which stands in contradiction to the definition of $\mathrm{C}(\mathcal{A})$.

By the Hahn-Banach theorem, there exists a linear functional $h: \mathcal{X} \rightarrow \mathbb{R}$ such that $h\left(\mathbb{1}_{\Omega}\right)=p\left(\mathbb{1}_{\Omega}\right) \geqslant 1$ and $h(u) \leqslant p(u)$ for every $u \in \mathcal{X}$. Therefore, whenever $A \in \mathcal{A}$ and $B \subset A$, we have $h\left(\mathbb{1}_{B}\right) \leqslant p\left(\mathbb{1}_{B}\right) \leqslant p\left(\mathbb{1}_{A}\right) \leqslant C(\mathcal{A})$.

The formula $\nu(A)=h\left(\mathbb{1}_{A}\right)$ defines a signed, finitely additive measure on \mathscr{F} which satisfies $\nu(\Omega) \geqslant 1$ and $\nu(A) \leqslant \mathrm{C}(\mathcal{A})$ for every $A \in \mathcal{A}$. Consequently, a function $\mu: \mathscr{F} \rightarrow \mathbb{R}$ defined by $\mu(A)=\sup _{B \subset A} \nu(B)$ is a finitely additive, non-negative measure which satisfies $\mu(A) \leqslant C(\mathcal{A})$ for every $A \in \mathcal{A}$ and

$$
1 \leqslant \nu(\Omega) \leqslant \mu(\Omega)=\sup _{B \subset \Omega} h\left(\mathbb{1}_{B}\right) \leqslant \sup _{B \subset \Omega} p\left(\mathbb{1}_{B}\right) \leqslant p\left(\mathbb{1}_{\Omega}\right)<\infty .
$$

Hence, multiplying μ by $\mu(\Omega)^{-1}$ we get a normalised, finitely additive, non-negative measure on \mathscr{F} that does not exceed $\mathrm{C}(\mathcal{A})$ on any member of \mathcal{A}.

Proof of Theorem 15.1. We start with noticing that it is enough to consider only finite algebras. Indeed, suppose the assertion has been proved for every finite algebra and let \mathscr{F} be an infinite set algebra. Let \mathscr{E} be the collection of all finite subalgebras of \mathscr{F}, directed by inclusion. For each $\mathscr{G} \in \mathscr{E}$ there is an additive set function $\mu_{\mathscr{G}}: \mathscr{G} \rightarrow \mathbb{R}$ satisfying $\left|\nu(A)-\mu_{\mathscr{G}}(A)\right| \leqslant K$ for each $A \in \mathscr{G} ;$ extend this map to the whole of \mathscr{F} by putting $\mu_{\mathscr{G}}(A)=0$ whenever $A \in \mathscr{F} \backslash \mathscr{G}$, and let us denote this extension again by $\mu_{\mathscr{G}}$. Then, every term of the net $\left(\mu_{\mathscr{G}}\right)_{\mathscr{G} \in \mathscr{E}}$ belongs to the set $\left\{f \in \mathbb{R}^{\mathscr{F}}:|f(A)| \leqslant|\nu(A)|+K\right\}$ which is compact with respect to the topology inherited from the product topology on $\mathbb{R}^{\mathscr{F}}$. It is now evident that if $\mu: \mathscr{F} \rightarrow \mathbb{R}$ is the limit of any convergent subnet of $\left(\mu_{\mathscr{G}}\right)_{\mathscr{G} \in \mathscr{E}}$, then μ is an additive set function and $|\nu(A)-\mu(A)| \leqslant K$ for every $A \in \mathscr{F}$. Thus, from now on we assume that \mathscr{F} is finite and, in fact, we may also assume that $\mathscr{F}=\mathcal{P} \Omega$ for some finite set Ω.

