COMBINATORICS IN BANACH SPACE THEORY

Lecture 4

4 Weakly compact operators on C(K)-spaces and injective
Banach spaces

After some measure-theoretic preparations in Section 3 we are ready to make our way
towards the proofs of two structural theorems of Lindenstrauss announced earlier (The-
orems 3.1 and 3.2). The main tool for these results are characterisations of non-weakly
compact operators on C'(K)-spaces and injective spaces. Let us start with the basic
definition and some introductory remarks.

Definition 4.1. Let X and Y be Banach spaces. An operator T: X — Y is called
[weakly] compact whenever T'(By), the range of the unit ball of X, is a relatively [weakly]
compact subset of Y.

The collection of all (weakly) compact operators forms a two-sided ideal, which means
that if S and T" are (weakly) compact, then S+ 7' is (weakly) compact and both SR and
RS are (weakly) compact for every operator R for which these compositions make sense.
These facts are almost obvious; for proving the assertion about S + 7" one only has to use
the fact that an operator R is (weakly) compact if and only for every bounded sequence
(zn)pe, from the domain of R there exists a subsequence (7,,)32, such that (Rx,,)32,
converges (weakly). In the case of weakly compact operator this argument involves, of
course, the Eberlein-Smulian theorem.

The identity operator Ix, acting on a Banach space X, is compact if and only if X is
finite-dimensional. This follows immediately from the fact that the unit ball of an infinite-
dimensional normed space is never compact in the norm topology. On the other hand,
Ix is weakly compact if and only if X is reflexive, because weak compactness of the unit
ball Bx is equivalent to reflexivity of X. For operators which map an arbitrary Banach
space X into ¢; (more generally, into any Banach space with Schur’s property) we may
say something more interesting. Namely, if T': X — ¢, is a weakly compact operator then
it is automatically compact. This follows from the fact that every weakly compact subset
of ¢1 is compact. Indeed, if A C ¢; is weakly compact and (x,),—1 is any sequence of
elements from A, then by the Eberlein-Smulian theorem we may extract a subsequence
(Tn, );‘11 that is weakly convergent. But then, Schur’s property of ¢; (Theorem 2.9) implies
that (a:nj)j-‘;l is norm convergent, which proves that A is compact in the norm topology.

The following fact is one of the most fundamental results on weakly compact operators.

Theorem 4.2 (Gantmacher, 1940). Let X and Y be Banach spaces and T: X — Y be
an operator. Then, the following assertions are equivalent:

(i) T is weakly compact;
(i) T* is weakly compact;
(iii) T*(X*) Ciy(Y), where iy: Y < Y** is the canonical embedding.



We shall prove Gantmacher’s theorem for completeness, starting with the following
simple lemma.

Lemma 4.3. Let X and Y be Banach spaces and T: X — Y be an operator. Let also
ix: X = X* and iy: Y < Y™ be the canonical embeddings. Then, T**ix(X) C iy(Y)
and iy T ix =T.

Proof. For the first assertion fix any x € X; we shall show that the functional T**ix (z) €
Y** is w*-continuous, which would imply that it belongs to iy (Y). To this end observe
that for every y* € Y* we have

(", T"ix(z)) = (T"y", ix(2)) = (2, T"y") = (T, y").
Now, let (y%) be any net in Y*, weak® convergent to some y; € Y*. Then,

(v, Tix () = (T, y5) —— (T y5) = (5, T (2),

which shows that T**iy(x) is w*-continuous.
The composition i;lT**i x is an operator mapping X into Y. By the conclusion of the
preceding paragraph, for any y* € Y* we have

(Tx,y") = (v, T"ix(2)) = iy T"ix (2), y"),
which completes the proof. O]

Proof of Theorem 4.2. Let us start with showing the equivalence (i) <> (iii). We denote
as ix and 7y the canonical embeddings X — X** and Y — Y™** respectively.

