Combinatorics in Banach space theory

Lecture 7

7 Khintchine's inequality and reflexive quotients of ℓ_{∞}

Since ℓ_{∞} is a Grothendieck space and the class of Grothendieck spaces is closed under quotients (Problem 3.9), whenever there exists a surjective operator from ℓ_{∞} onto a Banach space X, that space X must be a Grothendieck space. In particular, every separable quotient of ℓ_{∞} is automatically reflexive (see the remarks after Definition 6.1). The separable Hilbert space ℓ_{2} is by a clear mile the most classical infinite-dimensional reflexive space, so the following question arises: Is ℓ_{2} actually a quotient of ℓ_{∞} ? In other words, is there any operator from ℓ_{∞} onto ℓ_{2}, or maybe even onto $\ell_{2}(\mathfrak{c})$? The positive answer is contained in the following result by Rosenthal [Ros68]:
Theorem 7.1 (Rosenthal, 1968). For any infinite cardinal number Γ the space $\ell_{2}\left(2^{\Gamma}\right)$ is a quotient of $\ell_{\infty}(\Gamma)$.

Before proving this theorem we need to derive a widely used inequality usually attributed to Khintchine who first proved its special case. The general version of that inequality is due to Littlewood, Paley and Zygmund.

Definition 7.2. For any $n \in \mathbb{N}$ the nth Rademacher function $r_{n} \in L_{1}[0,1]$ is defined by $r_{n}(t)=\operatorname{sgn}\left(\sin \left(2^{n} \pi t\right)\right)$ or, equivalently,

$$
r_{n}(t)=\left\{\begin{aligned}
1 & \text { for } t \in \bigcup_{j=0}^{2^{n-1}-1}\left[\frac{2 j}{2^{n}}, \frac{2 j+1}{2^{n}}\right) \\
-1 & \text { for } t \in \bigcup_{j=0}^{2^{n-1}-1}\left[\frac{2 j+1}{2^{n}}, \frac{2 j+2}{2^{n}}\right)
\end{aligned}\right.
$$

(we treat r_{n} 's as random variables on the probabilistic space $[0,1]$ with the Lebesgue measure \mathbb{P}).

Plainly, for all sequences $n_{1}<\ldots<n_{k}$ and $\left(\varepsilon_{j}\right)_{j=1}^{k} \in\{-1,1\}^{k}$ we have

$$
\mathbb{P}\left(r_{n_{1}}=\varepsilon_{1} \wedge \ldots \wedge r_{n_{k}}=\varepsilon_{k}\right)=\prod_{j=1}^{k} \mathbb{P}\left(r_{n_{j}}=\varepsilon_{j}\right)
$$

which means that $\left(r_{n}\right)_{n=1}^{\infty}$ is a sequence of independent random variables. Therefore, $\left(r_{n}\right)_{n=1}^{\infty}$ is just a concrete example of a Rademacher system which is defined to be any
sequence $\left(X_{n}\right)_{n=1}^{\infty}$ of independent random variables on some probabilistic space (Ω, \mathbb{P}) satisfying $\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=1 / 2$ for each $n \in \mathbb{N}$. Consequently, the expectation values of Rademacher's functions satisfy $\mathbb{E}\left(r_{n_{1}} \ldots . \cdot r_{n_{k}}\right)=\mathbb{E}\left(r_{n_{1}}\right) \cdot \ldots \cdot \mathbb{E}\left(r_{n_{k}}\right)$ whenever $n_{1}<$ $\ldots<n_{k}$. In particular, $\int_{0}^{1} r_{i}(t) r_{j}(t) \mathrm{d} t=\delta_{i j}$ which means that $\left(r_{n}\right)_{n=1}^{\infty}$ is an orthonormal sequence in the Hilbert space $L_{2}[0,1]$. Therefore, by the Pythagorean theorem we get

