Combinatorics in Banach space theory

Lecture 2

Now, we will derive the promised corollaries from Rosenthal's lemma. First, following [Ros70], we will show how this lemma implies Nikodým's uniform boundedness principle for bounded vector measures. Before doing this we need to recall some definitions.
Definition 2.4. Let \mathscr{F} be a set algebra. By a partition of a given set $E \in \mathscr{F}$ we mean a finite collection $\left\{E_{1}, \ldots, E_{k}\right\}$ of pairwise disjoint members of \mathscr{F} such that $\bigcup_{j=1}^{k} E_{j}=E$. We denote $\Pi(E)$ the set of all partitions of E.

Let also X be a Banach space and $\mu: \mathscr{F} \rightarrow X$ be a finitely additive set function (called a vector measure). The variation of μ is a function $|\mu|: \mathscr{F} \rightarrow[0, \infty]$ given by

$$
|\mu|(E)=\sup \left\{\sum_{A \in \pi}\|\mu(A)\|: \pi \in \Pi(E)\right\} .
$$

The semivariation of μ is a function $\|\mu\|: \mathscr{F} \rightarrow[0, \infty]$ given by

$$
\|\mu\|=\sup \left\{\left|x^{*} \mu\right|(E): x^{*} \in B_{X^{*}}\right\}
$$

By a straightforward calculation, one may check that the variation $|\mu|$ is always finitely additive, whereas the semivariation $\|\mu\|$ is monotone and finitely subadditive. Of course, we always have $\|\mu\| \leqslant|\mu|$. Moreover, since we know how the functionals on the scalar space $(\mathbb{R}$ or \mathbb{C}) look like, it is easily seen that for scalar-valued measures the notions of variation and semivariation coincide.

By saying that a vector measure $\mu: \mathscr{F} \rightarrow X$ is bounded we mean that $\|\mu\|$ is finitely valued. This is in turn equivalent to saying that the range of μ is a bounded subset of X. More precisely, for every $E \in \mathscr{F}$ we have

$$
\begin{equation*}
\sup _{E \supset F \in \mathscr{F}}\|\mu(F)\| \leqslant\|\mu\|(E) \leqslant 4 \sup _{E \supset F \in \mathscr{F}}\|\mu(F)\| . \tag{2.1}
\end{equation*}
$$

The first inequality is obvious, as we have

$$
\sup _{E \supset F \in \mathscr{F}}\|\mu(F)\|=\sup _{E \supset F \in \mathscr{F}} \sup _{x^{*} \in B_{X^{*}}}\left|x^{*} \mu(F)\right| \leqslant \sup _{E \supset F \in \mathscr{F}}\|\mu\|(F)=\|\mu\|(E) .
$$

The second one really says that there are not too many direction on the real line. In fact, fix any $\pi=\left\{E_{1}, \ldots, E_{k}\right\}$ from $\Pi(E)$ and any $x^{*} \in B_{X^{*}}$, and let

$$
\pi^{+}=\left\{i \in[k]: x^{*} \mu\left(E_{i}\right) \geqslant 0\right\}, \quad \pi^{-}=\left\{j \in[k]: x^{*} \mu\left(E_{j}\right)<0\right\} .
$$

Then, in the case where X is a real Banach space, we have

$$
\begin{aligned}
\sum_{j=1}^{k}\left|x^{*} \mu\left(E_{j}\right)\right| & =\sum_{i \in \pi^{+}} x^{*} \mu\left(E_{i}\right)-\sum_{j \in \pi^{-}} x^{*} \mu\left(E_{j}\right) \\
& =x^{*} \mu\left(\bigcup_{i \in \pi^{+}} E_{i}\right)-x^{*} \mu\left(\bigcup_{j \in \pi^{-}} E_{j}\right) \leqslant 2 \sup _{E \supset F \in \mathscr{F}}\|\mu(F)\| .
\end{aligned}
$$

In the case where X is a complex Banach space, we get the same estimate with 4 instead of 2 , by simply splitting x^{*} into its real and imaginary parts.

