
Combinatorics in Banach space theory

Lecture 3

3 Grothendieck’s theorem on weakly compact sets of measures

We will discuss some further applications of Rosenthal’s lemma which are of quite a dif-
ferent type than those presented in Section 2, and which characterise non-weakly compact
operators on injective Banach spaces. However, before doing this we need some prepara-
tions which consist mainly on some measure-theoretic results.

At this moment, let us just announce two main products of our future investigations
which lie in the heart of the Banach space theory. Both are originally attributed to Lin-
denstrauss [Lin67], but our intention is to present their proofs based on the paper [Ros70]
and to convince the reader that a crucial part of deriving these result is just Rosen-
thal’s lemma. We say that a Banach space X is prime whenever every complemented,
infinite-dimensional subspace of X is isomorphic to X.

Theorem 3.1 (Lindenstrauss, 1967). Let Γ be a non-empty index set and X be a comple-
mented subspace of `∞(Γ). If X contains an isomorphic copy of c0(Γ), then X ' `∞(Γ).

Theorem 3.2 (Lindenstrauss, 1967). `∞ is prime.

One of the main ingredients, which are necessary for proving the announced theorems
of Rosenthal on non-weakly compact operators acting on injective spaces, is Pe lczyński’s
characterisation of non-weakly compact operators acting on C(K)-spaces. This in turn
requires Grothendieck’s description of relatively weakly compact subsets of M(K), the
Banach space of all scalar-valued, σ-additive, regular Borel measures on a compact Haus-
dorff space K, equipped with the total (semi)variation norm. We shall focus on this issue
during the present lecture.

Definition 3.3. By saying that a Borel measure µ is regular we mean that for every
Borel set A from the domain of µ, and every ε > 0, there exist a compact set K ⊂ A and
an open set V ⊃ A such that |µ|(V \K) < ε.

A family A of Borel measures on a topological space is called uniformly regular when-
ever for every open set V , and every ε > 0, there exists a compact set K ⊂ V such that
|µ|(V \K) < ε for each µ ∈ A.

Recall that the classical Riesz Representation Theorem asserts that C(K)∗ ' M(K)
via the duality given by 〈f, µ〉 =

∫
K
f dµ for f ∈ C(K) and µ ∈M(K). For simplicity, we

will restrict ourselves to the case of real-valued measures (and functions) as in the complex
case all the results presented below remain true by simply splitting complex measures (and
functions) into their real and imaginary parts. So, for any σ-additive measure µ : Σ→ R,
defined on a σ-algebra of subsets of K, we have the Hahn decomposition µ = µ+ − µ−,
where µ+ and µ− are non-negative measures on Σ, defined by

µ+(A) = µ(A ∩ P ) and µ−(A) = −µ(A ∩ (K \ P )) for A ∈ Σ,
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where {P,K \ P} is a measurable partition of K having the property that

µ(A ∩ P ) > 0 and µ(A ∩ (K \ P )) 6 0 for every A ∈ Σ.

Probably the shortest existing proof of the Hahn decomposition theorem is due to Doss
[Dos80]. Observe that from the very Definition 2.4 it follows quite easily that for every
measure µ as above we have |µ| = µ+ +µ−, which is also equal to ‖µ‖ as µ is scalar-valued
(see Problem 3.4). In particular, every measure µ ∈ M(K) is bounded, that is, of finite
(semi)variation.

Before proceeding to Grothendieck’s theorem we need some measure-theoretic prepa-
rations. Everywhere below the letter µ, appearing in the symbol L1(µ), stands for a finite?,
σ-additive, non-negative measure defined on some σ-algebra Σ of subsets of a set Ω.

Definition 3.4. A bounded set F ⊂ L1(µ) is called equi-integrable whenever

lim
µ(E)→0

sup
f∈F

∫
E

|f | dµ = 0,

that is, for every ε > 0 there is δ > 0 such that for every E ∈ Σ with µ(E) < δ, and every
f ∈ F , we have

∫
E
|f | dµ < ε.

It may be shown that the above condition is equivalent to

lim
M→∞

sup
f∈F

∫
{|f |>M}

|f | dµ = 0,

which is the assertion of Problem 3.14. Now, we will prove that equi-integrability of any
set F ⊂ L1(µ) implies that F is relatively weakly compact. These two properties are in
fact equivalent (which was first proved in [DP40]), but for the time being we focus only
on that one announced implication; the converse one will be proved in Section 5. A wider
version of this theorem may be found in [AK06, Theorem 5.2.9]. The reader should
compare the statement below with the assertion of Problem 1.8(b), which is nothing but
an ‘atomic’ (and compact) version of what we are now going to prove.

Lemma 3.5 (Dunford & Pettis, 1940). Let F be a bounded subset of L1(µ). Then, the
two assertions below are equivalent:

(i) F is relatively weakly compact;
(ii) F is equi-integrable.

