COMBINATORICS IN BANACH SPACE THEORY Lecture 7

7 Khintchine's inequality and reflexive quotients of ℓ_{∞}

Since ℓ_{∞} is a Grothendieck space and the class of Grothendieck spaces is closed under quotients (Problem 3.9), whenever there exists a surjective operator from ℓ_{∞} onto a Banach space X, that space X must be a Grothendieck space. In particular, every separable quotient of ℓ_{∞} is automatically reflexive (see the remarks after Definition 6.1). The separable Hilbert space ℓ_2 is by a clear mile the most classical infinite-dimensional reflexive space, so the following question arises: Is ℓ_2 actually a quotient of ℓ_{∞} ? In other words, is there any operator from ℓ_{∞} onto ℓ_2 , or maybe even onto $\ell_2(\mathfrak{c})$? The positive answer is contained in the following result by Rosenthal [Ros68]:

Theorem 7.1 (Rosenthal, 1968). For any infinite cardinal number Γ the space $\ell_2(2^{\Gamma})$ is a quotient of $\ell_{\infty}(\Gamma)$.

Before proving this theorem we need to derive a widely used inequality usually attributed to Khintchine who first proved its special case. The general version of that inequality is due to Littlewood, Paley and Zygmund.

Definition 7.2. For any $n \in \mathbb{N}$ the *n*th Rademacher function $r_n \in L_1[0, 1]$ is defined by $r_n(t) = \operatorname{sgn}(\sin(2^n \pi t))$ or, equivalently,

$$r_n(t) = \begin{cases} 1 & \text{for } t \in \bigcup_{j=0}^{2^{n-1}-1} \left[\frac{2j}{2^n}, \frac{2j+1}{2^n}\right) \\ -1 & \text{for } t \in \bigcup_{j=0}^{2^{n-1}-1} \left[\frac{2j+1}{2^n}, \frac{2j+2}{2^n}\right) \end{cases}$$

(we treat r_n 's as random variables on the probabilistic space [0, 1] with the Lebesgue measure \mathbb{P}).

Plainly, for all sequences $n_1 < \ldots < n_k$ and $(\varepsilon_j)_{j=1}^k \in \{-1, 1\}^k$ we have

$$\mathbb{P}(r_{n_1} = \varepsilon_1 \wedge \ldots \wedge r_{n_k} = \varepsilon_k) = \prod_{j=1}^k \mathbb{P}(r_{n_j} = \varepsilon_j)$$

which means that $(r_n)_{n=1}^{\infty}$ is a sequence of independent random variables. Therefore, $(r_n)_{n=1}^{\infty}$ is just a concrete example of a *Rademacher system* which is defined to be any

sequence $(X_n)_{n=1}^{\infty}$ of independent random variables on some probabilistic space (Ω, \mathbb{P}) satisfying $\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = 1/2$ for each $n \in \mathbb{N}$. Consequently, the expectation values of Rademacher's functions satisfy $\mathbb{E}(r_{n_1} \dots r_{n_k}) = \mathbb{E}(r_{n_1}) \dots \mathbb{E}(r_{n_k})$ whenever $n_1 < \dots < n_k$. In particular, $\int_0^1 r_i(t)r_j(t) dt = \delta_{ij}$ which means that $(r_n)_{n=1}^{\infty}$ is an orthonormal sequence in the Hilbert space $L_2[0, 1]$. Therefore, by the Pythagorean theorem we get

$$\left\|\sum_{j=1}^{n} a_j r_j\right\|_{L_2} = \left(\sum_{j=1}^{n} |a_j|^2\right)^{1/2}$$
(7.1)

for any complex scalars a_1, \ldots, a_n . We thus see that the Rademacher system $(r_n)_{n=1}^{\infty}$ in $L_2[0, 1]$ behaves likewise the standard basis $(e_n)_{n=1}^{\infty}$ in ℓ_2 . More precisely, these two sequences are *equivalent* in the sense that there exists an isomorphism T from ℓ_2 onto the subspace $\overline{\text{span}}\{r_n \colon n \in \mathbb{N}\}$ of $L_2[0, 1]$ such that $T(e_n) = r_n$ for each $n \in \mathbb{N}$ (we will discuss this notion of *equivalence* later when we talk about bases in Banach spaces). Khintchine's inequality asserts that the sequence $(r_n)_{n=1}^{\infty}$ remains 'almost orthonormal' in $L_p[0, 1]$ for $p \in [1, \infty)$.

Theorem 7.3 (Khintchine's inequality). For every $p \in [1, \infty)$ there exist positive (and finite) constants A_p and B_p such that

$$A_p \left(\sum_{j=1}^n |a_j|^2\right)^{1/2} \leq \left\|\sum_{j=1}^n a_j r_j\right\|_{L_p} \leq B_p \left(\sum_{j=1}^n |a_j|^2\right)^{1/2}$$
(7.2)

for any real scalars a_1, \ldots, a_n .

