
Combinatorics in Banach space theory

Lecture 5

5 Lindenstrauss’ theorems on the structure of `∞(Γ)-spaces

The goal of this section is to finally prove two Lindenstrauss’ Theorems 3.1 and 3.2 stated
in Section 3. With the Rosenthal Theorems 4.6 and 4.8 in hand, we are not far away
from doing this. However, we still need a couple of auxiliary results, which are certainly
important not only for our present purposes.

Definition 5.1. Let X1, X2, . . . be Banach spaces and let 1 6 p <∞. We define Banach
spaces:

•
(⊕∞

n=1Xn

)
p

=
{
x = (xn)∞n=1 ∈

∏∞
n=1Xn | ‖x‖p :=

(∑∞
n=1 ‖xn‖p

)1/p
<∞

}
, equipped

with the norm ‖·‖p (the the so-called `p-sum),

•
(⊕∞

n=1Xn

)
∞ =

{
x = (xn)∞n=1 ∈

∏∞
n=1Xn | ‖x‖∞ := supn∈N ‖xn‖ < ∞

}
, equipped

with the norm ‖·‖∞ (the so-called `∞-sum),

•
(⊕∞

n=1Xn

)
0

=
{
x = (xn)∞n=1 ∈

∏∞
n=1Xn | limn→∞ ‖xn‖ = 0

}
, equipped with the

norm ‖·‖∞ (the so-called c0-sum).

In the case where X1 = X2 = . . . = X we simply write `p(X), `∞(X) and c0(X) instead
of those three symbols defined above.

The fact that the so-defined spaces are indeed Banach spaces may be proved in a rou-
tine way, so we leave it to a desperate reader. Let us remind that for any Banach spaces X
and Y we write X ' Y whenever X and Y are isomorphic. Observe that for every Banach
space X we have `p(X)⊕ `p(X) ' `p(X) and X ⊕ `p(X) ' `p(X), for any 1 6 p 6∞, as
well as c0(X)⊕ c0(X) ' c0(X) and X ⊕ c0(X) ' c0(X) (see Problem 4.1).

Now, we will show an extremely useful decomposition result.

Theorem 5.2 (The Pe lczyński Decomposition Method, 1960). Let X and Y be Banach
spaces, either of which is isomorphic to a complemented subspace of the other. Assume
also that at least one of the following conditions holds true:

(a) X ' X ⊕X and Y ' Y ⊕ Y ;
(b) X ' c0(X) or X ' `p(X) for some 1 6 p 6∞.

Then X ' Y .

Proof. In both cases, (a) and (b), we will show that bothX and Y are isomorphic toX⊕Y ,
so they are isomorphic to each other. By the assumption, we may write X ' Y ⊕E and
Y ' X ⊕ F , for some Banach spaces E and F .

(a): We have X ' Y ⊕ Y ⊕ E ' Y ⊕ X and, similarly, Y ' X ⊕ X ⊕ F ' X ⊕ Y as
desired.

(b): Since X satisfies (b), we have X ' X ⊕X, thus the argument from part (a) gives
Y ' X ⊕ Y . Now, suppose that X ' `p(X). Noticing that `p(Y ) ' Y ⊕ `p(Y ) we obtain

X ' `p(X) ' `p(Y ⊕ E) ' `p(Y )⊕ `p(E) ' Y ⊕ `p(Y )⊕ `p(E) ' Y ⊕ `p(X) ' Y ⊕X.
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In the case where X ' c0(X) the proof is the same; one only has to replace all the `p-sums
by c0-sums.

The first of the two announced Lindenstrauss theorems is already within our reach.

Proof of Theorem 3.1. Suppose X is a complemented subspace of `∞(Γ) which contains
an isomorphic copy of c0(Γ). Then, X is injective (being a complemented subspace of
an injective space; see Problem 1.7) and hence, of course, it is complemented in its bidual.
If so, Corollary 4.9 says that X contains an isomorphic copy of `∞(Γ) and it must be
complemented as `∞(Γ) is injective. Moreover, `∞(Γ) ' `∞(`∞(Γ)), thus the Pe lczyński
Decompostion Method yields X ' `∞(Γ).

In order to prove Theorem 3.2 (which says that `∞ is prime) we need to exclude
the existence of Banach spaces that are simultaneously infinite-dimensional, reflexive and
injective. This will done in three steps (a)-(c), in Theorem 5.5 below. Let us first recall
the definition of Dunford–Pettis property which has already appeared in Problem 1.11.
The reader is encouraged to consult this problem, where several equivalent conditions
defining Dunford–Pettis operators may be found.

