COMBINATORICS IN BANACH SPACE THEORY

Lecture 2

Now, we will derive the promised corollaries from Rosenthal’s lemma. First, following
[Ros70], we will show how this lemma implies Nikodym’s uniform boundedness principle
for bounded vector measures. Before doing this we need to recall some definitions.

Definition 2.4. Let .% be a set algebra. By a partition of a given set ' € .# we mean
a finite collection {E, ..., Ej} of pairwise disjoint members of .# such that Jf_, E; = E.
We denote II(E) the set of all partitions of E.

Let also X be a Banach space and p: # — X be a finitely additive set function (called
a vector measure). The variation of p is a function |u|: .# — [0, o0] given by

ul(E —sup{Dm me H(E)}'
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The semivariation of u is a function ||p||: % — [0, o] given by

1l = sup{|*u|(B): =" € By-}.

By a straightforward calculation, one may check that the variation |u| is always finitely
additive, whereas the semivariation |||l is monotone and finitely subadditive. Of course,
we always have [|u|| < |p|. Moreover, since we know how the functionals on the scalar
space (R or C) look like, it is easily seen that for scalar-valued measures the notions of
variation and semivariation coincide.

By saying that a vector measure p: .% — X is bounded we mean that ||p|| is finitely
valued. This is in turn equivalent to saying that the range of y is a bounded subset of X.
More precisely, for every F € .% we have

sup [[u(E)[| < |[ull(E) <4 sup |[lu(F)] (2.1)
EDFeZ
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The first inequality is obvious, as we have

LS [u(F)|| = sup  sup |:):*p,(F)|<Esup [ () = [l [ (E)-

EDFEF a*cByx

The second one really says that there are not too many direction on the real line. In fact,
fix any 7 = {E\,. .., Ex} from II(E) and any 2* € Bx+, and let

={i e k: e"p(E:) 2 0}, 7= ={j € [K]: z"u(E;) <0}

Then, in the case where X is a real Banach space, we have
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In the case where X is a complex Banach space, we get the same estimate with 4 instead
of 2, by simply splitting x* into its real and imaginary parts.

Theorem 2.5 (Nikodym boundedness principle, 1930). Let ¥ be a o-algebra of subsets
of ¥ and X be a Banach space. Suppose {j,: v € I'} is a family of X-valued, bounded
vector measures defined on X such that

sup ||py(E)|| < oo for every E € X.
vyel

Then, this family is uniformly bounded, that is, sup.cr ||y ]|(2) < oo.

Proof. First, we may get rid of the Banach space X, just by replacing the original family
of vector measures by the family of scalar measures given by

{x*p,: v €T, z* € Bx-}.

Next, if we suppose that our assertion fails to hold, then there would be a sequence
of measures from this family with total semivariations increasing to infinity. Conse-
quently, we may work only with a sequence (1,)°; of bounded scalar measures satis-
fying sup,, |pn(E)|| < oo, for E € %, and supposing on the contrary to our claim that
sup,, 1al(€2) = oo.

This was a kind of formality. What really makes the result difficult is that the measures
4y, are sign-changing, or even complex-valued.

By our supposition and inequality (2.1), there is a subsequence (pi,;)52; of (tn)p,
and a sequence (E;)%2; C ¥ such that

1 - .
[tin; (E5)| 2 g [l 1(62) 2> 70 + 2zsug |pn(E3)| - for each j € N.
1 ne
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Put F} = E, and F; = E; \ U/_| E; for j > 2. Then (Fj)52, are pairwise disjoint and the
above inequality implies that |, (F})] = ||tn,]//10 for each j € N.