Proof. For any $p \in [1, \infty)$ let A_p and B_p be the best possible constants in inequality (7.5). As we have already observed, we have $A_2 = B_2 = 1$. Notice that for $1 \leq p < r$ and for every function $g \in L_r[0, 1]$ Hölder's inequality applied to the exponents q = r/p > 1 and q' satisfying 1/q + 1/q' = 1 gives

$$\|g\|_{L_p} = \left(\int_0^1 |g(t)|^p \,\mathrm{d}t\right)^{1/p} \le \left(\int_0^1 |g(t)|^r \,\mathrm{d}t\right)^{1/r} \cdot \left(\int_0^1 1^{q'} \,\mathrm{d}t\right)^{1/q'} = \|g\|_{L_q}$$

Therefore, $1 \leq p < r$ implies $A_p \leq A_r$ and $B_p \leq B_r$, so if we show that $A_1 > 0$ and $B_{2k} < \infty$ for each $k \in \mathbb{N}$, we will be done.

We start with estimating B_{2k} by using the multinomial expansion. Fix $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$. For any $m \in \mathbb{N}$ let S_m be the set of all multi-indices $(\alpha_1, \ldots, \alpha_n)$ such that each α_j is a non-negative integer and $\sum_{j=1}^n \alpha_j = m$. Let also

$$\binom{m}{\alpha_1 \dots \alpha_n} = \frac{m!}{\alpha_1! \dots \alpha_n!}$$

be the multinomial coefficient. Since $(r_j)_{j=1}^{\infty}$ is the Rademacher system, for every multiindex $(\alpha_1, \ldots, \alpha_n)$ we have

$$\int_0^1 r_1^{\alpha_1}(t) \cdot \ldots \cdot r_n^{\alpha_n}(t) \, \mathrm{d}t = \begin{cases} 1 & \text{if each of } \alpha_j \text{'s is even} \\ 0 & \text{otherwise.} \end{cases}$$

Therefore,

$$\int_0^1 \left| \sum_{j=1}^n a_j r_j(t) \right|^{2k} dt = \sum_{(\alpha_1, \dots, \alpha_n) \in \mathcal{S}_{2k}} \binom{2k}{\alpha_1 \dots \alpha_n} a_1^{\alpha_1} \dots a_n^{\alpha_n} \int_0^1 r_1^{\alpha_1}(t) \dots r_n^{\alpha_n}(t) dt$$
$$= \sum_{(\beta_1, \dots, \beta_n) \in \mathcal{S}_k} \binom{2k}{2\beta_1 \dots 2\beta_n} a_1^{2\beta_1} \dots a_n^{2\beta_n}.$$

On the other hand, we have

$$\left(\sum_{j=1}^{n} |a_{j}|^{2}\right)^{k} = \sum_{(\beta_{1},\dots,\beta_{n})\in\mathcal{S}_{k}} \binom{k}{\beta_{1}\dots\beta_{n}} a_{1}^{2\beta_{1}}\dots a_{n}^{2\beta_{n}}$$

$$= \sum_{(\beta_{1},\dots,\beta_{n})\in\mathcal{S}_{k}} \frac{\binom{k}{\beta_{1}\dots\beta_{n}}}{\binom{2k}{2\beta_{1}\dots2\beta_{n}}} \binom{2k}{2\beta_{1}\dots2\beta_{n}} a_{1}^{2\beta_{1}}\dots a_{n}^{2\beta_{n}}.$$

Consequently, setting

$$b_k = \min\left\{ \binom{k}{\beta_1 \dots \beta_n} \cdot \binom{2k}{2\beta_1 \dots 2\beta_n}^{-1} \colon (\beta_1, \dots, \beta_n) \in \mathcal{S}_k \right\}$$

(which is a minimum over a finite set of positive numbers, so $b_k > 0$), we infer that

$$\left(\sum_{j=1}^{n} |a_j|^2\right)^k \ge b_k \cdot \left\|\sum_{j=1}^{n} a_j r_j(t)\right\|_{L_{2k}}^{2k},$$

whence $B_{2k} \leq b_k^{-1/2k} < \infty$.