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} a_{j} r_{j}\right\|_{L_{2}}=\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \tag{7.1}
\end{equation*}
$$

for any complex scalars a_{1}, \ldots, a_{n}. We thus see that the Rademacher system $\left(r_{n}\right)_{n=1}^{\infty}$ in $L_{2}[0,1]$ behaves likewise the standard basis $\left(e_{n}\right)_{n=1}^{\infty}$ in ℓ_{2}. More precisely, these two sequences are equivalent in the sense that there exists an isomorphism T from ℓ_{2} onto the subspace $\overline{\operatorname{span}}\left\{r_{n}: n \in \mathbb{N}\right\}$ of $L_{2}[0,1]$ such that $T\left(e_{n}\right)=r_{n}$ for each $n \in \mathbb{N}$ (we will discuss this notion of equivalence later when we talk about bases in Banach spaces). Khintchine's inequality asserts that the sequence $\left(r_{n}\right)_{n=1}^{\infty}$ remains 'almost orthonormal' in $L_{p}[0,1]$ for $p \in[1, \infty)$.

Theorem 7.3 (Khintchine's inequality). For every $p \in[1, \infty$) there exist positive (and finite) constants A_{p} and B_{p} such that

$$
\begin{equation*}
A_{p}\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j=1}^{n} a_{j} r_{j}\right\|_{L_{p}} \leqslant B_{p}\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \tag{7.2}
\end{equation*}
$$

for any real scalars a_{1}, \ldots, a_{n}.
Proof. For any $p \in[1, \infty)$ let A_{p} and B_{p} be the best possible constants in inequality (7.5). As we have already observed, we have $A_{2}=B_{2}=1$. Notice that for $1 \leqslant p<r$ and for every function $g \in L_{r}[0,1]$ Hölder's inequality applied to the exponents $q=r / p>1$ and q^{\prime} satisfying $1 / q+1 / q^{\prime}=1$ gives

$$
\|g\|_{L_{p}}=\left(\int_{0}^{1}|g(t)|^{p} \mathrm{~d} t\right)^{1 / p} \leqslant\left(\int_{0}^{1}|g(t)|^{r} \mathrm{~d} t\right)^{1 / r} \cdot\left(\int_{0}^{1} 1^{q^{\prime}} \mathrm{d} t\right)^{1 / q^{\prime}}=\|g\|_{L_{q}} .
$$

Therefore, $1 \leqslant p<r$ implies $A_{p} \leqslant A_{r}$ and $B_{p} \leqslant B_{r}$, so if we show that $A_{1}>0$ and $B_{2 k}<\infty$ for each $k \in \mathbb{N}$, we will be done.

We start with estimating $B_{2 k}$ by using the multinomial expansion. Fix $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in \mathbb{R}$. For any $m \in \mathbb{N}$ let \mathcal{S}_{m} be the set of all multi-indices $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that each α_{j} is a non-negative integer and $\sum_{j=1}^{n} \alpha_{j}=m$. Let also

$$
\binom{m}{\alpha_{1} \ldots \alpha_{n}}=\frac{m!}{\alpha_{1}!\cdot \ldots \cdot \alpha_{n}!}
$$

be the multinomial coefficient. Since $\left(r_{j}\right)_{j=1}^{\infty}$ is the Rademacher system, for every multiindex $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we have

$$
\int_{0}^{1} r_{1}^{\alpha_{1}}(t) \cdot \ldots \cdot r_{n}^{\alpha_{n}}(t) \mathrm{d} t= \begin{cases}1 & \text { if each of } \alpha_{j} \text { 's is even } \\ 0 & \text { otherwise. }\end{cases}
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{1}\left|\sum_{j=1}^{n} a_{j} r_{j}(t)\right|^{2 k} \mathrm{~d} t & =\sum_{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathcal{S}_{2 k}}\binom{2 k}{\alpha_{1} \ldots \alpha_{n}} a_{1}^{\alpha_{1}} \cdot \ldots \cdot a_{n}^{\alpha_{n}} \int_{0}^{1} r_{1}^{\alpha_{1}}(t) \cdot \ldots \cdot r_{n}^{\alpha_{n}}(t) \mathrm{d} t \\
& =\sum_{\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{S}_{k}}\binom{2 k}{2 \beta_{1} \ldots 2 \beta_{n}} a_{1}^{2 \beta_{1}} \cdot \ldots \cdot a_{n}^{2 \beta_{n}} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{k} & =\sum_{\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{S}_{k}}\binom{k}{\beta_{1} \ldots \beta_{n}} a_{1}^{2 \beta_{1}} \cdot \ldots \cdot a_{n}^{2 \beta_{n}} \\
& =\sum_{\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{S}_{k}} \frac{\binom{k}{\beta_{1} \ldots \beta_{n}}}{\binom{2 k}{2 \beta_{1} \ldots 2 \beta_{n}}}\binom{2 k}{2 \beta_{1} \ldots 2 \beta_{n}} a_{1}^{2 \beta_{1}} \cdot \ldots \cdot a_{n}^{2 \beta_{n}} .
\end{aligned}
$$