Definition 5.3. A Banach space X is said to have the Dunford–Pettis property, provided
that every weakly compact operator defined on X (and taking values in an arbitrary
Banach space) is a Dunford–Pettis (completely continuous) operator, i.e. it is weak-to-
norm sequentially continuous.

Lemma 5.4. A Banach space X has the Dunford–Pettis property if and only if for every
weakly null sequence (xn)∞n=1 ⊂ X and every weakly null sequence (x∗n) ⊂ X∗ we have
limn→∞ x

∗
nxn = 0.

Proof. First, we prove the ‘if’ part. So, suppose Y is a Banach space and T : X → Y
is a weakly compact operator that is not Dunford–Pettis. Then, there is a weakly null
sequence (xn)∞n=1 ⊂ X such that ‖Txn‖ > δ for every n ∈ N and some δ > 0. For each
n ∈ N pick a functional y∗n ∈ BY ∗ satisfying y∗nTxn = ‖Txn‖.

By Gantmacher’s Theorem 4.2, the operator T ∗ : Y ∗ → X∗ is weakly compact, whence
by the Eberlein–Šmulian theorem we may assume that the sequence (T ∗y∗n) ⊂ T ∗(BY ∗) is
weakly convergent to some x∗0 ∈ X∗. Therefore, we have T ∗y∗n−x∗0

w−→ 0, so our hypothesis
implies that (T ∗y∗n− x∗0)(xn)→ 0. However, x∗0xn → 0, thus T ∗y∗n(xn)→ 0. On the other
hand, T ∗y∗n(xn) = y∗nTxn = ‖Txn‖ > δ for each n ∈ N; a contradiction.

Now, in order to prove the ‘only if’ part, fix any weakly null sequences (xn)∞n=1 ⊂ X and
(x∗n)∞n=1 ⊂ X∗. Define an operator T : X → c0 by T (x) = (x∗nx)∞n=1 (∈ c0 because x∗n

w−→ 0)
and let T ∗ : `1 → X∗ be its adjoint. For each n ∈ N and x ∈ X we have 〈x, T ∗en〉 =
〈Tx, en〉 = 〈x, x∗n〉, whence T ∗en = x∗n. Consequently, T ∗(B`1) ⊂ conv{x∗n : n ∈ N} which
is relatively weakly compact by the Krein theorem?. Hence, T ∗ is a weakly compact
operator and, in view of Gantmacher’s Theorem 4.2, so is T .

By the assumption (i), T is Dunford–Pettis, whence it is weak-to-norm sequentially
continuous (see Problem 1.11). Hence, ‖T (xn)‖∞ → 0 and our assertion follows, since
|x∗nxn| 6 ‖T (xn)‖∞ for every n ∈ N.

?The Krein theorem says that if A is a weakly compact subsets of a Banach space, then its closed
convex hull conv(A) is weakly compact as well. See, e.g., Theorem 3.133 in [FHH10].
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Now, we will need the fact that every relatively weakly compact set F ⊂ L1(µ) is
equi-integrable. The converse statement was proved in Section 3 under the assumption
that F is bounded. Recall that here µ is a finite, σ-additive, non-negative measure defined
on a σ-algebra Σ of subsets of Ω.

Proof of the implication (i) ⇒ (ii) in Lemma 3.5. It follows readily from Definition 3.4 of
equi-integrability that it is enough to prove that every sequence in F has an equi-integrable
subsequence. So, fix any sequence (fn)∞n=1 ⊂ F and assume (by passing to a subsequence,
if necessary) that it is weakly convergent. Then, in particular, for every A ∈ Σ the limit
limn→∞

∫
A
fn dµ exists, since 1A ∈ L∞(µ) defines a functional from L1(µ)∗. We will show

that the equi-integrability of (fn)∞n=1 is a consequence of this property.
Let ∼ be an equivalence relation in Σ defined by saying that A ∼ B if and only if

µ(A4B) = 0, where 4 stands for the symmetric difference. It is easy to check that the
formula ρ(A,B) = µ(A4B) defines a pseudometric on Σ, so it generates a metric on

the set Σ̃ = Σ/∼ of all equivalence classes. For simplicity, we identify sets from Σ with

corresponding equivalence classes from Σ̃ and we use the same symbol ρ for the metric in
Σ̃. Notice that

ρ(A,B) = ‖1A − 1B‖L1(µ) for all A,B ∈ Σ̃,

thus the metric space (Σ̃, ρ) is isometric to the closed subspace {1A : A ∈ Σ} of L1(µ)

which is known to be complete. Hence, (Σ̃, ρ) is a complete metric space (sometimes
called the measure algebra corresponding to the measure space (Ω,Σ, µ)).

