
Combinatorics in Banach space theory

Lecture 4

4 Weakly compact operators on C(K)-spaces and injective
Banach spaces

After some measure-theoretic preparations in Section 3 we are ready to make our way
towards the proofs of two structural theorems of Lindenstrauss announced earlier (The-
orems 3.1 and 3.2). The main tool for these results are characterisations of non-weakly
compact operators on C(K)-spaces and injective spaces. Let us start with the basic
definition and some introductory remarks.

Definition 4.1. Let X and Y be Banach spaces. An operator T : X → Y is called
[weakly ] compact whenever T (BX), the range of the unit ball of X, is a relatively [weakly]
compact subset of Y .

The collection of all (weakly) compact operators forms a two-sided ideal, which means
that if S and T are (weakly) compact, then S + T is (weakly) compact and both SR and
RS are (weakly) compact for every operator R for which these compositions make sense.
These facts are almost obvious; for proving the assertion about S+T one only has to use
the fact that an operator R is (weakly) compact if and only for every bounded sequence
(xn)∞n=1 from the domain of R there exists a subsequence (xnj

)∞j=1 such that (Rxnj
)∞j=1

converges (weakly). In the case of weakly compact operator this argument involves, of
course, the Eberlein–Šmulian theorem.

The identity operator IX , acting on a Banach space X, is compact if and only if X is
finite-dimensional. This follows immediately from the fact that the unit ball of an infinite-
dimensional normed space is never compact in the norm topology. On the other hand,
IX is weakly compact if and only if X is reflexive, because weak compactness of the unit
ball BX is equivalent to reflexivity of X. For operators which map an arbitrary Banach
space X into `1 (more generally, into any Banach space with Schur’s property) we may
say something more interesting. Namely, if T : X → `1 is a weakly compact operator then
it is automatically compact. This follows from the fact that every weakly compact subset
of `1 is compact. Indeed, if A ⊂ `1 is weakly compact and (xn)n=1 is any sequence of
elements from A, then by the Eberlein–Šmulian theorem we may extract a subsequence
(xnj

)∞j=1 that is weakly convergent. But then, Schur’s property of `1 (Theorem 2.9) implies
that (xnj

)∞j=1 is norm convergent, which proves that A is compact in the norm topology.
The following fact is one of the most fundamental results on weakly compact operators.

Theorem 4.2 (Gantmacher, 1940). Let X and Y be Banach spaces and T : X → Y be
an operator. Then, the following assertions are equivalent:

(i) T is weakly compact;
(ii) T ∗ is weakly compact;

(iii) T ∗∗(X∗∗) ⊂ iY (Y ), where iY : Y ↪→ Y ∗∗ is the canonical embedding.
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We shall prove Gantmacher’s theorem for completeness, starting with the following
simple lemma.

Lemma 4.3. Let X and Y be Banach spaces and T : X → Y be an operator. Let also
iX : X ↪→ X∗∗ and iY : Y ↪→ Y ∗∗ be the canonical embeddings. Then, T ∗∗iX(X) ⊆ iY (Y )
and i−1

Y T ∗∗iX = T .

Proof. For the first assertion fix any x ∈ X; we shall show that the functional T ∗∗iX(x) ∈
Y ∗∗ is w∗-continuous, which would imply that it belongs to iY (Y ). To this end observe
that for every y∗ ∈ Y ∗ we have

〈y∗, T ∗∗iX(x)〉 = 〈T ∗y∗, iX(x)〉 = 〈x, T ∗y∗〉 = 〈Tx, y∗〉.

Now, let (y∗α) be any net in Y ∗, weak∗ convergent to some y∗0 ∈ Y ∗. Then,

〈y∗α, T ∗∗iX(x)〉 = 〈Tx, y∗α〉 −−−→
α
〈Tx, y∗0〉 = 〈y∗0, T ∗∗iX(x)〉,

which shows that T ∗∗iX(x) is w∗-continuous.
The composition i−1

Y T ∗∗iX is an operator mapping X into Y . By the conclusion of the
preceding paragraph, for any y∗ ∈ Y ∗ we have

〈Tx, y∗〉 = 〈y∗, T ∗∗iX(x)〉 = 〈i−1
Y T ∗∗iX(x), y∗〉,

which completes the proof.

