
Combinatorics in Banach space theory

Lecture 2

Now, we will derive the promised corollaries from Rosenthal’s lemma. First, following
[Ros70], we will show how this lemma implies Nikodým’s uniform boundedness principle
for bounded vector measures. Before doing this we need to recall some definitions.

Definition 2.4. Let F be a set algebra. By a partition of a given set E ∈ F we mean
a finite collection {E1, . . . , Ek} of pairwise disjoint members of F such that

⋃k
j=1Ej = E.

We denote Π(E) the set of all partitions of E.
Let also X be a Banach space and µ : F → X be a finitely additive set function (called

a vector measure). The variation of µ is a function |µ| : F → [0,∞] given by

|µ|(E) = sup

{∑
A∈π

‖µ(A)‖ : π ∈ Π(E)

}
.

The semivariation of µ is a function ‖µ‖ : F → [0,∞] given by

‖µ‖ = sup
{
|x∗µ|(E) : x∗ ∈ BX∗

}
.

By a straightforward calculation, one may check that the variation |µ| is always finitely
additive, whereas the semivariation ‖µ‖ is monotone and finitely subadditive. Of course,
we always have ‖µ‖ 6 |µ|. Moreover, since we know how the functionals on the scalar
space (R or C) look like, it is easily seen that for scalar-valued measures the notions of
variation and semivariation coincide.

By saying that a vector measure µ : F → X is bounded we mean that ‖µ‖ is finitely
valued. This is in turn equivalent to saying that the range of µ is a bounded subset of X.
More precisely, for every E ∈ F we have

sup
E⊃F∈F

‖µ(F )‖ 6 ‖µ‖(E) 6 4 sup
E⊃F∈F

‖µ(F )‖. (2.1)

The first inequality is obvious, as we have

sup
E⊃F∈F

‖µ(F )‖ = sup
E⊃F∈F

sup
x∗∈BX∗

|x∗µ(F )| 6 sup
E⊃F∈F

‖µ‖(F ) = ‖µ‖(E).

The second one really says that there are not too many direction on the real line. In fact,
fix any π = {E1, . . . , Ek} from Π(E) and any x∗ ∈ BX∗ , and let

π+ = {i ∈ [k] : x∗µ(Ei) > 0}, π− = {j ∈ [k] : x∗µ(Ej) < 0}.

Then, in the case where X is a real Banach space, we have

k∑
j=1

|x∗µ(Ej)| =
∑
i∈π+

x∗µ(Ei)−
∑
j∈π−

x∗µ(Ej)

= x∗µ

(⋃
i∈π+

Ei

)
− x∗µ

( ⋃
j∈π−

Ej

)
6 2 sup

E⊃F∈F
‖µ(F )‖.
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In the case where X is a complex Banach space, we get the same estimate with 4 instead
of 2, by simply splitting x∗ into its real and imaginary parts.

Theorem 2.5 (Nikodým boundedness principle, 1930). Let Σ be a σ-algebra of subsets
of Ω and X be a Banach space. Suppose {µγ : γ ∈ Γ} is a family of X-valued, bounded
vector measures defined on Σ such that

sup
γ∈Γ
‖µγ(E)‖ <∞ for every E ∈ Σ.

Then, this family is uniformly bounded, that is, supγ∈Γ ‖µγ‖(Ω) <∞.

Proof. First, we may get rid of the Banach space X, just by replacing the original family
of vector measures by the family of scalar measures given by{

x∗µγ : γ ∈ Γ, x∗ ∈ BX∗
}
.

Next, if we suppose that our assertion fails to hold, then there would be a sequence
of measures from this family with total semivariations increasing to infinity. Conse-
quently, we may work only with a sequence (µn)∞n=1 of bounded scalar measures satis-
fying supn ‖µn(E)‖ < ∞, for E ∈ F , and supposing on the contrary to our claim that
supn ‖µn‖(Ω) =∞.

This was a kind of formality. What really makes the result difficult is that the measures
µn are sign-changing, or even complex-valued.

By our supposition and inequality (2.1), there is a subsequence (µnj
)∞j=1 of (µn)∞n=1

and a sequence (Ej)
∞
j=1 ⊂ Σ such that

|µnj
(Ej)| >

1

5
‖µnj
‖(Ω) > n+ 2

j−1∑
i=1

sup
n∈N
|µn(Ei)| for each j ∈ N.

Put F1 = E1 and Fj = Ej \
⋃j−1
i=1Ei for j > 2. Then (Fj)

∞
j=1 are pairwise disjoint and the

above inequality implies that |µnj
(Fj)| > ‖µnj

‖/10 for each j ∈ N.
Now, observe that the measures |µnj

|/|µnj
(Fj)| are non-negative, finitely additive and

uniformly bounded by 10. Thus, in view of Rosenthal’s Lemma 2.1, we may pass to
an appropriate subsequence and assume that

|µnj
|

(⋃
i 6=j

Fi

)
<

1

3
|µnj

(Fj)| for each j ∈ N.