Now, fix any ε > 0 and for each N ∈ N define

FN =

{
A ∈ Σ̃ :

∣∣∣∣∣
∫
A

(fm − fn) dµ

∣∣∣∣∣ 6 ε for all m,n > N

}
.

These sets are, of course, closed subsets of Σ̃ and, by our assumption, we have Σ̃ =⋃∞
N=1FN . Hence, the Baire Category Theorem implies that for some N0 ∈ N the set FN0

has a non-empty interior, that is, there is some A0 ∈ FN0 and r > 0 such that

µ(A4A0) < r implies A ∈ FN0 , for every A ∈ Σ̃. (5.1)

For every set B ∈ Σ with µ(B) < r we have µ((A0∪B)4A0) < r and µ((A0\B)4A0) < r.
Since

∫
B

=
∫
A0∪B −

∫
A0\B, condition (5.1) implies that |

∫
B

(fm − fn) dµ| 6 2ε for all

m,n > N0. Applying this argument to the sets B ∩{fm− fn > 0} and B ∩{fm− fn 6 0}
we conclude that∫

B

∣∣fm − fn∣∣ dµ 6 4ε whenever µ(B) < r and m,n > N0. (5.2)

Finally, since fN0 ∈ L1(µ), there exists a positive s < r such that
∫
B
|fN0| dµ 6 ε

whenever µ(B) < s. Therefore, for every n > N0 and every B ∈ Σ with µ(B) < s
inequality (5.2) yields∫

B

∣∣fn∣∣ dµ 6
∫
B

∣∣fn − fN0

∣∣ dµ+

∫
B

∣∣fN0

∣∣ dµ 6 4ε+ ε = 5ε,

which shows that the set {fn : n > N0} is equi-integrable, thus so is {fn : n ∈ N}.
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Theorem 5.5 (Grothendieck, 1953). Let K be a compact Hausdorff space. Then:

(a) C(K) has the Dunford–Pettis property;
(b) If T : C(K)→ C(K) is weakly compact, then T 2 is compact;
(c) There is no infinite-dimensional, complemented, reflexive subspace of C(K).

Proof. (a): According to Lemma 5.4 we are to prove that for every weakly null sequence
(fn)∞n=1 ⊂ C(K) and every weakly null sequence (µn)∞n=1 ⊂ M(K) ' C(K)∗ we have
〈fn, µn〉 → 0. Since every weakly convergent sequence is bounded, we may safely assume
that these sequences lie in the unit balls of C(K) and M(K), respectively.

Define a non-negative measure ν ∈M(K) by the formula

ν =
∞∑
n=1

1

2n
|µn| .

Obviously, µn � ν for each n ∈ N, so let gn ∈ L1(ν) be the Radon–Nikodým derivative
of µn with respect to ν. Then, Φ(gn) = µn for n ∈ N, where Φ: L1(µ) → AC(ν) is the
isometry described in the proof of Theorem 3.6. Since (µn)∞n=1 is weakly null in M(K),
the sequence (gn)∞n=1 is weakly null in L1(ν) and, by the just proved implication (i)⇒ (ii)
in Lemma 3.5, it is also equi-integrable. Hence, by the assertion of Problem 3.14, we have

lim
M→∞

sup
n∈N

∫
{|gn|>M}

|gn| dµ = 0.

For every M > 0 the Lebesgue Dominated Convergence Theorem implies

lim
n→∞

∫
{|gn|6M}

fngn dν = 0

(note that (fn)∞n=1 converges pointwise to 0 as it is a weakly null sequence in C(K)).
Consequently,

lim sup
n→∞

|〈fn, µn〉| = lim sup
n→∞

∣∣∣∣∣
∫
K

fngn dν

∣∣∣∣∣ 6 sup
n∈N

∫
{|gn|>M}

|gn| dµ −−−−→
M→∞

0

as required.

(b): By the assertion (a), every weakly compact operator T : C(K) → C(K) maps (rel-
atively) weakly compact sets into (relatively) norm compact sets. Hence, since T (BC(K))
is relatively weakly compact, T 2(BC(K)) is relatively norm compact, which means that T 2

is a compact operator.