Consequently, setting

$$
b_{k}=\min \left\{\binom{k}{\beta_{1} \ldots \beta_{n}} \cdot\binom{2 k}{2 \beta_{1} \ldots 2 \beta_{n}}^{-1}:\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathcal{S}_{k}\right\}
$$

(which is a minimum over a finite set of positive numbers, so $b_{k}>0$), we infer that

$$
\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{k} \geqslant b_{k} \cdot\left\|\sum_{j=1}^{n} a_{j} r_{j}(t)\right\|_{L_{2 k}}^{2 k},
$$

whence $B_{2 k} \leqslant b_{k}^{-1 / 2 k}<\infty$.
In order to show that $A_{1}>0$, we will combine what we have found so far with Hölder's inequality. We claim that $A_{1} \geqslant B_{4}^{-2}$. For simplicity, denote $f(t)=\sum_{j=1}^{n} a_{j} r_{j}(t)$. We have already learned that $\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2}=\left(\int_{0}^{1}|f(t)|^{2} \mathrm{~d} t\right)^{1 / 2}$, thus if we show the inequality

$$
\begin{equation*}
\left(\int_{0}^{1}|f(t)|^{2} \mathrm{~d} t\right)^{1 / 2} \leqslant B_{4}^{2} \int_{0}^{1}|f(t)| \mathrm{d} t \tag{7.3}
\end{equation*}
$$

then our claim will follow. To this end, we write 2 as $2 / 3+4 / 3$ and we use Hölder's inequality with the exponents $q=3 / 2$ and $q^{\prime}=3$:

$$
\begin{aligned}
& \int_{0}^{1}|f(t)|^{2} \mathrm{~d} t=\int_{0}^{1}|f(t)|^{2 / 3}|f(t)|^{4 / 3} \mathrm{~d} t \leqslant\left(\int_{0}^{1}|f(t)| \mathrm{d} t\right)^{2 / 3}\left(\int_{0}^{1}|f(t)|^{4} \mathrm{~d} t\right)^{1 / 3} \\
& \quad \leqslant B_{4}^{4 / 3}\left(\int_{0}^{1}|f(t)| \mathrm{d} t\right)^{2 / 3}\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{2 / 3}=B_{4}^{4 / 3}\left(\int_{0}^{1}|f(t)| \mathrm{d} t\right)^{2 / 3}\left(\int_{0}^{1}|f(t)|^{2} \mathrm{~d} t\right)^{2 / 3}
\end{aligned}
$$

which implies (7.3) and completes the proof.
Remark 7.4. Although the above proof used the fact that the scalars a_{1}, \ldots, a_{n} are reals, it is not difficult to see that Khintchine's inequality (7.2) is valid also for complex scalars
with possibly different constants A_{p} and B_{p} which we shall denote in this case as $A_{p}^{\mathbb{C}}$ and $B_{p}^{\mathbb{C}}$, respectively. Indeed, observe that for all real scalars a_{j} and $b_{j}(1 \leqslant j \leqslant n)$ we have