In order to show that $A_1 > 0$, we will combine what we have found so far with Hölder's inequality. We claim that $A_1 \ge B_4^{-2}$. For simplicity, denote $f(t) = \sum_{j=1}^n a_j r_j(t)$. We have already learned that $(\sum_{j=1}^n |a_j|^2)^{1/2} = (\int_0^1 |f(t)|^2 dt)^{1/2}$, thus if we show the inequality

$$\left(\int_0^1 |f(t)|^2 \,\mathrm{d}t\right)^{1/2} \leqslant B_4^2 \int_0^1 |f(t)| \,\mathrm{d}t,\tag{7.3}$$

then our claim will follow. To this end, we write 2 as 2/3 + 4/3 and we use Hölder's inequality with the exponents q = 3/2 and q' = 3:

$$\int_{0}^{1} |f(t)|^{2} dt = \int_{0}^{1} |f(t)|^{2/3} |f(t)|^{4/3} dt \leq \left(\int_{0}^{1} |f(t)| dt\right)^{2/3} \left(\int_{0}^{1} |f(t)|^{4} dt\right)^{1/3} \leq B_{4}^{4/3} \left(\int_{0}^{1} |f(t)| dt\right)^{2/3} \left(\sum_{j=1}^{n} |a_{j}|^{2}\right)^{2/3} = B_{4}^{4/3} \left(\int_{0}^{1} |f(t)| dt\right)^{2/3} \left(\int_{0}^{1} |f(t)|^{2} dt\right)^{2/3}$$

which implies (7.3) and completes the proof.

Remark 7.4. Although the above proof used the fact that the scalars a_1, \ldots, a_n are reals, it is not difficult to see that Khintchine's inequality (7.2) is valid also for complex scalars

with possibly different constants A_p and B_p which we shall denote in this case as $A_p^{\mathbb{C}}$ and $B_p^{\mathbb{C}}$, respectively. Indeed, observe that for all real scalars a_j and b_j $(1 \leq j \leq n)$ we have

$$\begin{split} \left\| \sum_{j=1}^{n} (a_j + \mathrm{i}b_j) r_j \right\|_{L_p} &\leq \left\| \sum_{j=1}^{n} a_j r_j \right\|_{L_p} + \left\| \sum_{j=1}^{n} b_j r_j \right\|_{L_p} \\ &\leq B_p \Big(\sum_{j=1}^{n} a_j^2 \Big)^{1/2} + B_p \Big(\sum_{j=1}^{n} b_j^2 \Big)^{1/2} \leq \sqrt{2} B_p \Big(\sum_{j=1}^{n} a_j^2 + \sum_{j=1}^{n} b_j^2 \Big)^{1/2} \end{split}$$

(as $\sqrt{t+u} \leq \sqrt{2(t+u)}$ for $t, u \geq 0$), whence $B_p^{\mathbb{C}} \leq \sqrt{2}B_p$. For the converse estimate, observe that for all $t, u \geq 0$ and q > 0 we have

$$(t+u)^q \ge \begin{cases} t^q + u^q & \text{if } q \ge 1\\ 2^{q-1}(t^q + u^q) & \text{if } q < 1. \end{cases}$$

Indeed, the first inequality is obvious whereas the second follows from the power-mean inequality $((t^q + u^q)/2)^{1/q} \leq (t+u)/2$ (for q < 1). Similarly,

$$(t+u)^q \leq \begin{cases} t^q + u^q & \text{if } q \leq 1\\ 2^{q-1}(t^q + u^q) & \text{if } q > 1. \end{cases}$$

Therefore, setting

$$c_p = \begin{cases} 1 & \text{if } p \ge 2\\ 2^{p/2-1} & \text{if } p < 2 \end{cases} \quad \text{and} \quad d_p = \begin{cases} 1 & \text{if } p \le 2\\ 2^{p/2-1} & \text{if } p > 2 \end{cases}$$

and using the above inequalities for q = p/2 we obtain

$$\begin{split} \left\|\sum_{j=1}^{n} (a_{j} + \mathrm{i}b_{j})r_{j}\right\|_{L_{p}}^{p} &= \int_{0}^{1} \left|\sum_{j=1}^{n} (a_{j} + \mathrm{i}b_{j})r_{j}(t)\right|^{p} \mathrm{d}t \\ &= \int_{0}^{1} \left\{ \left(\sum_{j=1}^{n} a_{j}r_{j}(t)\right)^{2} + \left(\sum_{j=1}^{n} b_{j}r_{j}(t)\right)^{2} \right\}^{p/2} \mathrm{d}t \\ &\geqslant c_{p} \left(\int_{0}^{1} \left(\sum_{j=1}^{n} a_{j}r_{j}(t)\right)^{p} \mathrm{d}t + \int_{0}^{1} \left(\sum_{j=1}^{n} b_{j}r_{j}(t)\right)^{p} \mathrm{d}t \right) \\ &\geqslant c_{p} A_{p}^{p} \left(\left(\sum_{j=1}^{n} a_{j}^{2}\right)^{p/2} + \left(\sum_{j=1}^{n} b_{j}^{2}\right)^{p/2} \right) \geqslant c_{p} d_{p}^{-1} A_{p}^{p} \left(\sum_{j=1}^{n} a_{j}^{2} + \sum_{j=1}^{n} b_{j}^{2}\right) . \end{split}$$

Consequently, $A_p^{\mathbb{C}} \ge (c_p d_p^{-1})^{1/p} A_p = 2^{-|1/p-1/2|} A_p.$

Remark 7.5. The sharp constants A_p and B_p in inequality (7.2) were determined by Haagerup [Haa82]. His result reads as follows:

$$A_p = \begin{cases} 2^{1/2 - 1/p} & \text{if } 0$$

and

$$B_p = \begin{cases} 1 & \text{if } 1$$

where p_0 is the unique solution of the equation $\Gamma((p+1)/2) = \sqrt{\pi}/2$ in the interval (1, 2), $p_0 \approx 1.84742$.