(c): Suppose Y ⊂ C(K) is a reflexive and complemented subspace and let T : C(K)→ Y
be a bounded projection onto Y . Then T (BC(K)) = BY is weakly compact as Y is
reflexive?, thus the assertion (b) says that T = T 2 is compact. Therefore, BY is compact
which may happen only if Y is finite-dimensional.

?Note that if Y is a subspace of a Banach space X, then the weak topology on Y is exactly the same
as the topology inherited by Y from the weak topology on X (why?).
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Remark 5.6. The assertion (a) above almost immediately implies that L1(µ)-spaces,
with any σ-finite and non-negative measure µ, also have the Dunford–Pettis property.
This fact is due to Dunford, Pettis and Phillips. The only thing one has to know to
derive this result from Grothendieck’s theorem is that the dual space L1(µ)∗ ' L∞(µ) is
isometrically isomorphic to some C(K)-space (because with pointwise operations it forms
a unital commutative Banach algebra). Hence, if (fn)∞n=1 ⊂ L1(µ) and (gn)∞n=1 ∈ L∞(µ)
are weakly null, then we may repeat the argument above regarding gn’s as members of
C(K) and fn’s as members of C(K)∗ (which in fact live in the predual of C(K)), which
leads to the desired conclusion limn→∞〈fn, gn〉 = 0.

We are finally in a position to prove that `∞ is a prime Banach space.

Proof of Theorem 3.2. Let X be an infinite-dimensional complemented subspace of `∞
and P be any bounded projection from `∞ onto X. The basic property of the Stone-Čech
compactification βN is that every bounded function on N may be uniquely extended to
a continuous function on βN, the direct consequence of which is the isometric isomor-
phism `∞ ' C(βN). Hence, Theorem 5.5(c) guarantees that X is not reflexive, so the
operator P is not weakly compact. Now, Rosenthal’s Theorem 4.8 implies that X contains
an isomorphic copy of `∞ and since `∞ is injective, this copy must be complemented in
X. Consequently, we may use the Pe lczyński Decomposition Method, Theorem 5.2(b), in
the case p =∞ (note that `∞ ' `∞(`∞)) to conclude that X ' `∞.

There are a few facts that should be added to this picture. In 1960, Pe lczyński [Pe l60]
proved that, likewise `∞, the spaces c0 and `p, for 1 6 p < ∞, are prime. This result
was a great application of basic sequences techniques which we will discuss to some extent
later. Notably, it is very difficult to construct any other infinite-dimensional prime Banach
spaces. One of them was given by Gowers and Maurey [GM97], but its construction is
extremely involved. That was a modified version of the original Gowers–Maurey space
constructed in 1993 (see [GM93]) which gave a negative solution to the long-standing
unconditional basic sequence problem. A distinctive feature of the prime Gowers–Maurey
space is that it does not contain any infinite-dimensional complemented subspaces except
these which are of finite codimension, so it has very little chance to be a non-prime Banach
space. In fact, all its finite-codimensional subspaces are isomorphic to the whole space?.

On the other hand, there is a similar property which is weaker than primeness and
shared by much more Banach spaces. Namely, a Banach space X is called primary, if for
every decomposition X = X1 ⊕ X2 we have X ' X1 or X ' X2. Every Lp(0, 1) space,
for 1 6 p < ∞, is primary. For 1 < p < ∞ this fact was proved by Alspach, Enflo and
Odell [AEO77], whereas Enflo and Starbird [ES79] proved it for p = 1. Note that none
of these spaces is prime, since it is not difficult to construct a complemented isomorphic
copy of `p inside Lp(0, 1) and `p 6' Lp(0, 1). Lindenstrauss and Pe lczyński [LP71] proved
that the space C[0, 1] is also primary, while it is not prime as it contains complemented
isomorphic copies of c0.

?Note that in general it is not true that if X is an infinite-dimensional Banach space and Y ⊂ X
is of finite codimension, then X ' Y . For instance, if X is any HI Banach space (i.e. hereditarily
indecomposable which means that for any subspace X ′ of X there is no decomposition X ′ = X1 ⊕ X2

with both X1 and X2 being infinite-dimensional), then X is not isomorphic to any of its proper subspaces
(this is Theorem 21 in [GM93]). The Gowers–Maurey space without an unconditional basic sequence was
the very first example of an HI Banach space; the authors point out that it was observed by W.B. Johnson
that their original construction could be modified to give an HI space.
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