$$
\begin{aligned}
& \left\|\sum_{j=1}^{n}\left(a_{j}+\mathrm{i} b_{j}\right) r_{j}\right\|_{L_{p}} \leqslant\left\|\sum_{j=1}^{n} a_{j} r_{j}\right\|_{L_{p}}+\left\|\sum_{j=1}^{n} b_{j} r_{j}\right\|_{L_{p}} \\
& \leqslant B_{p}\left(\sum_{j=1}^{n} a_{j}^{2}\right)^{1 / 2}+B_{p}\left(\sum_{j=1}^{n} b_{j}^{2}\right)^{1 / 2} \leqslant \sqrt{2} B_{p}\left(\sum_{j=1}^{n} a_{j}^{2}+\sum_{j=1}^{n} b_{j}^{2}\right)^{1 / 2}
\end{aligned}
$$

(as $\sqrt{t+u} \leqslant \sqrt{2(t+u)}$ for $t, u \geqslant 0$), whence $B_{p}^{\mathbb{C}} \leqslant \sqrt{2} B_{p}$. For the converse estimate, observe that for all $t, u \geqslant 0$ and $q>0$ we have

$$
(t+u)^{q} \geqslant\left\{\begin{array}{cl}
t^{q}+u^{q} & \text { if } q \geqslant 1 \\
2^{q-1}\left(t^{q}+u^{q}\right) & \text { if } q<1
\end{array}\right.
$$

Indeed, the first inequality is obvious whereas the second follows from the power-mean inequality $\left(\left(t^{q}+u^{q}\right) / 2\right)^{1 / q} \leqslant(t+u) / 2$ (for $\left.q<1\right)$. Similarly,

$$
(t+u)^{q} \leqslant\left\{\begin{array}{cc}
t^{q}+u^{q} & \text { if } q \leqslant 1 \\
2^{q-1}\left(t^{q}+u^{q}\right) & \text { if } q>1
\end{array}\right.
$$

Therefore, setting

$$
c_{p}=\left\{\begin{array}{cl}
1 & \text { if } p \geqslant 2 \\
2^{p / 2-1} & \text { if } p<2
\end{array} \quad \text { and } \quad d_{p}=\left\{\begin{array}{cl}
1 & \text { if } p \leqslant 2 \\
2^{p / 2-1} & \text { if } p>2
\end{array}\right.\right.
$$

and using the above inequalities for $q=p / 2$ we obtain

$$
\begin{aligned}
\| \sum_{j=1}^{n}\left(a_{j}\right. & \left.+\mathrm{i} b_{j}\right) r_{j} \|_{L_{p}}^{p}=\int_{0}^{1}\left|\sum_{j=1}^{n}\left(a_{j}+\mathrm{i} b_{j}\right) r_{j}(t)\right|^{p} \mathrm{~d} t \\
& =\int_{0}^{1}\left\{\left(\sum_{j=1}^{n} a_{j} r_{j}(t)\right)^{2}+\left(\sum_{j=1}^{n} b_{j} r_{j}(t)\right)^{2}\right\}^{p / 2} \mathrm{~d} t \\
& \geqslant c_{p}\left(\int_{0}^{1}\left(\sum_{j=1}^{n} a_{j} r_{j}(t)\right)^{p} \mathrm{~d} t+\int_{0}^{1}\left(\sum_{j=1}^{n} b_{j} r_{j}(t)\right)^{p} \mathrm{~d} t\right) \\
& \geqslant c_{p} A_{p}^{p}\left(\left(\sum_{j=1}^{n} a_{j}^{2}\right)^{p / 2}+\left(\sum_{j=1}^{n} b_{j}^{2}\right)^{p / 2}\right) \geqslant c_{p} d_{p}^{-1} A_{p}^{p}\left(\sum_{j=1}^{n} a_{j}^{2}+\sum_{j=1}^{n} b_{j}^{2}\right) .
\end{aligned}
$$