Now, observe that the measures |p,,|/|pn, (F;)| are non-negative, finitely additive and
uniformly bounded by 10. Thus, in view of Rosenthal’s Lemma 2.1, we may pass to
an appropriate subsequence and assume that

1

|, | (U E) < §|,un](F])| for each j € N.
i#]

Then, putting F' = [J;cnF} € X, we obtain

2 1
|ty (F)] 2 §|Mnj(Fj)’ > 1—5||Mnj|| e %
which contradicts the assumption about pointwise boundedness. O

Now, we proceed to the beautiful lemma proved by Phillips [Phi40], which has some
truely deep consequences in the Banach space theory. Its original proof was technical
and rather complicated. However, as it was shown in [Ros70], Phillips’ lemma is an easy
consequence of Rosenthal’s lemma. One may compare the proof presented below with the
one in Morrison’s book, [Mor01, pp. 270-274].

The complex case will require the following well-known property of the complex plane,
which we prove here for completeness.



Lemma 2.6. For any z1,...,z, € C there exists a finite set J C [n] such that

%
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Proof. Let w = Z?:1 |z;]. Divide the complex plane on four sectors bounded by the lines
y = +x. For at least one sector, say (), the sum of the absolute values of all the numbers
from the set {21, ..., z,} which belong to @ is at least w/4. With no loss of generality we
may assume that () is the sector given by |y| < x. Let J = {j € [n]: z; € Q}. Then, for
every z € Q we have Rez > |z|/v/2, thus

2%
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Remark 2.7. By using the so-called isoperimetric inequality, which asserts that the
perimeter of any convex polygon does not exceed m times the diameter of this polygon,
one may show that the assertion of Lemma 2.6 holds true with 1/7 instead of 1/6, and
this cannot go any better.

Lemma 2.8 (Phillips’ lemma, 1940). Let (11,,)°, be a sequence of bounded, finitely ad-
ditive, scalar-valued measures defined on the o-algebra PN. If for every E C N we have
limy, 00 it (E) = 0, then

Tim 3 (k)] = 0. (2:2)

Proof. First, by Nikodym’s Theorem 2.5, we infer that sup,, ||,|| < co. Suppose that our
assertion fails to hold. Then, by a standard ‘sliding-hump’ argument, we may construct
a sequence (F})22, of pairwise disjoint subsets of N and a subsequence (ji,,)52; of (tn)p,
such that |, (F;)| > ¢ for each j € N, with some 6 > 0. Indeed, the negation of (2.2)
produces a subsequence (1,)5% ; of (u,)5% such that > .~ | |v,({k})| > 76 for every n € N,
with some ¢ > 0. Using Lemma 2.6 choose f,,, as one of the measures from (1,)°, such
that |p,, (F1)| > 0 with some finite set £ C N. Next, let m; € N be so large that

max Iy (%)
Z lvn({k})] < 9, hence Z lvn({k})] > 60, for every n = m;.
k=1 k=max F1+1

Again, using Lemma 2.6, we may pick p,,, where ny > n4, as one of the measures from
(Un)pe,,, such that [, (F>)| > § with some finite set /5, € N\ F}. Continuing this

procedure we obtain the desired subsequences.
By Rosenthal’s Lemma 2.1, we may suppose that

|t | (UF’> < 0/2 for each j € N.

i#]
Then, setting F' = 32, Fj, we would get |, (F)| > 0/2; a contradiction. O

This is the time to hit the first target in Banach space theory, with the aid of Phillips’
lemma. Let us recall that a Banach space X is said to have the Schur property whenever
every weakly null sequence in X is norm convergent.
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Theorem 2.9 (Schur, 1921). ¢y has the Schur property.

Before proving Schur’s theorem, let us briefly remind how the dual space of /., is
represented in terms of measures. For any o-algebra ¥ the symbol ba(X) will stand for
the Banach space of all bounded, finitely additive, scalar-valued measures on X, equipped
with the total (semi)variation norm.

Proposition 2.10. % is isometrically isomorphic to the space ba(PN), via an identifi-
cation U5, > ¢ — my, such that

o(zr) = /xdmw for every x € lo. (2.3)
N

Remark 2.11 (before proof). The integration in formula (2.3) is with respect to a finitely
additive measure. Such an integral is defined in a very the same way as the ordinary
Lebesgue integral. Namely, let m: ¥ — X be a finitely additive vector measure, defined
on a o-algebra of subsets of €). For every Y-measurable, scalar-valued step function f,
defined on {2, we may write f = 2521 a;14, with some scalars «;, and some partition

{A1,..., A} € II(Q). Then, we set

/Qfdm = z;%m(/lj).