Proof of the implication (ii) ⇒ (i). By the Eberlein–Šmulian theorem, it is enough to
show that every sequence (fn)∞n=1 ⊂ F is relatively weakly compact. Since the topol-
ogy on R, the codomain of each of these functions fn, has a countable basis, there exists
a countable set algebra F ⊂ Σ such that every fn is F -measurable. Let Σ′ be the σ-
algebra generated by F . Since (fn)∞n=1 are uniformly bounded, for every set E ∈ F we
may extract a subsequence (fnj

)∞j=1 such that the limit F (E) = limj→∞
∫
E
fnj

dµ exists.
Because F is countable we may also apply the diagonal procedure and assume that the
last equality holds true for every E ∈ F , with some fixed subsequence (fnj

)∞j=1 ⊂ (fn)∞n=1.

?We some additional effort we could also cover the σ-finite case, but this is not so interesting in our
context.
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Since µ is a finite measure and (fnj
)∞j=1 are uniformly integrable, we conclude that the

limit F (E) = limj→∞
∫
E
fnj

dµ exists for every E ∈ Σ′ and F : Σ′ → R is a σ-additive
measure (see Problem 3.6). Plainly, F � µ, so the Radon–Nikodým Theorem? implies
that there exists a function f ∈ L1(Σ′, µ) such that

lim
j→∞

∫
E

fnj
dµ =

∫
E

g dµ for every E ∈ Σ′,

which implies

lim
j→∞

∫
Ω

fnj
g dµ =

∫
Ω

fg dµ for every g ∈ L∞(Σ′, µ).

Hence, fnj

w−−→ f in L1(Σ′, µ), and since L1(Σ′, µ) is just a (closed) subspace of L1(µ), we

have also fnj

w−−→ f in L1(µ).

This was a truely neat application of the Radon–Nikodým Theorem. Another proof
of the implication (ii)⇒ (i), given in [AK06], may be worked out by using the characteri-
sation of equi-integrability given in Problem 3.14 and the fact that F is relatively weakly
compact if and only if Fw∗, the weak∗ closure of F in L1(µ)∗∗, lies inside L1(µ). However,
this is much more technical and probably not so elegant as the argument given above.

We are now ready to deal with Grothendieck’s theorem. It will not be proved com-
pletely, since what we essentially need for our purposes is the fact that every non-weakly
compact subset ofM(K) contains a subsequence of measures whose values are separated
from zero on some sequence of pairwise disjoint open subsets of K. For the complete
proof, as well as some additional equivalent clauses, see [AK06, Theorem 5.3.2].

Theorem 3.6 (Grothendieck, 1953). Let K be a compact Hausdorff space and A be
a bounded subset of M(K). Then, the following assertions are equivalent:

(i) A is relatively weakly compact;
(ii) A is uniformly regular;

(iii) for any sequence (Un)∞n=1 of pairwise disjoint open subsets of K, and any sequence
(µn)∞n=1 ⊂ A, we have limn→∞ µn(Un) = 0.

Proof of the implications (iii) ⇒ (ii) ⇒ (i). We start with showing that (iii) ⇒ (ii).
First of all, the assumption (iii) implies that for any sequence (Un)∞n=1 of pairwise disjoint
open subsets of K, and any sequence (µn)∞n=1 ⊂ A, we have limn→∞ |µn|(Un) = 0. To see
this one may proceed by contradiction, using the Hahn decomposition and the regularity
of members from A (see Problem 3.7).

Now, suppose on the contrary, that there is an open set U ⊂ K and some δ > 0 such
that

sup
µ∈A
|µ|(U \H) > δ for every compact set H ⊂ K.

?The Radon-Nikodým Theorem says that for any σ-additive, σ-finite, non-negative measure µ,
defined on a σ-algebra Σ, and any σ-additive, complex measure λ on Σ, which is absolutely continuous
with respect to µ (i.e. µ(E) = 0 implies λ(E) = 0, for any E ∈ Σ), there exists a unique function
f ∈ L1(µ) such that λ(E) =

∫
E
f dµ for every E ∈ Σ. We then write dλ = fdµ or f = dλ/dµ, and we

call this function f the Radon-Nikodým derivative of λ with respect to µ. The fact that λ is absolutely
continuous with respect to µ is denoted λ � µ and it is equivalent to saying that µ(E) = 0 implies
|λ|(E) = 0, for each E ∈ Σ (see Problem 3.5)
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Let H0 = ∅ and pick µ1 ∈ A such that |µ1|(U \H0) > δ. By the regularity of µ1, there is
a compact set F1 ⊂ U \H0 with |µ1|(F1) > δ. To proceed inductively let us pick an open
set V1 with a compact closure which satisfies

F1 ⊂ V1 ⊂ V1 ⊂ U \H0;

the existence of such a set follows from the fact that K, being compact and Hausdorff, is
normal. So, by putting H1 = V1 and using our supposition we get |µ2|(U \ H1) > δ for
some µ2 ∈ A. Again, there is a compact set F2 ⊂ U \H2 with |µ2|(F2) > δ and by using
the T4-axiom for K we get an open set V2 with a compact closure satisfying

F2 ⊂ V2 ⊂ V2 ⊂ U \H1.