Consequently, $A_{p}^{\mathbb{C}} \geqslant\left(c_{p} d_{p}^{-1}\right)^{1 / p} A_{p}=2^{-|1 / p-1 / 2|} A_{p}$.
Remark 7.5. The sharp constants A_{p} and B_{p} in inequality (7.2) were determined by Haagerup [Haa82]. His result reads as follows:

$$
A_{p}= \begin{cases}2^{1 / 2-1 / p} & \text { if } 0<p \leqslant p_{0} \\ 2^{1 / 2}(\Gamma((p+1) / 2) / \sqrt{\pi})^{1 / p} & \text { if } p_{0}<p<2 \\ 1 & \text { if } 2 \leqslant p<\infty\end{cases}
$$

and

$$
B_{p}= \begin{cases}1 & \text { if } 1<p \leqslant 2 \\ 2^{1 / 2}(\Gamma((p+1) / 2) / \sqrt{\pi})^{1 / p} & \text { if } 2<p<\infty\end{cases}
$$

where p_{0} is the unique solution of the equation $\Gamma((p+1) / 2)=\sqrt{\pi} / 2$ in the interval (1,2), $p_{0} \approx 1.84742$.

Proof of Theorem 7.1. First, observe that it is enough to prove that $\ell_{\infty}(\Gamma)^{*}$ contains an isomorphic copy of $\ell_{2}\left(2^{\Gamma}\right)$. Indeed, suppose there exists an operator $T: \ell_{2}\left(2^{\Gamma}\right) \rightarrow$ $\ell_{\infty}(\Gamma)^{*}$ which is an embedding, that is a one-to-one operator with a closed range. Since T is w^{*}-to- w continuous (the weak* and weak topologies on $\ell_{2}\left(2^{\Gamma}\right)$ coincide), it is also w^{*}-tow^{*} continuous and therefore it is an adjoint operator, $T=S^{*}$ for some $S: \ell_{\infty}(\Gamma) \rightarrow \ell_{2}\left(2^{\Gamma}\right)$. Now, S has a dense range because T is injective and S has a closed range because so does T. Consequently, S would be a quotient operator.

In order to find a copy of $\ell_{2}\left(2^{\Gamma}\right)$ inside $\ell_{\infty}(\Gamma)^{*}$, we appeal to the Fichtenholz-KantorovichHausdorff theorem (see Problem 2.9) which produces an independent family $\mathcal{F} \subset \mathcal{P} \Gamma$ with cardinality 2^{Γ}. Let $V \subset \ell_{\infty}(\Gamma)$ be defined as

$$
V=\left\{\prod_{i=1}^{m} \mathbb{1}_{A_{i}} \cdot \prod_{j=1}^{n} \mathbb{1}_{\Gamma \backslash B_{j}}: A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n} \text { are distinct members of } \mathcal{F}, m, n \in \mathbb{N}_{0}\right\}
$$

and let Y be the linear span of V. Since \mathcal{F} is independent, the set V is linearly independent, so by putting

$$
\begin{equation*}
\varphi\left(\prod_{i=1}^{m} \mathbb{1}_{A_{i}} \cdot \prod_{j=1}^{n} \mathbb{1}_{\Gamma \backslash B_{j}}\right)=2^{-m-n} \tag{7.4}
\end{equation*}
$$

we define a linear functional on Y. Moreover, the fact that \mathcal{F} is independent implies that φ has norm 1 on Y, whence the Hahn-Banach theorem produces a norm-1 extension (still denoted φ) of φ to the whole of $\ell_{\infty}(\Gamma)$. Since $\ell_{\infty}(\Gamma) \simeq C(\beta \Gamma)$ (see Problem 4.5; notice that $\ell_{\infty}(\Gamma)$ is the same as $B(\mathcal{P} \Gamma)$), we have $\ell_{\infty}(\Gamma)^{*} \simeq \mathcal{M}(\beta \Gamma)$ which is the Banach space of all scalar-valued, σ-additive, regular Borel measures on $\beta \Gamma$, equipped with the total variation norm. So, regarding φ as one of those measures we may replace φ by its variation $|\varphi|$ (which is still a member of $\mathcal{M}(\beta \Gamma)$) and observe that $|\varphi|$ corresponds to a functional which still satisfies the formula analogous to (7.4). Consequently, we may assume that φ is a probabilistic measure on $\beta \Gamma$.