For any map $f: \mathscr{F} \rightarrow \mathbb{R}$ we set $V(f)=\max _{A, B \in \mathscr{F}}(f(A)-f(B))$ and we pick an additive set function $\mu: \mathscr{F} \rightarrow \mathbb{R}$ so that $V(\nu-\mu)$ takes the smallest possible value (see Problem 5.7). Let $g=\nu-\mu$ and set

$$
a=\max _{A \in \mathscr{F}} g(A), \quad b=-\min _{A \in \mathscr{F}} g(A) .
$$

With no loss of generality we may assume that $a \geqslant b$ and then $|g(A)| \leqslant a$ for every $A \in \mathscr{F}$. Therefore, we are to prove that $a<45$.

Pick a set $S \subset \Omega$ such that $g(S)=a$ and define a map $\varphi: \mathcal{P} S \rightarrow \mathbb{R}$ by

$$
\varphi(A)=\left\{\begin{array}{cl}
1+\sup _{B \subset A} g(B) & \text { if } A \neq \varnothing \\
0 & \text { if } A=\varnothing
\end{array}\right.
$$

Obviously, φ is monotone and since g satisfies the same inequality as ν, i.e.

$$
|g(A \cup B)-g(A)-g(B)| \leqslant 1 \quad \text { for } A, B \in \mathscr{F} \text { with } A \cap B=\varnothing
$$

the map φ is also subadditive. Hence, φ is a submeasure. Moreover, if $A_{1}, \ldots, A_{n} \subset S$ are non-empty and mutually disjoint, then for some sets $B_{j} \subset A_{j}(j \in[n])$ we have

$$
\sum_{j=1}^{n} \varphi\left(A_{j}\right)=n+\sum_{j=1}^{n} g\left(B_{j}\right) \leqslant n+g\left(B_{1} \cup \ldots \cup B_{n}\right)+n-1 \leqslant 2 n+(a-1)
$$

which means that φ satisfies the assumption of Lemma 16.5 with $\alpha=2$ and $\beta=a-1$. Note also that $\varphi(S)=a+1$.

Now, define

$$
\mathcal{A}=\left\{A \subset S: \varphi(A) \leqslant \frac{9}{2}\right\}
$$

The essential part of the proof consists in showing that the so-defined collection \mathcal{A} contains a sequence of sets which yields a 'good' covering of S. This will be done in two steps.
Claim 1. $\mathrm{C}(\mathcal{A}) \geqslant \frac{1}{2}$.
Suppose this is not true. Then, by Kelley's Theorem 16.7, there exists a finitely additive measure $\lambda: \mathcal{P} S \rightarrow[0,1]$ such that $\lambda(A)<\frac{1}{2}$ for every $A \in \mathcal{A}$ and $\lambda(S)=1$. If so, consider a map $h: \mathscr{F} \rightarrow \mathbb{R}$ given by

$$
h(A)=g(A)-\lambda(A \cap S) \quad \text { for } A \subset \Omega ;
$$

of course, this is still a difference between ν and some additive set function. By our choice of μ, we have $V(h) \geqslant V(g)=a+b$. However, as we shall now show,

$$
-b-\frac{1}{2}<h(A)<a-\frac{1}{2} \quad \text { for every } A \in \mathscr{F} .
$$

First, suppose that $h(A) \geqslant a-\frac{1}{2}$ for some $A \in \mathscr{F}$. Then also $g(A) \geqslant a-\frac{1}{2}$. Moreover,

$$
g(A \backslash S) \leqslant 1+g(A \cup S)-g(S) \leqslant 1
$$

(recall that $g(S)$ is the maximal value of g) and hence

$$
g(A \cap S) \geqslant g(A)-g(A \backslash S)-1 \geqslant a-\frac{5}{2}
$$

Therefore, for every $B \subset S \backslash A$ we have

$$
g(B) \leqslant g((A \cap S) \cup B)-g(A \cap S)+1 \leqslant a-\left(a-\frac{5}{2}\right)+1=\frac{7}{2}
$$

Hence, $\varphi(S \backslash A) \leqslant \frac{9}{2}$ which means that $S \backslash A \in \mathcal{A}$, thus $\lambda(S \backslash A)<\frac{1}{2}$ and so $\lambda(A \cap S)>\frac{1}{2}$. Consequently, $h(A)<a-\frac{1}{2}$ contrary to our supposition.

