COMBINATORICS IN BANACH SPACE THEORY

Lecture 7

7 Khintchine’s inequality and reflexive quotients of /.,

Since /4, is a Grothendieck space and the class of Grothendieck spaces is closed under
quotients (Problem 3.9), whenever there exists a surjective operator from ¢, onto a Ba-
nach space X, that space X must be a Grothendieck space. In particular, every separable
quotient of ¢, is automatically reflexive (see the remarks after Definition 6.1). The sep-
arable Hilbert space /5 is by a clear mile the most classical infinite-dimensional reflexive
space, so the following question arises: Is ¢y actually a quotient of /7 In other words,
is there any operator from £, onto f5, or maybe even onto f5(¢)? The positive answer is
contained in the following result by Rosenthal [Ros68]:

Theorem 7.1 (Rosenthal, 1968). For any infinite cardinal number T the space l5(27) is
a quotient of Lo ().

Before proving this theorem we need to derive a widely used inequality usually at-
tributed to Khintchine who first proved its special case. The general version of that
inequality is due to Littlewood, Paley and Zygmund.

Definition 7.2. For any n € N the nth Rademacher function r, € L1[0, 1] is defined by
rn(t) = sgn(sin(2"7t)) or, equivalently,
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(we treat r,’s as random variables on the probabilistic space [0,1] with the Lebesgue
measure P).

Plainly, for all sequences ny < ... < ny and (g;)_; € {—1,1}* we have

k

j=1

which means that (r,)2, is a sequence of independent random variables. Therefore,
(rn)22, is just a concrete example of a Rademacher system which is defined to be any
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sequence (X,)5, of independent random variables on some probabilistic space (2,P)
satisfying P(X,, = 1) = P(X,, = —1) = 1/2 for each n € N. Consequently, the expectation
values of Rademacher’s functions satisfy E(rp, .. .7, ) = E(ry,)-. . .-E(ry, ) whenever ny <
. < ng. In particular, fol r;(t)r;(t) dt = 6;; which means that (r,,)72, is an orthonormal
sequence in the Hilbert space LQ[O 1]. Therefore, by the Pythagorean theorem we get

Hzam (Z )" (7.)

for any complex scalars ay,...,a,. We thus see that the Rademacher system (r,)>,
in L]0, 1] behaves likewise the standard basis (e,)s; in ¢;. More precisely, these two
sequences are equivalent in the sense that there exists an isomorphism 7" from /5 onto the
subspace span{r,: n € N} of Ls[0, 1] such that T'(e,,) = r, for each n € N (we will discuss
this notion of equivalence later when we talk about bases in Banach spaces). Khintchine’s
inequality asserts that the sequence (r,)5°; remains ‘almost orthonormal’ in L,[0, 1] for
p € [1,00).

Theorem 7.3 (Khintchine’s inequality). For every p € [1,00) there exist positive (and
finite) constants A, and B, such that

n 1/2 n
Ap(2|@j|2> < Hzaﬂ”j
p =1

for any real scalars aq, ..., a,.

n 1/2
C<B(D lasl?) (7.2)
P j=1

Proof. For any p € [1,00) let A, and B, be the best possible constants in inequality (7.5).
As we have already observed, we have Ay = B, = 1. Notice that for 1 < p < r and for
every function g € L, [0, 1] Holder’s inequality applied to the exponents ¢ = r/p > 1 and
q satisfying 1/¢+1/¢' = 1 gives

/r r 1/d
ot = ([ opar)™ < ([ o a)” ([ 110 a) " = g,
0

Therefore, 1 < p < r implies 4, < A, and B, < B,, so if we show that A; > 0 and
By < oo for each k e N, we will be done.

We start with estimating By, by using the multinomial expansion. Fix n € N and
ai,...,a, € R. For any m € N let S,,, be the set of all multi-indices (a, ..., a,) such
that each «; is a non-negative integer and ", aj = m. Let also

m m!
o ...y ol !

be the multinomial coefficient. Since (r;)32, is the Rademacher system, for every multi-
index (a, ..., q,) we have

1 ) )
1 1if each of «;’s is even
aq . . rOn — J
/0 () () de { 0 otherwise.



Therefore,

/

5 (t)

On the other hand, we have

(Z |aj|2> = Z (Bl 3 )afﬁl T 'aiﬁn

po v B

(5...4)
51...ﬁn)(251‘2‘%25)#{51_”,%216@

Consequently, setting

, k 2k \ '
bk:mm{(ﬁl..ﬂn).(251-~-25n) -(51,...,5n)68k}

(which is a minimum over a finite set of positive numbers, so by > 0), we infer that

<Z \%VQ)k > bi - HZ%(t) ”
= =1

)
Lo

whence By, < by 2k~ o0,
In order to show that A; > 0, we will combine what we have found so far with Holder’s

inequality. We claim that A; > B;?. For simplicity, denote f(t) = > 51 a;r;(t). We have

already learned that (377 [a;[?) 2 = fo | f(t)|? dt)'/2, thus if we show the inequality

/\f B ar)’ 32/ £ dt. (73)

then our claim will follow. To this end, we write 2 as 2/3 + 4/3 and we use Holder’s
inequality with the exponents ¢ = 3/2 and ¢’ = 3:

[ rera = [rorssorsa < / wrola) ([ 1sora)”
Bi/3</01 |f(t)|dt)2/3<z|a]| _ B4/3 / £t |dt /3</01 |f(t)|2dt>2/3

which implies (7.3) and completes the proof. ]