Now, for any $A \in \mathcal{F}$ define a functional $\psi_{A} \in \ell_{\infty}(\Gamma)^{*}$ by $\psi_{a}(x)=\varphi\left(\left(\mathbb{1}_{A}-\mathbb{1}_{\Gamma \backslash A}\right) x\right)$. We claim that $\left\{\psi_{A}: A \in \mathcal{F}\right\}$ is equivalent to the standard basis $\left\{e_{\gamma}: \gamma \in \Gamma\right\}$ of $\ell_{2}(\Gamma)$ in the following sense: there is a one-to-one correspondence $\Gamma \ni \gamma \mapsto A_{\gamma} \in \mathcal{F}$ such that there exists an isomorphism $T: \ell_{2}(\Gamma) \rightarrow \overline{\operatorname{span}}\left\{\psi_{A}: A \in \mathcal{F}\right\}$ satisfying $T\left(e_{\gamma}\right)=\psi_{A_{\gamma}}$ for every $\gamma \in \Gamma$. To this end it suffices to show that for some constants $0<A, B<\infty$ we have

$$
\begin{equation*}
A\left\|\sum_{j=1}^{n} a_{j} e_{\gamma_{j}}\right\|_{\ell_{2}(\Gamma)} \leqslant\left\|\sum_{j=1}^{n} a_{j} \psi_{A_{\gamma_{j}}}\right\|_{\ell_{\infty}(\Gamma)^{*}} \leqslant B\left\|\sum_{j=1}^{n} a_{j} e_{\gamma_{j}}\right\|_{\ell_{2}(\Gamma)} \tag{7.5}
\end{equation*}
$$

for all distinct $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma$ and all scalars a_{1}, \ldots, a_{n} (see [AK06, Theorem 1.3.2]).
For any distinct $A_{1}, \ldots, A_{n} \in \mathcal{F}$ and any scalars a_{1}, \ldots, a_{n} we have

$$
\left\|\sum_{j=1}^{n} a_{j} \psi_{A_{j}}\right\|_{\ell_{\infty}(\Gamma)^{*}}=\sup _{x \in B_{\ell_{\infty}(\Gamma)}} \sum_{j=1}^{n} a_{j}\left(\varphi\left(\mathbb{1}_{A_{j}} x\right)-\varphi\left(\mathbb{1}_{\Gamma \backslash A_{j}} x\right)\right) .
$$

Let us use the notation $A^{1}=A$ and $A^{-1}=\Gamma \backslash A$. Observe that each of the summands $\varphi\left(\mathbb{1}_{A_{j}^{\varepsilon}} x\right)$, for $1 \leqslant j \leqslant n$ and $\varepsilon= \pm 1$, may be decomposed as

$$
\varphi\left(\mathbb{1}_{A_{j}^{\varepsilon}} x\right)=\sum_{\substack{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n} \\ \varepsilon_{j}=\varepsilon}} \varphi\left(x \cdot \prod_{i=1}^{n} \mathbb{1}_{A_{i}^{\varepsilon_{i}}}\right) .
$$

In this way we obtain

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} a_{j} \psi_{A_{j}}\right\|_{\ell_{\infty}(\Gamma)^{*}} & =\sup _{x \in B_{\ell_{\infty}(\Gamma)}} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}}\left(\sum_{j=1}^{n} \varepsilon_{j} a_{j}\right) \varphi\left(x \cdot \prod_{i=1}^{n} \mathbb{1}_{A_{i}^{\varepsilon_{i}}}\right) \\
& =\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}}\left|\sum_{j=1}^{n} \varepsilon_{j} a_{j}\right| \cdot 2^{-n}=\int_{0}^{1}\left|\sum_{j=1}^{n} a_{j} r_{j}(t)\right| \mathrm{d} t,
\end{aligned}
$$

where $\left(r_{j}\right)_{j=1}^{\infty}$ is the Rademacher system on $[0,1]$. By appealing to Khintchine's inequality we conclude that condition (7.5) is valid with $A=A_{1}$ and $B=B_{1}$.