Now, suppose that $h(A) \leqslant-b-\frac{1}{2}$ for some $A \in \mathscr{F}$. Then $g(A) \leqslant-b+\frac{1}{2}$. If $B \subset A \cap S$, then

$$
g(B) \leqslant g(A)-g(A \backslash B)+1 \leqslant-b+\frac{1}{2}+b+1=\frac{3}{2}
$$

thus $\varphi(A \cap S) \leqslant \frac{5}{2}$. Consequently, $A \cap S \in \mathcal{A}$ and hence $\lambda(A \cap S)<\frac{1}{2}$ which yields $h(A)>-b-\frac{1}{2}$; a contradiction.

In this way, Claim 1 has been proved. Next, we claim that since the collection \mathcal{A} is finite, its covering index is realised by a certain finite sequence of its elements. We shall formulate this assertion taking into account the just proved estimate $\mathrm{C}(\mathcal{A}) \geqslant \frac{1}{2}$:
Claim 2. There exists a sequence $\left(A_{i}\right)_{i=1}^{m} \subset \mathcal{A}$ such that $\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{A_{i}} \geqslant \frac{1}{2} \mathbb{1}_{S}$.
Let

$$
Z(\mathcal{A})=\left\{\left(x_{A}\right)_{A \in \mathscr{A}} \in \mathbb{R}^{|\mathcal{A}|}: \sum_{A \in \mathcal{A}} x_{A} \mathbb{1}_{A} \geqslant \mathbb{1}_{S} \text { and } x_{A} \geqslant 0 \text { for every } A \in \mathcal{A}\right\}
$$

this is an unbounded polygon in the finite-dimensional linear space $\mathbb{R}^{|\mathcal{A}|}$. The set of all those points $\left(x_{A}\right)_{A \in \mathcal{A}}$ from $Z(\mathcal{A})$ for which $\sum_{A \in \mathcal{A}} x_{A}$ is minimal is either a singleton or a polygon being a face of $Z(\mathcal{A})$. In each case there is an extreme point $\left(x_{A}\right)_{A \in \mathcal{A}}$ (a vertex) of $Z(\mathcal{A})$ for which $\sum_{A \in \mathcal{A}} x_{A}$ is minimal. Such a point is a unique solution of a system of linear equations with rational coefficients, hence every its coordinate is rational. Therefore (see Definition 16.6),

$$
\mathrm{C}(\mathcal{A})=\frac{1}{\gamma(\mathcal{A})}=\frac{1}{\sum_{A \in \mathcal{A}} x_{A}} \in \mathbb{Q} .
$$

Since $\sum_{A \in \mathcal{A}} x_{A} \mathbb{1}_{A} \geqslant \mathbb{1}_{S}$ and $C(\mathcal{A}) \geqslant \frac{1}{2}$, we have

$$
\sum_{A \in \mathcal{A}} \mathrm{C}(\mathcal{A}) x_{A} \mathbb{1}_{A} \geqslant \frac{1}{2} \mathbb{1}_{S}
$$

where $\mathrm{C}(\mathcal{A}) x_{A}$ (for $A \in \mathcal{A}$) are rational numbers summing up to one. Let $\mathrm{C}(\mathcal{A}) x_{A}=k_{A} / m$, where $k_{A} \in \mathbb{N}$ and $m \in \mathbb{N}$ is a common denominator of those numbers. Then, repeating the sets from \mathcal{A} as required (each $A \in \mathcal{A}$ should be repeated k_{A} times) we get the desired sequence $\left(A_{i}\right)_{i=1}^{m} \subset \mathcal{A}$. Claim 2 has been proved.

By virtue of Lemma 16.5, applied to the submeasure φ and the constants $\alpha=2$, $\beta=a-1$ and $\varepsilon=\frac{1}{2}$, we get

$$
\frac{9}{2} \geqslant \frac{1}{m} \sum_{i=1}^{m} \varphi\left(A_{i}\right) \geqslant a+1-2 r-(a-1) \vartheta\left(r, \frac{1}{2}\right) \quad \text { for every } r \geqslant 3
$$

Putting $r=6$ and appealing to Corollary 16.3 we arrive at $a \leqslant \frac{89}{2}<45$.