Now, we put H2 = V1∪V2 and proceed similarly. Eventually, we get a sequence (Vn)∞n=1 of
pairwise disjoint open subset of K, and a sequence (µn)∞n=1 ⊂ A, such that |µn|(Vn) > δ
for each n ∈ N, which contradicts the conclusion of the previous paragraph.

(ii) ⇒ (i) In this part we will combine the implication (ii) ⇒ (i) from Lemma 3.5
and a cornerstone of the measure theory, the Radon–Nikodým Theorem. First, observe
that in view of the Eberlein–Šmulian theorem, it is enough to show that every sequence
contained in A is relatively weakly compact. So, fix any such (µn)∞n=1 ⊂ A.

The formula

µ =
∞∑
n=1

1

2n
|µn|

defines a σ-additive, bounded, non-negative measure µ on the σ-algebra of all Borel subsets
of K. Obviously, µn � µ for each n ∈ N, thus the Radon–Nikodým Theorem produces
a sequence (fn)∞n=1 ⊂ L1(µ) such that dµn = fndµ for each n ∈ N. Let

AC(µ) = {λ ∈M(K) : λ� µ}.

This is, of course, a linear subspace ofM(K) and, moreover, a closed subspace ofM(K)
(see Problem 3.8), that is, a Banach space with the total (semi)variation norm.

The Radon–Nikodým Theorem defines a bijective map Φ: L1(µ) → AC(µ), which
assigns to every µ-integrable function f the measure Φ(f) ∈ AC(µ) satisfying Φ(f)(E) =∫
E
f dµ, for every Borel subset E of K. By the definition of (semi)variation, we infer that

Φ yields an isometry between L1(µ) and AC(µ) (see Problem 3.16) and, clearly, satisfies
Φ(fn) = µn for each n ∈ N. Consequently, saying that the set {µn : n ∈ N} is relatively
weakly compact in M(K) is equivalent to saying that the set {fn : n ∈ N} is relatively
weakly compact in L1(µ). By the implication (ii) ⇒ (i) from Lemma 3.5, the last clause
would follow from the fact that {fn : n ∈ N} is equi-integrable. This is what we shall now
demonstrate, and this is where we will use our assumption about uniform regularity.

Suppose {fn : n ∈ N} is not equi-integrable. Then, by using regularity, we get some
positive number ε and a sequence (Vn)∞n=1 of open sets such that

µ(Vn) < 2−n and sup
k∈N

∫
Vn

|fk| dµ > ε for each n ∈ N. (3.1)

Replacing each Vn be
⋃∞
k=n+1Vk we may also assume that (Vn)∞n=1 is decreasing. For every

n ∈ N we may apply uniform regularity to the open set Vn and thus we obtain compact
sets Kn ⊂ Vn (n ∈ N) satisfying

sup
k∈N

∫
Vn\Kn

|fk| dµ < ηn for each n ∈ N, (3.2)
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where the numbers (ηn)∞n=1 may be required to be as small as we wish, and they shall be
fixed later on. For now, let us just remark that due to the fact that Φ is an isometry
we have |µk|(E) =

∫
E
|fk| dµ, for every Borel set E ⊂ K and k ∈ N, which shows that

inequalities (3.2) are indeed a consequence of the uniform regularity of A. Now, to get
a desired contradiction from (3.1) and (3.2) we need a little compactness trick.

Observe that
⋂∞
n=1Kn is a compact set with µ(

⋂∞
n=1Kn) = 0. By uniform outer regular-

ity (see Problem 3.13), we may find an open setW ⊃ ⋂∞
n=1Kn such that supk∈N

∫
W
|fk| dµ <

ε/2. By compactness, there is some N ∈ N satisfying
⋂N
n=1Kn ⊂ W and hence

sup
k∈N

∫
⋂N

n=1Kn

|fk| dµ <
ε

2
.

Since Vn+1 ⊂ Vn for n ∈ N, we have

VN+1 ⊂
N⋃
n=1

(Vn \Kn) ∪
N⋂
n=1

Kn,

whence for every k ∈ N we have∫
VN+1

|fk| dµ 6
∫
⋂N

n=1Kn

|fk| dµ+
N∑
n=1

∫
Vn\Kn

|fk| dµ <
ε

2
+

N∑
n=1

ηn.

Hence, putting ηn = 2−(n+1)ε, for n ∈ N, we obtain a contradiction with (3.1).
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