Then, putting F =
⋃
j∈NFj ∈ Σ, we obtain

|µnj
(F )| > 2

3
|µnj

(Fj)| >
1

15
‖µnj
‖ −−−−→

j→∞
∞,

which contradicts the assumption about pointwise boundedness.

Now, we proceed to the beautiful lemma proved by Phillips [Phi40], which has some
truely deep consequences in the Banach space theory. Its original proof was technical
and rather complicated. However, as it was shown in [Ros70], Phillips’ lemma is an easy
consequence of Rosenthal’s lemma. One may compare the proof presented below with the
one in Morrison’s book, [Mor01, pp. 270–274].

The complex case will require the following well-known property of the complex plane,
which we prove here for completeness.
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Lemma 2.6. For any z1, . . . , zn ∈ C there exists a finite set J ⊂ [n] such that∣∣∣∣∣∑
j∈J

zj

∣∣∣∣∣ > 1

6

n∑
j=1

|zj|.

Proof. Let w =
∑n

j=1 |zj|. Divide the complex plane on four sectors bounded by the lines
y = ±x. For at least one sector, say Q, the sum of the absolute values of all the numbers
from the set {z1, . . . , zn} which belong to Q is at least w/4. With no loss of generality we
may assume that Q is the sector given by |y| 6 x. Let J = {j ∈ [n] : zj ∈ Q}. Then, for
every z ∈ Q we have Rez > |z|/

√
2, thus∣∣∣∣∣∑

j∈J

zj

∣∣∣∣∣ >∑
j∈J

Rezj >
1√
2

∑
j∈J

|zj| >
w

4
√

2
>
w

6
.

Remark 2.7. By using the so-called isoperimetric inequality, which asserts that the
perimeter of any convex polygon does not exceed π times the diameter of this polygon,
one may show that the assertion of Lemma 2.6 holds true with 1/π instead of 1/6, and
this cannot go any better.

Lemma 2.8 (Phillips’ lemma, 1940). Let (µn)∞n=1 be a sequence of bounded, finitely ad-
ditive, scalar-valued measures defined on the σ-algebra PN. If for every E ⊂ N we have
limn→∞ µn(E) = 0, then

lim
n→∞

∞∑
k=1

|µn({k})| = 0. (2.2)

Proof. First, by Nikodým’s Theorem 2.5, we infer that supn ‖µn‖ <∞. Suppose that our
assertion fails to hold. Then, by a standard ‘sliding-hump’ argument, we may construct
a sequence (Fj)

∞
j=1 of pairwise disjoint subsets of N and a subsequence (µnj

)∞j=1 of (µn)∞n=1

such that |µnj
(Fj)| > δ for each j ∈ N, with some δ > 0. Indeed, the negation of (2.2)

produces a subsequence (νn)∞n=1 of (µn)∞n=1 such that
∑∞

k=1 |νn({k})| > 7δ for every n ∈ N,
with some δ > 0. Using Lemma 2.6 choose µn1 as one of the measures from (νn)∞n=1 such
that |µn1(F1)| > δ with some finite set F1 ⊂ N. Next, let m1 ∈ N be so large that

maxF1∑
k=1

|νn({k})| < δ, hence
∞∑

k=maxF1+1

|νn({k})| > 6δ, for every n > m1.

Again, using Lemma 2.6, we may pick µn2 , where n2 > n1, as one of the measures from
(νn)∞n=m1

such that |µn2(F2)| > δ with some finite set F2 ⊂ N \ F1. Continuing this
procedure we obtain the desired subsequences.

By Rosenthal’s Lemma 2.1, we may suppose that

|µnj
|

(⋃
i 6=j

Fi

)
< δ/2 for each j ∈ N.

Then, setting F =
⋃∞
j=1Fj, we would get |µnj

(F )| > δ/2; a contradiction.

This is the time to hit the first target in Banach space theory, with the aid of Phillips’
lemma. Let us recall that a Banach space X is said to have the Schur property whenever
every weakly null sequence in X is norm convergent.
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Theorem 2.9 (Schur, 1921). `1 has the Schur property.

Before proving Schur’s theorem, let us briefly remind how the dual space of `∞ is
represented in terms of measures. For any σ-algebra Σ the symbol ba(Σ) will stand for
the Banach space of all bounded, finitely additive, scalar-valued measures on Σ, equipped
with the total (semi)variation norm.

Proposition 2.10. `∗∞ is isometrically isomorphic to the space ba(PN), via an identifi-
cation `∗∞ 3 ϕ 7→ mϕ such that

ϕ(x) =

∫
N
x dmϕ for every x ∈ `∞. (2.3)

Remark 2.11 (before proof). The integration in formula (2.3) is with respect to a finitely
additive measure. Such an integral is defined in a very the same way as the ordinary
Lebesgue integral. Namely, let m : Σ → X be a finitely additive vector measure, defined
on a σ-algebra of subsets of Ω. For every Σ-measurable, scalar-valued step function f ,
defined on Ω, we may write f =

∑k
j=1 αj1Aj

with some scalars αj, and some partition
{A1, . . . , Ak} ∈ Π(Ω). Then, we set∫

Ω

f dm =
k∑
j=1

αjm(Aj).