First, assume that (iii) holds true. Then, since iy': i(Y) — Y is w*-to-w continuous
and T : X** — Y* is w*-to-w* continuous (as every adjoint operator), i;lT**: X" =Y
is w*-to-w continuous. By the Banach—Alaoglu theorem, the ball By« is w*-compact,
hence iy'T** (Byx-++) is weakly compact. Therefore, its subset iy T**ix(Bx) is relatively
weakly compact, but in view of Lemma 4.3 this is just T'(Bx).

Now, suppose (i) T is weakly compact. Then, iy T is weakly compact as well, thus the
set iy T(B X)w is weakly compact, so it is also w*-compact. Hence,

*

iyT'(By) =iyT(By) =iyT(By),

where the last equality follows from the fact that for convex sets weak closure and norm
closure are the same. By the w*-to-w* continuity of T%*, the Banach—Alaoglu theorem
and the Goldstine theorem, we have

T*(Bxs) = T*ix(By) .
Making use of Lemma 4.3 (i, T**ix = T) we may thus write

* *

T*(Bx-) = T*ix(Byx) =iyT(Bx) =iyT(Bx) Ciy(Y),

as 1y (Y') is a norm closed subspace of Y**.
Now, we may proceed to the proof of the equivalence (i) < (ii). Suppose (i) T is
weakly compact and fix any y*** € Y***. In light of what we have proved so far, we shall
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show that T**y*** € ix«(X"*). This would follow if we show that 7"***y*** is w*-continuous
on X**. So, take any net (z*) C X** which is w*-convergent to some zj3* € X**. By (iii)

we have T**(X**) C iy (Y) and by the w*-to-w* continuity of 7** we have
T x> —>wa T x5,  whence T al" —>7: T x5,

since the relative weak* and the relative weak topologies on iy (Y) C Y** coincide. Con-
sequently,

which proves our claim.

It remains to prove that (ii) implies (i), but this follows easily from the work we have
just done. Namely, if T* is weakly compact then 7% is weakly compact and Lemma 4.3
gives iy T*"ix = T, so T is weakly compact as well. O]

Gantmacher’s theorem may be also proved with the aid of the factorisation theorem
due to Davis, Figiel, Johnson and Petezynski [DFJ74]. Note that in the case where either
the domain or the codomain considered is reflexive, every operator is weakly compact.
The aforementioned result says that, in a sense, such a situation is typical for all weakly
compact operators. We will not use this result anywhere in the sequel, but it should be
at least mentioned; for the proof see, e.g., [Mor01, pp. 214-215].

Theorem 4.4 (Davis, Figiel, Johnson, Pelczyniski, 1974). Let X and Y be Banach spaces
and T: X — Y be an operator. Then, T is weakly compact if and only if there exists
a reflexive Banach space Z and operators P: Z — 'Y, Q: X — Z such that T = PQ.
That is, every weakly compact operator factors through a reflexive space.

Let T: X — Y be an operator between Banach spaces X and Y. We say that T
is bounded below provided that for some constant 6 > 0 we have ||[Tz|| > J||z| for all
x € X. By the Open Mapping Theorem, this is equivalent to 7" being an isomorphism
onto Y. Similarly, if Z is a subspace of X, then 7" is bounded below on Z if and only if
the restriction 7’|z is an isomorphism onto its range 7'(7).

Now, suppose we know that 1" is bounded below on some subspace Z C X which is not
reflexive. Then, the unit ball By is not weakly compact and the range T'(Bx) contains
an isomorphic copy of Bz. This means that T definitely cannot be weakly compact.
Regarding the converse, for some classes of operators we may distinguish some ‘testing’
space, a concrete non-reflexive space Z, such that every non-weakly compact operator
from the class considered acts as an isomorphism on some copy of Z. The following result
of Pelezyniski says that for operators acting on C'(K)-spaces this role of a ‘testing’ space is
played by c¢g. Its proof is based on the three great results we have discussed: Gantmacher’s
theorem, Grothendieck’s theorem and Rosenthal’s lemma (not the last time!).

Theorem 4.5 (Pelczynski, 1962). Let K be a compact Hausdorff space, X be a Banach
space and T: C(K) — X be an operator. If T is not weakly compact, then there exists
an isomorphic copy Z C C(K) of ¢y such that T'|z is bounded below.