Proof of Theorem 4.2. Let us start with showing the equivalence (i) ⇔ (iii). We denote
as iX and iY the canonical embeddings X ↪→ X∗∗ and Y ↪→ Y ∗∗, respectively.

First, assume that (iii) holds true. Then, since i−1
Y : i(Y ) → Y is w∗-to-w continuous

and T ∗∗ : X∗∗ → Y ∗∗ is w∗-to-w∗ continuous (as every adjoint operator), i−1
Y T ∗∗ : X∗∗ → Y

is w∗-to-w continuous. By the Banach–Alaoglu theorem, the ball BX∗∗ is w∗-compact,
hence i−1

Y T ∗∗(BX∗∗) is weakly compact. Therefore, its subset i−1
Y T ∗∗iX(BX) is relatively

weakly compact, but in view of Lemma 4.3 this is just T (BX).
Now, suppose (i) T is weakly compact. Then, iY T is weakly compact as well, thus the

set iY T (BX)
w

is weakly compact, so it is also w∗-compact. Hence,

iY T (BX)
w∗

= iY T (BX)
w

= iY T (BX),

where the last equality follows from the fact that for convex sets weak closure and norm
closure are the same. By the w∗-to-w∗ continuity of T ∗∗, the Banach–Alaoglu theorem
and the Goldstine theorem, we have

T ∗∗(BX∗∗) = T ∗∗iX(BX)
w∗

.

Making use of Lemma 4.3 (i−1
Y T ∗∗iX = T ) we may thus write

T ∗∗(BX∗∗) = T ∗∗iX(BX)
w∗

= iY T (BX)
w∗

= iY T (BX) ⊆ iY (Y ),

as iY (Y ) is a norm closed subspace of Y ∗∗.
Now, we may proceed to the proof of the equivalence (i) ⇔ (ii). Suppose (i) T is

weakly compact and fix any y∗∗∗ ∈ Y ∗∗∗. In light of what we have proved so far, we shall
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show that T ∗∗∗y∗∗∗ ∈ iX∗(X∗). This would follow if we show that T ∗∗∗y∗∗∗ is w∗-continuous
on X∗∗. So, take any net (x∗∗α ) ⊂ X∗∗ which is w∗-convergent to some x∗∗0 ∈ X∗∗. By (iii)
we have T ∗∗(X∗∗) ⊆ iY (Y ) and by the w∗-to-w∗ continuity of T ∗∗ we have

T ∗∗x∗∗α
w∗−−−−→
α

T ∗∗x∗∗0 , whence T ∗∗x∗∗α
w−−−→
α

T ∗∗x∗∗0 ,

since the relative weak∗ and the relative weak topologies on iY (Y ) ⊂ Y ∗∗ coincide. Con-
sequently,

〈x∗∗α , T ∗∗∗y∗∗∗〉 = 〈T ∗∗x∗∗α , y∗∗∗〉 −−−→
α
〈T ∗∗x∗∗0 , y∗∗∗〉 = 〈x∗∗0 , T ∗∗∗y∗∗∗〉,

which proves our claim.
It remains to prove that (ii) implies (i), but this follows easily from the work we have

just done. Namely, if T ∗ is weakly compact then T ∗∗ is weakly compact and Lemma 4.3
gives i−1

Y T ∗∗iX = T , so T is weakly compact as well.

Gantmacher’s theorem may be also proved with the aid of the factorisation theorem
due to Davis, Figiel, Johnson and Pe lczyński [DFJ74]. Note that in the case where either
the domain or the codomain considered is reflexive, every operator is weakly compact.
The aforementioned result says that, in a sense, such a situation is typical for all weakly
compact operators. We will not use this result anywhere in the sequel, but it should be
at least mentioned; for the proof see, e.g., [Mor01, pp. 214–215].