This defines a linear map on the space of all Σ-measurable, scalar-valued step functions
and a glance at formula (2.4) below shows that its norm equals ‖m‖(Ω) (we consider
the supremum norm on the space of all those step functions). Hence, this operator has
a (unique) norm preserving extension to the space B(Σ) of all bounded, Σ-measurable,
scalar-valued functions on Ω (with the supremum norm). Its value at any f ∈ B(Σ) we
denote, of course, by

∫
Ω
f dm.

If we replace Σ by an algebra of sets F , then such a construction defines an integral
on the space B(F ) of all scalar-valued functions on Ω which are uniform limits of step
functions on F .

Proof of Proposition 2.10. For any ϕ ∈ `∗∞ one may simply define mϕ ∈ ba(PN) by
putting mϕ(E) = ϕ(1E) for every E ⊂ N. Then formula (2.3) is valid for every x ∈ `∞
which is a step function on N. Hence, by the construction in Remark 2.11, it must hold
for every x ∈ `∞. On the other hand, every measure m ∈ ba(PN) defines an element
of `∗∞ given by the integral with respect to m. What is left to be proved is that the
correspondence ϕ 7→ mϕ is an isometry. This will follow from the following useful formula
for semivariation:

‖m‖(Ω) = sup

{∥∥∥∥∥∑
Ej∈π

εjm(Ej)

∥∥∥∥∥ : π ∈ Π(Ω) and |εj| 6 1

}
, (2.4)

which is true for any vector measure m : Σ→ X (X being an arbitrary Banach space).
The inequality ‘>’ is rather straightforward as for any π ∈ Π(Ω) and any scalars (εj)
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with |εj| 6 1 we have:∥∥∥∥∥∑
Ej∈π

εjm(Ej)

∥∥∥∥∥ = sup

{∣∣∣∣∣x∗∑
Ej∈π

εjm(Ej)

∣∣∣∣∣ : x∗ ∈ BX∗

}

6 sup

{∑
Ej∈π

∣∣x∗m(Ej)
∣∣ : x∗ ∈ BX∗

}
6 ‖m‖(Ω).

For the reverse inequality, fix any x∗ ∈ BX∗ , any π = {E1, . . . , Ek} from Π(Ω), and take
any scalars (αj)

k
j=1 with |αj| = 1 and αjx

∗m(Ej) = |x∗m(Ej)| for j ∈ [k]. Then,∑
Ej∈π

∣∣x∗m(Ej)
∣∣ =

∑
Ej∈π

αjx
∗m(Ej) = x∗

∑
Ej∈π

αjm(Ej) 6

∥∥∥∥∥∑
Ej∈π

αjm(Ej)

∥∥∥∥∥,
which does not exceed the right-hand side of (2.4).

Finally, formulas (2.3) and (2.4) show that for any ϕ ∈ `∗∞ the semivariation of the
measure mϕ equals the supremum of all |ϕ(x)|, where x runs through the set of all step
functions from the unit ball of `∞, and this is nothing else but the norm of ϕ.

Proof of Theorem 2.9. Suppose ξ(n) w−−→ 0 in `1. Each of ξ(n)’s may be identified with the

functional ϕn ∈ `∗∞ given

ϕn(x) =
∞∑
j=1

ξ
(n)
j e∗j(x), for x ∈ `∞,

which is in turn identified via Proposition 2.10 with the measure

mn =
∞∑
j=1

ξ
(n)
j δj ∈ ba(PN)

(δj being Dirac’s measure concentrated at {j}). By the assumption, we have ϕn(x) → 0
for every x ∈ `∞, thus for any E ⊂ N by taking x = 1E we get mn(E)→ 0. Consequently,
Phillips’ Lemma 2.8 implies that

lim
n→∞

∞∑
j=1

∣∣ξ(n)
j

∣∣ = 0,

which means that ξ(n) → 0 in norm.

Remark 2.12. An inspection of this proof shows that the assumption about weak con-
vergence of the sequence (ξ(n))∞n=1 was not fully exploited and it was enough to assume
only that for every {0, 1}-valued sequence x ∈ `∞ we have

lim
n→∞

∞∑
j=1

ξ
(n)
j e∗j(x) = 0.

In other words, in the Banach space `1 very weak convergence implies strong convergence.

Observe that the identification ξ(n) ←→ mn in the above proof is nothing else but
the identification between an element ξ ∈ `1 and an element from the bidual space `∗∗1 '
ba(PN) corresponding to ξ via the canonical embedding `1 ↪→ `∗∗1 . Note also that this
proof works without formally appealing to Proposition 2.10. Nonetheless it is good to
keep it in mind in this context.
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