Proof. Assume T: C(K) — X is not weakly compact. Then, Theorem 4.2 guarantees
that neither is 7%: X* — M(K). This means that 7*(Bx-) is not relatively weakly



compact, hence Grothendieck’s Theorem 3.6 implies that there exist: a positive number
e, a sequence (z1)%°, C By and a sequence (U,)3, of pairwise disjoint open subsets
of K such that if we set v, = T*x}, then 1,(U,) > ¢ for each n € N. Moreover, by
Rosenthal’s Lemma 2.1 we may (and we do) assume that

£
|V (U Uj> <3 for each n € N.

i#n
This was the crucial part. The rest is just having fun.

For every n € N pick a compact set F,, C U, with |v,|(U,, \ F},) so small that v, (F,) —
|un| (U, \ Fy) > €. The Urysohn lemma produces a sequence (f,,)52, C C(K) satisfying:

e 0< f, <1,
o [,=1o0nF,,
e f, vanishes outside U,

for each n € N. Then, we have also
/ fodvw= [ fudva > va(Fa) — [val(Un\ Fa) > .
K U’Vl

Let’s have a closer look at the measure v, = T*z. For any f € C'(K) we have

/K fdv, = (. T*x5) = (Tf,a%),

which shows that v, is nothing but the representing measure for the functional z) 7", stem-
ming from the Riesz Representation Theorem. So, we may add to our list the following
conclusion:

o v1T'f, = fonan > ¢ for each n € N.

Now, let Y ={D>"°  anfn: ()22 € co} C C(K). Since ||f,|| =1 for n € Nand f,’s
are disjointly supported, it is easily seen that Y is an isometric copy of ¢y inside C(K). To
finish the proof we shall show that T’y is bounded below. Take any f =Y a,f, € Y.
Then, for every n € N we have

T f] = /fdl/n = |y, fndun+/ fdu,
K Un Ujjszn Us
> Jaale= [ 171l
i#n Ui
Z |omle — [ (U Uj) [l
J#n
5
2 nic = Y
oule — 1£1 -
and, consequently, ||Tf|| = (¢/2)||f]| for every f € Y. O

We are now well prepared to prove two Rosenthal’s theorems, the latter of which yields
a striking improvement of Pelczynski’s theorem for injective Banach spaces.
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Theorem 4.6 (Rosenthal, 1970). Let X and Y be Banach spaces, T: X — Y be an op-
erator, and suppose that X is complemented in X**. If there exists a subspace Z; C X
isomorphic to c¢y(T'), for some non-empty index set T, such that T'|z, is bounded below,
then there exists a subspace Zy C X isomorphic to ls(I") such that Tz, is also bounded
below.

Proof. First, we want to define an operator S: (. (I') = X such that S|, yields an iso-
morphism onto Z;. To this end consider an operator Sy : ¢o(I') — X which is an isomor-
phism onto Z; and let P: X** — X be a projection onto X, that is, an operator satisfying
Poix = Ix, where ix: X < X*™ is the canonical embedding. Then S7*: (o (T') — X**;
set S = PS{*. We shall check that PS{*|. ) = S1, so fix any £ € ¢o(I'). For any 2* € X*
we have

(%, 57°€) = (512", €) = (€, 57z7) = (51§, 77),
which implies that S}*¢ = i(51€), hence PS{*¢ = Si€ as desired.
Now, we may apply the following lemma to the operator ® = T'S: (') — Y.

Lemma. Let I be an infinite set and Y be a Banach space. Suppose ®: ((T') — Y
is an operator such that (I)|c0(r) is bounded below. Then there exists a set A C I" with
|A| = |I'| and such that ®|,_(a) is bounded below.

Proof of the Lemma. Define K = [|(®|q,(r)) " ||; this is a positive and finite number. For
each v € I' we have ||[®1y,3|| > 1/K, hence we may pick a functional ¢, € Y* satisfying
lio:]l < K and o (@13) = 1.