Theorem 2.5 (Nikodým boundedness principle, 1930). Let Σ be a σ-algebra of subsets of Ω and X be a Banach space. Suppose $\left\{\mu_{\gamma}: \gamma \in \Gamma\right\}$ is a family of X-valued, bounded vector measures defined on Σ such that

$$
\sup _{\gamma \in \Gamma}\left\|\mu_{\gamma}(E)\right\|<\infty \quad \text { for every } E \in \Sigma
$$

Then, this family is uniformly bounded, that is, $\sup _{\gamma \in \Gamma}\left\|\mu_{\gamma}\right\|(\Omega)<\infty$.
Proof. First, we may get rid of the Banach space X, just by replacing the original family of vector measures by the family of scalar measures given by

$$
\left\{x^{*} \mu_{\gamma}: \gamma \in \Gamma, x^{*} \in B_{X^{*}}\right\} .
$$

Next, if we suppose that our assertion fails to hold, then there would be a sequence of measures from this family with total semivariations increasing to infinity. Consequently, we may work only with a sequence $\left(\mu_{n}\right)_{n=1}^{\infty}$ of bounded scalar measures satisfying $\sup _{n}\left\|\mu_{n}(E)\right\|<\infty$, for $E \in \mathscr{F}$, and supposing on the contrary to our claim that $\sup _{n}\left\|\mu_{n}\right\|(\Omega)=\infty$.

This was a kind of formality. What really makes the result difficult is that the measures μ_{n} are sign-changing, or even complex-valued.

By our supposition and inequality (2.1), there is a subsequence $\left(\mu_{n_{j}}\right)_{j=1}^{\infty}$ of $\left(\mu_{n}\right)_{n=1}^{\infty}$ and a sequence $\left(E_{j}\right)_{j=1}^{\infty} \subset \Sigma$ such that

$$
\left|\mu_{n_{j}}\left(E_{j}\right)\right| \geqslant \frac{1}{5}\left\|\mu_{n_{j}}\right\|(\Omega) \geqslant n+2 \sum_{i=1}^{j-1} \sup _{n \in \mathbb{N}}\left|\mu_{n}\left(E_{i}\right)\right| \quad \text { for each } j \in \mathbb{N} \text {. }
$$

Put $F_{1}=E_{1}$ and $F_{j}=E_{j} \backslash \bigcup_{i=1}^{j-1} E_{i}$ for $j \geqslant 2$. Then $\left(F_{j}\right)_{j=1}^{\infty}$ are pairwise disjoint and the above inequality implies that $\left|\mu_{n_{j}}\left(F_{j}\right)\right| \geqslant\left\|\mu_{n_{j}}\right\| / 10$ for each $j \in \mathbb{N}$.

Now, observe that the measures $\left|\mu_{n_{j}}\right| /\left|\mu_{n_{j}}\left(F_{j}\right)\right|$ are non-negative, finitely additive and uniformly bounded by 10 . Thus, in view of Rosenthal's Lemma 2.1, we may pass to an appropriate subsequence and assume that

$$
\left|\mu_{n_{j}}\right|\left(\bigcup_{i \neq j} F_{i}\right)<\frac{1}{3}\left|\mu_{n_{j}}\left(F_{j}\right)\right| \quad \text { for each } j \in \mathbb{N} \text {. }
$$

Then, putting $F=\bigcup_{j \in \mathbb{N}} F_{j} \in \Sigma$, we obtain

$$
\left|\mu_{n_{j}}(F)\right| \geqslant \frac{2}{3}\left|\mu_{n_{j}}\left(F_{j}\right)\right| \geqslant \frac{1}{15}\left\|\mu_{n_{j}}\right\| \xrightarrow[j \rightarrow \infty]{ } \infty
$$

which contradicts the assumption about pointwise boundedness.
Now, we proceed to the beautiful lemma proved by Phillips [Phi40], which has some truely deep consequences in the Banach space theory. Its original proof was technical and rather complicated. However, as it was shown in [Ros70], Phillips' lemma is an easy consequence of Rosenthal's lemma. One may compare the proof presented below with the one in Morrison's book, [Mor01, pp. 270-274].

The complex case will require the following well-known property of the complex plane, which we prove here for completeness.