Theorem 4.4 (Davis, Figiel, Johnson, Pe lczyński, 1974). Let X and Y be Banach spaces
and T : X → Y be an operator. Then, T is weakly compact if and only if there exists
a reflexive Banach space Z and operators P : Z → Y , Q : X → Z such that T = PQ.
That is, every weakly compact operator factors through a reflexive space.

Let T : X → Y be an operator between Banach spaces X and Y . We say that T
is bounded below provided that for some constant δ > 0 we have ‖Tx‖ > δ‖x‖ for all
x ∈ X. By the Open Mapping Theorem, this is equivalent to T being an isomorphism
onto Y . Similarly, if Z is a subspace of X, then T is bounded below on Z if and only if
the restriction T |Z is an isomorphism onto its range T (Z).

Now, suppose we know that T is bounded below on some subspace Z ⊂ X which is not
reflexive. Then, the unit ball BZ is not weakly compact and the range T (BX) contains
an isomorphic copy of BZ . This means that T definitely cannot be weakly compact.
Regarding the converse, for some classes of operators we may distinguish some ‘testing’
space, a concrete non-reflexive space Z, such that every non-weakly compact operator
from the class considered acts as an isomorphism on some copy of Z. The following result
of Pe lczyński says that for operators acting on C(K)-spaces this role of a ‘testing’ space is
played by c0. Its proof is based on the three great results we have discussed: Gantmacher’s
theorem, Grothendieck’s theorem and Rosenthal’s lemma (not the last time!).

Theorem 4.5 (Pe lczyński, 1962). Let K be a compact Hausdorff space, X be a Banach
space and T : C(K) → X be an operator. If T is not weakly compact, then there exists
an isomorphic copy Z ⊂ C(K) of c0 such that T |Z is bounded below.

Proof. Assume T : C(K) → X is not weakly compact. Then, Theorem 4.2 guarantees
that neither is T ∗ : X∗ → M(K). This means that T ∗(BX∗) is not relatively weakly
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compact, hence Grothendieck’s Theorem 3.6 implies that there exist: a positive number
ε, a sequence (x∗n)∞n=1 ⊂ BX∗ and a sequence (Un)∞n=1 of pairwise disjoint open subsets
of K such that if we set νn = T ∗x∗n, then νn(Un) > ε for each n ∈ N. Moreover, by
Rosenthal’s Lemma 2.1 we may (and we do) assume that

|νn|

(⋃
j 6=n

Uj

)
<
ε

2
for each n ∈ N.

This was the crucial part. The rest is just having fun.
For every n ∈ N pick a compact set Fn ⊂ Un with |νn|(Un \Fn) so small that νn(Fn)−

|νn|(Un \ Fn) > ε. The Urysohn lemma produces a sequence (fn)∞n=1 ⊂ C(K) satisfying:

• 0 6 fn 6 1,
• fn = 1 on Fn,
• fn vanishes outside Un,

for each n ∈ N. Then, we have also∫
K

fn dνn =

∫
Un

fn dνn > νn(Fn)− |νn|(Un \ Fn) > ε.

Let’s have a closer look at the measure νn = T ∗x∗n. For any f ∈ C(K) we have∫
K

f dνn = 〈f, T ∗x∗n〉 = 〈Tf, x∗n〉,

which shows that νn is nothing but the representing measure for the functional x∗nT , stem-
ming from the Riesz Representation Theorem. So, we may add to our list the following
conclusion:

• x∗nTfn =
∫
K
fn dνn > ε for each n ∈ N.

Now, let Y = {
∑∞

n=1 αnfn : (αn)∞n=1 ∈ c0} ⊂ C(K). Since ‖fn‖ = 1 for n ∈ N and fn’s
are disjointly supported, it is easily seen that Y is an isometric copy of c0 inside C(K). To
finish the proof we shall show that T |Y is bounded below. Take any f =

∑∞
n=1 αnfn ∈ Y .