Remark 7.4. Although the above proof used the fact that the scalars aq, ..., a, are reals,
it is not difficult to see that Khintchine’s inequality (7.2) is valid also for complex scalars
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with possibly different constants A, and B, which we shall denote in this case as Ag and
Bg, respectively. Indeed, observe that for all real scalars a; and b; (1 < j < n) we have

HZ(aa‘+ibj)7‘j . <Hzaﬂ“j . +szﬂ°j ,
— ~ , =
(Z ) + B, (Zz?) ﬁBp(ia§+Zn:b§>1/2
=1 j=1 j=1

(as Vi+u < /2 (t +u) for t,u > 0), whence Bg < \/§Bp. For the converse estimate,
observe that for all t,u>0andqg> 0 we have

t? 4 uf ifg>1
7>
(t+u)t > { 20-1(19 4 1) if g < 1.
Indeed, the first inequality is obvious whereas the second follows from the power-mean
inequality ((t7 +u?)/2)Y7 < (t +u)/2 (for ¢ < 1). Similarly,

t? 4 uf ifg<1
7L
(t+ )< { 2071 (19 +u) if g > 1.

Therefore, setting

1 ifp>2 1 ifp<2
Cp:{ 9/2=1 if p < 2 and dp:{ W21 if p > 9

and using the above inequalities for ¢ = p/2 we obtain

i ) P L _ P
|3 + ity :/0 Sy + ity 1) a
j=1 4

:/01{<jz:ajrj ) <me )}p/2 y
>cp</01<zn:ajrj(t> dt+/ (Zb% > dt)

>cpA£(<:ila?>p/2+ (jzn;b?)p/ ) eolly 1Ap<Za +Zb?)

Consequently, AT > (c,d,; WrA, =2 I/p=17214

Remark 7.5. The sharp constants A, and B, in inequality (7.2) were determined by
Haagerup [Haa82]. His result reads as follows:

21/2=1/p if 0 < p < po
Ay=1 22(C((p+1)/2)/vm) " ifpo<p <2
1 if2<p<
and
s {1 if1<p<?2
P 22 (T ((p+ 1)/2)/vE) P it 2 < p < oo,

where pj is the unique solution of the equation I'((p+1)/2) = /7/2 in the interval (1,2),
Do ~ 1.84742.



Proof of Theorem 7.1. First, observe that it is enough to prove that (. (I')* contains
an isomorphic copy of £3(2"). Indeed, suppose there exists an operator T': fo(2') —
(oo (I')* which is an embedding, that is a one-to-one operator with a closed range. Since T’
is w*-to-w continuous (the weak* and weak topologies on £5(2") coincide), it is also w*-to-
w* continuous and therefore it is an adjoint operator, T' = S* for some S: (o (I') — £5(2F).
Now, S has a dense range because 7' is injective and S has a closed range because so does
T. Consequently, S would be a quotient operator.
In order to find a copy of £o(2") inside £, (T')*, we appeal to the Fichtenholz—Kantorovich—

Hausdorff theorem (see Problem 2.9) which produces an independent family F C PI' with
cardinality 2". Let V C £+ (T) be defined as

V= {H 1y, - H]IF\B].: Aq,..., A, By, ..., B, are distinct members of F, m,n € NO}
i=1 j=1

and let Y be the linear span of V. Since F is independent, the set V' is linearly indepen-

dent, so by putting
o([T1a-ITtrs,) =2 (7.4)
i=1 j=1

we define a linear functional on Y. Moreover, the fact that F is independent implies
that ¢ has norm 1 on Y, whence the Hahn-Banach theorem produces a norm-1 extension
(still denoted ¢) of ¢ to the whole of . (I"). Since lo(I') ~ C(BT") (see Problem 4.5;
notice that ¢ (I") is the same as B(PI")), we have . (I")* ~ M(SI") which is the Banach
space of all scalar-valued, o-additive, regular Borel measures on SI', equipped with the
total variation norm. So, regarding ¢ as one of those measures we may replace ¢ by its
variation |p| (which is still a member of M(SI")) and observe that || corresponds to
a functional which still satisfies the formula analogous to (7.4). Consequently, we may
assume that ¢ is a probabilistic measure on SI.

Now, for any A € F define a functional 14 € {o(I)* by 94(2) = (14 —1p\a)z). We
claim that {t¢p4: A € F} is equivalent to the standard basis {e,: v € I'} of £5(I") in the
following sense: there is a one-to-one correspondence I' 3 v — A, € F such that there
exists an isomorphism T': {5(I") — Span{iy4: A € F} satisfying T'(e,) = 1p4, for every
~v € I'. To this end it suffices to show that for some constants 0 < A, B < oo we have

AHZajer (D) S HZCWAW loo (D) S BHZaje%.
=1 =1 =1

for all distinct 71, ...,7, € I' and all scalars ay, ..., a, (see [AK06, Theorem 1.3.2]).
For any distinct Ay,..., A, € F and any scalars aq, ..., a, we have

n
DL
j=1

Let us use the notation A' = A and A™' = '\ A. Observe that each of the summands
¢(1A§x), for 1 < j < n and € = £1, may be decomposed as

o) = S p(e f[m;i).

(7.5)

£2(T)

= sup aile(la.z) —p(Ipa.x)).
Loo (I)* IEBem(F); ]( ( ! ) ( ks ))




In this way we obtain

DT TR SN ) DR P § O
j=1 °° i=1

T€EBy (1) (1,0 en)E{~1,1}n j=1
n 1..n
DO S )
j=1

(e1ysen)e{—-1,1}" j=1
where (7;)52, is the Rademacher system on [0, 1]. By appealing to Khintchine’s inequality
we conclude that condition (7.5) is valid with A = A; and B = B. O