Lemma 2.6. For any $z_{1}, \ldots, z_{n} \in \mathbb{C}$ there exists a finite set $J \subset[n]$ such that

$$
\left|\sum_{j \in J} z_{j}\right| \geqslant \frac{1}{6} \sum_{j=1}^{n}\left|z_{j}\right| .
$$

Proof. Let $w=\sum_{j=1}^{n}\left|z_{j}\right|$. Divide the complex plane on four sectors bounded by the lines $y= \pm x$. For at least one sector, say Q, the sum of the absolute values of all the numbers from the set $\left\{z_{1}, \ldots, z_{n}\right\}$ which belong to Q is at least $w / 4$. With no loss of generality we may assume that Q is the sector given by $|y| \leqslant x$. Let $J=\left\{j \in[n]: z_{j} \in Q\right\}$. Then, for every $z \in Q$ we have $\operatorname{Re} z \geqslant|z| / \sqrt{2}$, thus

$$
\left|\sum_{j \in J} z_{j}\right| \geqslant \sum_{j \in J} \operatorname{Re} z_{j} \geqslant \frac{1}{\sqrt{2}} \sum_{j \in J}\left|z_{j}\right| \geqslant \frac{w}{4 \sqrt{2}} \geqslant \frac{w}{6} .
$$

Remark 2.7. By using the so-called isoperimetric inequality, which asserts that the perimeter of any convex polygon does not exceed π times the diameter of this polygon, one may show that the assertion of Lemma 2.6 holds true with $1 / \pi$ instead of $1 / 6$, and this cannot go any better.

Lemma 2.8 (Phillips' lemma, 1940). Let $\left(\mu_{n}\right)_{n=1}^{\infty}$ be a sequence of bounded, finitely additive, scalar-valued measures defined on the σ-algebra $\mathcal{P} \mathbb{N}$. If for every $E \subset \mathbb{N}$ we have $\lim _{n \rightarrow \infty} \mu_{n}(E)=0$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|\mu_{n}(\{k\})\right|=0 \tag{2.2}
\end{equation*}
$$

Proof. First, by Nikodým's Theorem 2.5, we infer that $\sup _{n}\left\|\mu_{n}\right\|<\infty$. Suppose that our assertion fails to hold. Then, by a standard 'sliding-hump' argument, we may construct a sequence $\left(F_{j}\right)_{j=1}^{\infty}$ of pairwise disjoint subsets of \mathbb{N} and a subsequence $\left(\mu_{n_{j}}\right)_{j=1}^{\infty}$ of $\left(\mu_{n}\right)_{n=1}^{\infty}$ such that $\left|\mu_{n_{j}}\left(F_{j}\right)\right|>\delta$ for each $j \in \mathbb{N}$, with some $\delta>0$. Indeed, the negation of (2.2) produces a subsequence $\left(\nu_{n}\right)_{n=1}^{\infty}$ of $\left(\mu_{n}\right)_{n=1}^{\infty}$ such that $\sum_{k=1}^{\infty}\left|\nu_{n}(\{k\})\right|>7 \delta$ for every $n \in \mathbb{N}$, with some $\delta>0$. Using Lemma 2.6 choose $\mu_{n_{1}}$ as one of the measures from $\left(\nu_{n}\right)_{n=1}^{\infty}$ such that $\left|\mu_{n_{1}}\left(F_{1}\right)\right|>\delta$ with some finite set $F_{1} \subset \mathbb{N}$. Next, let $m_{1} \in \mathbb{N}$ be so large that

$$
\sum_{k=1}^{\max F_{1}}\left|\nu_{n}(\{k\})\right|<\delta, \text { hence } \sum_{k=\max F_{1}+1}^{\infty}\left|\nu_{n}(\{k\})\right|>6 \delta, \quad \text { for every } n \geqslant m_{1} .
$$

Again, using Lemma 2.6, we may pick $\mu_{n_{2}}$, where $n_{2}>n_{1}$, as one of the measures from $\left(\nu_{n}\right)_{n=m_{1}}^{\infty}$ such that $\left|\mu_{n_{2}}\left(F_{2}\right)\right|>\delta$ with some finite set $F_{2} \subset \mathbb{N} \backslash F_{1}$. Continuing this procedure we obtain the desired subsequences.