Then, for every n ∈ N we have

|x∗nTf | =

∣∣∣∣∣
∫
K

f dνn

∣∣∣∣∣ =

∣∣∣∣∣αn
∫
Un

fn dνn +

∫
⋃

j 6=n Uj

f dνn

∣∣∣∣∣
> |αn|ε−

∫
⋃

j 6=n Uj

|f | d|νn|

> |αn|ε− |νn|

(⋃
j 6=n

Uj

)
‖f‖

> |αn|ε− ‖f‖ ·
ε

2

and, consequently, ‖Tf‖ > (ε/2)‖f‖ for every f ∈ Y .

We are now well prepared to prove two Rosenthal’s theorems, the latter of which yields
a striking improvement of Pe lczyński’s theorem for injective Banach spaces.
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Theorem 4.6 (Rosenthal, 1970). Let X and Y be Banach spaces, T : X → Y be an op-
erator, and suppose that X is complemented in X∗∗. If there exists a subspace Z1 ⊂ X
isomorphic to c0(Γ), for some non-empty index set Γ, such that T |Z1 is bounded below,
then there exists a subspace Z2 ⊂ X isomorphic to `∞(Γ) such that T |Z2 is also bounded
below.

Proof. First, we want to define an operator S : `∞(Γ)→ X such that S|c0(Γ) yields an iso-
morphism onto Z1. To this end consider an operator S1 : c0(Γ)→ X which is an isomor-
phism onto Z1 and let P : X∗∗ → X be a projection onto X, that is, an operator satisfying
P ◦ iX = IX , where iX : X ↪→ X∗∗ is the canonical embedding. Then S∗∗1 : `∞(Γ)→ X∗∗;
set S = PS∗∗1 . We shall check that PS∗∗1 |c0(Γ) = S1, so fix any ξ ∈ c0(Γ). For any x∗ ∈ X∗
we have

〈x∗, S∗∗1 ξ〉 = 〈S∗1x∗, ξ〉 = 〈ξ, S∗1x∗〉 = 〈S1ξ, x
∗〉,

which implies that S∗∗1 ξ = i(S1ξ), hence PS∗∗1 ξ = S1ξ as desired.
Now, we may apply the following lemma to the operator Φ = TS : `∞(Γ)→ Y .

Lemma. Let Γ be an infinite set and Y be a Banach space. Suppose Φ: `∞(Γ) → Y
is an operator such that Φ|c0(Γ) is bounded below. Then there exists a set ∆ ⊂ Γ with
|∆| = |Γ| and such that Φ|`∞(∆) is bounded below.

Proof of the Lemma. Define K = ‖(Φ|c0(Γ))
−1‖; this is a positive and finite number. For

each γ ∈ Γ we have ‖Φ1{γ}‖ > 1/K, hence we may pick a functional ϕγ ∈ Y ∗ satisfying
‖ϕγ‖ 6 K and ϕγ(Φ1{γ}) = 1.

Now, for each γ ∈ Γ we define a scalar-valued set function µγ on PΓ by the formula

µγ(E) =
(
Φ∗ϕγ

)
1E = ϕγ

(
Φξ
)

for every E ⊂ Γ.

Plainly, µγ is finitely additive. Moreover, for every finite partition π = {E1, . . . , Ek} of Γ
we have ∑

Ej∈π

|µγ(Ej)| =
∑
Ej∈π

|〈1Ej
,Φ∗ϕγ〉|,

which shows that

|µγ|(Γ) = sup
{
|〈ξ,Φ∗ϕγ〉| : ξ ∈ B`∞(Γ) is a step function

}
= ‖Φ∗ϕγ‖.

Therefore, supγ∈Γ |µγ| 6 K‖T‖ and hence we may apply Rosenthal’s Lemma 2.2 to the
family {|µγ| : γ ∈ Γ} and produce a set ∆ ⊂ Γ satisfying |∆| = |Γ| and

|µδ|
(
∆ \ {δ}

)
<

1

2
for each δ ∈ ∆.