Now, for each v € I' we define a scalar-valued set function p, on PI' by the formula

pry(E) = (D p,)1g = ¢, (D)  for every E CT.
Plainly, y., is finitely additive. Moreover, for every finite partition 7 = {Ej,..., E;} of T
we have
Z |M'7(Ej)’ = Z ‘<]1Ej7q)*907>|7
Ejem Ejem

which shows that

|y |(T) = sup{|<§,<I>*g07>|: £ € By is a step function} = |2 p, |-

Therefore, sup. cr |p] < K||T|| and hence we may apply Rosenthal’s Lemma 2.2 to the
family {|u,|: v € T'} and produce a set A C I satisfying |A| = |I'| and

sl (AN {6}) < % for cach 6 € A.

Observe that
0, (PE) = /ﬁduW for every v € T" and £ € (. (T),
r

since both sides of this equality, viewed as functions of £, are continuous and linear
functionals on £, (I") which agree at every characteristic function, so agree everywhere.
Hence, for every £ € ((A) and each 6 € A we have

[ €| - ‘5@ # [ | > €0 bl (3 (5)) el > @)~ gle

|05 (®€)[ =




(we have used the fact that p5{0} = ps(®1s5) = 1). Consequently,

1 1
D& > f?éli)'%(@g){ > oy el

which means that ®| ¢ () 18 bounded below.

Proof of Theorem 4.6 (continued). The restriction TS|, r) is bounded below, so the
above Lemma implies that there is a set A C I' with |A| = |T'| and such that T'S|,_(a) is
bounded below. Hence T must be bounded below on the subspace Zo = S({(A)) C X
which is obviously isomorphic to £ (T). O

Definition 4.7. A Banach space X is called injective, provided that for every Banach
space Y, every subspace Z of Y, and every operator t: Z — X, there exists an operator
T:Y — X which extends ¢, i.e. T|; = t.

Theorem 4.8 (Rosenthal, 1970). Let X be an injective Banach space, Y be a Banach
space and T: X — Y be an operator. If T is not weakly compact, then there exists
a subspace Z C X isomorphic to ls, and such that T|z is bounded below.

Proof. Injectivity of X guarantees that there is a compact Hausdorff space K and a sur-
jective operator S: C'(K) — X. In fact, let K = B+, equipped with the weak* topology.
Then, by the Banach—Alaoglu theorem, K is compact and Hausdorff. The space X em-
beds isometrically into C'(K) via the map X > z — f, € C(K) given by f,(z*) = (z,z%)
(note that || f,|| = sup,-cx (x,2*) = ||z||). Hence, Y = {f,: x € X} is a subspace of C(K),
isometric to X, for which we have a surjective operator Y — X acting as f, — x. By the
injectivity of X, we may extend this operator to the desired operator S: C'(K) — X.
Now, T'S: C(K) — Y is not weakly compact. By Pelczynski’s Theorem 4.5, there is
an isomorphic copy Z C C(K) of ¢y such that T'S|z is bounded below. Hence, S(Z) C X
is isomorphic to ¢y and T'|g(z) is bounded below. Since X is injective, X is complemented
in X** (we may extend the operator iy : i(X) — X), so appealing to Theorem 4.6
completes the proof. O

Let us note two quick corollaries. The first one, for I' = N and X being a dual Banach
space, is due to Bessaga and Pelczynski and, in the general form, due to Rosenthal.

Corollary 4.9 (Bessaga & Pelezynski, 1958; Rosenthal, 1970). Let X be a Banach space
complemented in its bidual (for instance, any dual space), and let T' be an infinite set. If
X contains an isomorphic copy of co(T'), then it contains an isomorphic copy of £o(T).

Proof. Apply Theorem 4.6 to T' = Ix. O]

Corollary 4.10 (Amir, 1964). (. /cy is not an injective Banach space. It is even not
complemented in its bidual.

Proof. First, notice that ¢ /co contains an isometric copy of cy(c) (see Problem 2.4).
However, the cardinality of /., /cy equals ¢, so it cannot contain an isomorphic copy
of ¢ (c), since the latter has the cardinality of 2°. The conclusion now follows from
Corollary 4.9. O