By Rosenthal's Lemma 2.1, we may suppose that

$$
\left|\mu_{n_{j}}\right|\left(\bigcup_{i \neq j} F_{i}\right)<\delta / 2 \quad \text { for each } j \in \mathbb{N} \text {. }
$$

Then, setting $F=\bigcup_{j=1}^{\infty} F_{j}$, we would get $\left|\mu_{n_{j}}(F)\right|>\delta / 2$; a contradiction.
This is the time to hit the first target in Banach space theory, with the aid of Phillips' lemma. Let us recall that a Banach space X is said to have the Schur property whenever every weakly null sequence in X is norm convergent.

Theorem 2.9 (Schur, 1921). ℓ_{1} has the Schur property.
Before proving Schur's theorem, let us briefly remind how the dual space of ℓ_{∞} is represented in terms of measures. For any σ-algebra Σ the symbol ba (Σ) will stand for the Banach space of all bounded, finitely additive, scalar-valued measures on Σ, equipped with the total (semi) variation norm.

Proposition 2.10. ℓ_{∞}^{*} is isometrically isomorphic to the space ba $(\mathcal{P} \mathbb{N})$, via an identification $\ell_{\infty}^{*} \ni \varphi \mapsto m_{\varphi}$ such that

$$
\begin{equation*}
\varphi(x)=\int_{\mathbb{N}} x \mathrm{~d} m_{\varphi} \quad \text { for every } x \in \ell_{\infty} \tag{2.3}
\end{equation*}
$$

Remark 2.11 (before proof). The integration in formula (2.3) is with respect to a finitely additive measure. Such an integral is defined in a very the same way as the ordinary Lebesgue integral. Namely, let $m: \Sigma \rightarrow X$ be a finitely additive vector measure, defined on a σ-algebra of subsets of Ω. For every Σ-measurable, scalar-valued step function f, defined on Ω, we may write $f=\sum_{j=1}^{k} \alpha_{j} \mathbb{1}_{A_{j}}$ with some scalars α_{j}, and some partition $\left\{A_{1}, \ldots, A_{k}\right\} \in \Pi(\Omega)$. Then, we set

$$
\int_{\Omega} f \mathrm{~d} m=\sum_{j=1}^{k} \alpha_{j} m\left(A_{j}\right)
$$

This defines a linear map on the space of all Σ-measurable, scalar-valued step functions and a glance at formula (2.4) below shows that its norm equals $\|m\|(\Omega)$ (we consider the supremum norm on the space of all those step functions). Hence, this operator has a (unique) norm preserving extension to the space $B(\Sigma)$ of all bounded, Σ-measurable, scalar-valued functions on Ω (with the supremum norm). Its value at any $f \in B(\Sigma)$ we denote, of course, by $\int_{\Omega} f \mathrm{~d} m$.

If we replace Σ by an algebra of sets \mathscr{F}, then such a construction defines an integral on the space $B(\mathscr{F})$ of all scalar-valued functions on Ω which are uniform limits of step functions on \mathscr{F}.

Proof of Proposition 2.10. For any $\varphi \in \ell_{\infty}^{*}$ one may simply define $m_{\varphi} \in \mathrm{ba}(\mathcal{P} \mathbb{N})$ by putting $m_{\varphi}(E)=\varphi\left(\mathbb{1}_{E}\right)$ for every $E \subset \mathbb{N}$. Then formula (2.3) is valid for every $x \in \ell_{\infty}$ which is a step function on \mathbb{N}. Hence, by the construction in Remark 2.11, it must hold for every $x \in \ell_{\infty}$. On the other hand, every measure $m \in \operatorname{ba}(\mathcal{P} \mathbb{N})$ defines an element of ℓ_{∞}^{*} given by the integral with respect to m. What is left to be proved is that the correspondence $\varphi \mapsto m_{\varphi}$ is an isometry. This will follow from the following useful formula for semivariation:

$$
\begin{equation*}
\|m\|(\Omega)=\sup \left\{\left\|\sum_{E_{j} \in \pi} \varepsilon_{j} m\left(E_{j}\right)\right\|: \pi \in \Pi(\Omega) \text { and }\left|\varepsilon_{j}\right| \leqslant 1\right\} \tag{2.4}
\end{equation*}
$$

which is true for any vector measure $m: \Sigma \rightarrow X$ (X being an arbitrary Banach space).
The inequality ' \geqslant ' is rather straightforward as for any $\pi \in \Pi(\Omega)$ and any scalars (ε_{j})
with $\left|\varepsilon_{j}\right| \leqslant 1$ we have:

$$
\begin{aligned}
\left\|\sum_{E_{j} \in \pi} \varepsilon_{j} m\left(E_{j}\right)\right\| & =\sup \left\{\left|x^{*} \sum_{E_{j} \in \pi} \varepsilon_{j} m\left(E_{j}\right)\right|: x^{*} \in B_{X^{*}}\right\} \\
& \leqslant \sup \left\{\sum_{E_{j} \in \pi}\left|x^{*} m\left(E_{j}\right)\right|: x^{*} \in B_{X^{*}}\right\} \leqslant\|m\|(\Omega)
\end{aligned}
$$

For the reverse inequality, fix any $x^{*} \in B_{X^{*}}$, any $\pi=\left\{E_{1}, \ldots, E_{k}\right\}$ from $\Pi(\Omega)$, and take any scalars $\left(\alpha_{j}\right)_{j=1}^{k}$ with $\left|\alpha_{j}\right|=1$ and $\alpha_{j} x^{*} m\left(E_{j}\right)=\left|x^{*} m\left(E_{j}\right)\right|$ for $j \in[k]$. Then,

$$
\sum_{E_{j} \in \pi}\left|x^{*} m\left(E_{j}\right)\right|=\sum_{E_{j} \in \pi} \alpha_{j} x^{*} m\left(E_{j}\right)=x^{*} \sum_{E_{j} \in \pi} \alpha_{j} m\left(E_{j}\right) \leqslant\left\|\sum_{E_{j} \in \pi} \alpha_{j} m\left(E_{j}\right)\right\|
$$

which does not exceed the right-hand side of (2.4).
Finally, formulas (2.3) and (2.4) show that for any $\varphi \in \ell_{\infty}^{*}$ the semivariation of the measure m_{φ} equals the supremum of all $|\varphi(x)|$, where x runs through the set of all step functions from the unit ball of ℓ_{∞}, and this is nothing else but the norm of φ.

Proof of Theorem 2.9. Suppose $\xi^{(n)} \xrightarrow{w} 0$ in ℓ_{1}. Each of $\xi^{(n)}$'s may be identified with the functional $\varphi_{n} \in \ell_{\infty}^{*}$ given

$$
\varphi_{n}(x)=\sum_{j=1}^{\infty} \xi_{j}^{(n)} e_{j}^{*}(x), \quad \text { for } x \in \ell_{\infty},
$$

which is in turn identified via Proposition 2.10 with the measure

$$
m_{n}=\sum_{j=1}^{\infty} \xi_{j}^{(n)} \delta_{j} \in \mathrm{ba}(\mathcal{P} \mathbb{N})
$$

(δ_{j} being Dirac's measure concentrated at $\{j\}$). By the assumption, we have $\varphi_{n}(x) \rightarrow 0$ for every $x \in \ell_{\infty}$, thus for any $E \subset \mathbb{N}$ by taking $x=\mathbb{1}_{E}$ we get $m_{n}(E) \rightarrow 0$. Consequently, Phillips' Lemma 2.8 implies that

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty}\left|\xi_{j}^{(n)}\right|=0
$$

which means that $\xi^{(n)} \rightarrow 0$ in norm.
Remark 2.12. An inspection of this proof shows that the assumption about weak convergence of the sequence $\left(\xi^{(n)}\right)_{n=1}^{\infty}$ was not fully exploited and it was enough to assume only that for every $\{0,1\}$-valued sequence $x \in \ell_{\infty}$ we have

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{\infty} \xi_{j}^{(n)} e_{j}^{*}(x)=0
$$

In other words, in the Banach space ℓ_{1} very weak convergence implies strong convergence.
Observe that the identification $\xi^{(n)} \longleftrightarrow m_{n}$ in the above proof is nothing else but the identification between an element $\xi \in \ell_{1}$ and an element from the bidual space $\ell_{1}^{* *} \simeq$ $\mathrm{ba}(\mathcal{P} \mathbb{N})$ corresponding to ξ via the canonical embedding $\ell_{1} \hookrightarrow \ell_{1}^{* *}$. Note also that this proof works without formally appealing to Proposition 2.10. Nonetheless it is good to keep it in mind in this context.