This defines a linear map on the space of all ¥-measurable, scalar-valued step functions
and a glance at formula (2.4) below shows that its norm equals ||m|/(Q) (we consider
the supremum norm on the space of all those step functions). Hence, this operator has
a (unique) norm preserving extension to the space B(X) of all bounded, ¥-measurable,
scalar-valued functions on €2 (with the supremum norm). Its value at any f € B(X) we
denote, of course, by [, fdm.

If we replace ¥ by an algebra of sets .#, then such a construction defines an integral
on the space B(#) of all scalar-valued functions on €2 which are uniform limits of step
functions on % .

Proof of Proposition 2.10. For any ¢ € (% one may simply define m, € ba(PN) by
putting my,(E) = ¢(1g) for every E C N. Then formula (2.3) is valid for every € /o,
which is a step function on N. Hence, by the construction in Remark 2.11, it must hold
for every € . On the other hand, every measure m € ba(PN) defines an element
of ¢ given by the integral with respect to m. What is left to be proved is that the
correspondence ¢ — m,, is an isometry. This will follow from the following useful formula
for semivariation:

> em(E;)

Ejer

[lm[(£2) = Sup{

cm e II(Q) and |g;] < 1}, (2.4)

which is true for any vector measure m: ¥ — X (X being an arbitrary Banach space).
The inequality ‘>’ is rather straightforward as for any 7 € II(€2) and any scalars (¢;)



with |g;| < 1 we have:

> em(E))

E]' e

z* Y em(Ey)

E]' e

= sup{

< sup{}j

Ej em

st EBX*}

z'm(E;)|: a* € BX*} < |Im||(€).

For the reverse inequality, fix any x* € Bx«, any m = {Ey, ..., B} from II(2), and take
any scalars (o;)¥_; with |a;] = 1 and az*m(E;) = |[¢*m(E;)| for j € [k]. Then,

Yo lem(B)| =) asrm(Ey) =t Y am(By) < || ayml(E;)

EjEﬂ' EjET( E]'Eﬂ' E]‘Eﬂ'

which does not exceed the right-hand side of (2.4).

Finally, formulas (2.3) and (2.4) show that for any ¢ € ¢’ the semivariation of the
measure m,, equals the supremum of all |¢(z)|, where = runs through the set of all step
functions from the unit ball of /., and this is nothing else but the norm of . O]

Proof of Theorem 2.9. Suppose €™ —= 01in ¢;. Each of £’s may be identified with the

functional ¢,, € €% given

I

on(x) = Zﬁj(")ej(x), for z € l,
=1

which is in turn identified via Proposition 2.10 with the measure

my, = &"6; € ba(PN)
j=1
(0; being Dirac’s measure concentrated at {j}). By the assumption, we have ¢, (xz) — 0
for every x € (., thus for any £ C N by taking x = 1z we get m,,(E) — 0. Consequently,
Phillips” Lemma 2.8 implies that

)|
dim 2 Je"] =0

which means that £ — 0 in norm. O

Remark 2.12. An inspection of this proof shows that the assumption about weak con-
vergence of the sequence (£0")2, was not fully exploited and it was enough to assume

only that for every {0, 1}-valued sequence z € ¢, we have

: (n) %\ —
Jim > gej @) = 0.
j=1

In other words, in the Banach space {1 very weak convergence implies strong convergence.

Observe that the identification €M™ <— m,, in the above proof is nothing else but
the identification between an element £ € ¢; and an element from the bidual space ¢7* ~
ba(PN) corresponding to ¢ via the canonical embedding ¢; < ¢;*. Note also that this
proof works without formally appealing to Proposition 2.10. Nonetheless it is good to
keep it in mind in this context.