Observe that

ϕγ(Φξ) =

∫
Γ

ξ dµγ for every γ ∈ Γ and ξ ∈ `∞(Γ),

since both sides of this equality, viewed as functions of ξ, are continuous and linear
functionals on `∞(Γ) which agree at every characteristic function, so agree everywhere.
Hence, for every ξ ∈ `∞(∆) and each δ ∈ ∆ we have

∣∣ϕδ(Φξ)∣∣ =

∣∣∣∣∣
∫

Γ

ξ dµδ

∣∣∣∣∣ =

∣∣∣∣∣ξ(δ) +

∫
∆\{δ}

ξ dµδ

∣∣∣∣∣ > |ξ(δ)| − |µδ|(∆ \ {δ})‖ξ‖ > |ξ(δ)| − 1

2
‖ξ‖
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(we have used the fact that µδ{δ} = ϕδ(Φ1{δ}) = 1). Consequently,

‖Φξ‖ > 1

K
sup
δ∈∆

∣∣ϕδ(Φξ)∣∣ > 1

2K
‖ξ‖,

which means that Φ|`∞(∆) is bounded below.

Proof of Theorem 4.6 (continued). The restriction TS|c0(Γ) is bounded below, so the
above Lemma implies that there is a set ∆ ⊂ Γ with |∆| = |Γ| and such that TS|`∞(∆) is
bounded below. Hence T must be bounded below on the subspace Z2 = S(`∞(∆)) ⊂ X
which is obviously isomorphic to `∞(Γ).

Definition 4.7. A Banach space X is called injective, provided that for every Banach
space Y , every subspace Z of Y , and every operator t : Z → X, there exists an operator
T : Y → X which extends t, i.e. T |Z = t.

Theorem 4.8 (Rosenthal, 1970). Let X be an injective Banach space, Y be a Banach
space and T : X → Y be an operator. If T is not weakly compact, then there exists
a subspace Z ⊂ X isomorphic to `∞ and such that T |Z is bounded below.

Proof. Injectivity of X guarantees that there is a compact Hausdorff space K and a sur-
jective operator S : C(K)→ X. In fact, let K = BX∗ , equipped with the weak∗ topology.
Then, by the Banach–Alaoglu theorem, K is compact and Hausdorff. The space X em-
beds isometrically into C(K) via the map X 3 x 7→ fx ∈ C(K) given by fx(x

∗) = 〈x, x∗〉
(note that ‖fx‖ = supx∗∈K〈x, x∗〉 = ‖x‖). Hence, Y = {fx : x ∈ X} is a subspace of C(K),
isometric to X, for which we have a surjective operator Y → X acting as fx 7→ x. By the
injectivity of X, we may extend this operator to the desired operator S : C(K)→ X.

Now, TS : C(K) → Y is not weakly compact. By Pe lczyński’s Theorem 4.5, there is
an isomorphic copy Z ⊂ C(K) of c0 such that TS|Z is bounded below. Hence, S(Z) ⊂ X
is isomorphic to c0 and T |S(Z) is bounded below. Since X is injective, X is complemented
in X∗∗ (we may extend the operator i−1

X : i(X) → X), so appealing to Theorem 4.6
completes the proof.

Let us note two quick corollaries. The first one, for Γ = N and X being a dual Banach
space, is due to Bessaga and Pe lczyński and, in the general form, due to Rosenthal.

Corollary 4.9 (Bessaga & Pe lczyński, 1958; Rosenthal, 1970). Let X be a Banach space
complemented in its bidual (for instance, any dual space), and let Γ be an infinite set. If
X contains an isomorphic copy of c0(Γ), then it contains an isomorphic copy of `∞(Γ).

Proof. Apply Theorem 4.6 to T = IX .

Corollary 4.10 (Amir, 1964). `∞/c0 is not an injective Banach space. It is even not
complemented in its bidual.

Proof. First, notice that `∞/c0 contains an isometric copy of c0(c) (see Problem 2.4).
However, the cardinality of `∞/c0 equals c, so it cannot contain an isomorphic copy
of `∞(c), since the latter has the cardinality of 2c. The conclusion now follows from
Corollary 4.9.
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