Proof of Theorem 7.1. First, observe that it is enough to prove that $\ell_{\infty}(\Gamma)^*$ contains an isomorphic copy of $\ell_2(2^{\Gamma})$. Indeed, suppose there exists an operator $T: \ell_2(2^{\Gamma}) \to \ell_{\infty}(\Gamma)^*$ which is an embedding, that is a one-to-one operator with a closed range. Since Tis w^* -to-w continuous (the weak* and weak topologies on $\ell_2(2^{\Gamma})$ coincide), it is also w^* -to- w^* continuous and therefore it is an adjoint operator, $T = S^*$ for some $S: \ell_{\infty}(\Gamma) \to \ell_2(2^{\Gamma})$. Now, S has a dense range because T is injective and S has a closed range because so does T. Consequently, S would be a quotient operator.

In order to find a copy of $\ell_2(2^{\Gamma})$ inside $\ell_{\infty}(\Gamma)^*$, we appeal to the Fichtenholz–Kantorovich– Hausdorff theorem (see Problem 2.9) which produces an independent family $\mathcal{F} \subset \mathcal{P}\Gamma$ with cardinality 2^{Γ} . Let $V \subset \ell_{\infty}(\Gamma)$ be defined as

$$V = \left\{ \prod_{i=1}^{m} \mathbb{1}_{A_i} \cdot \prod_{j=1}^{n} \mathbb{1}_{\Gamma \setminus B_j} \colon A_1, \dots, A_m, B_1, \dots, B_n \text{ are distinct members of } \mathcal{F}, m, n \in \mathbb{N}_0 \right\}$$

and let Y be the linear span of V. Since \mathcal{F} is independent, the set V is linearly independent, so by putting

$$\varphi\left(\prod_{i=1}^{m} \mathbb{1}_{A_i} \cdot \prod_{j=1}^{n} \mathbb{1}_{\Gamma \setminus B_j}\right) = 2^{-m-n}$$
(7.4)

we define a linear functional on Y. Moreover, the fact that \mathcal{F} is independent implies that φ has norm 1 on Y, whence the Hahn–Banach theorem produces a norm-1 extension (still denoted φ) of φ to the whole of $\ell_{\infty}(\Gamma)$. Since $\ell_{\infty}(\Gamma) \simeq C(\beta\Gamma)$ (see Problem 4.5; notice that $\ell_{\infty}(\Gamma)$ is the same as $B(\mathcal{P}\Gamma)$), we have $\ell_{\infty}(\Gamma)^* \simeq \mathcal{M}(\beta\Gamma)$ which is the Banach space of all scalar-valued, σ -additive, regular Borel measures on $\beta\Gamma$, equipped with the total variation norm. So, regarding φ as one of those measures we may replace φ by its variation $|\varphi|$ (which is still a member of $\mathcal{M}(\beta\Gamma)$) and observe that $|\varphi|$ corresponds to a functional which still satisfies the formula analogous to (7.4). Consequently, we may assume that φ is a probabilistic measure on $\beta\Gamma$.

Now, for any $A \in \mathcal{F}$ define a functional $\psi_A \in \ell_{\infty}(\Gamma)^*$ by $\psi_a(x) = \varphi((\mathbb{1}_A - \mathbb{1}_{\Gamma \setminus A})x)$. We claim that $\{\psi_A : A \in \mathcal{F}\}$ is equivalent to the standard basis $\{e_{\gamma} : \gamma \in \Gamma\}$ of $\ell_2(\Gamma)$ in the following sense: there is a one-to-one correspondence $\Gamma \ni \gamma \mapsto A_{\gamma} \in \mathcal{F}$ such that there exists an isomorphism $T : \ell_2(\Gamma) \to \overline{\operatorname{span}}\{\psi_A : A \in \mathcal{F}\}$ satisfying $T(e_{\gamma}) = \psi_{A_{\gamma}}$ for every $\gamma \in \Gamma$. To this end it suffices to show that for some constants $0 < A, B < \infty$ we have

$$A\left\|\sum_{j=1}^{n} a_{j} e_{\gamma_{j}}\right\|_{\ell_{2}(\Gamma)} \leqslant \left\|\sum_{j=1}^{n} a_{j} \psi_{A_{\gamma_{j}}}\right\|_{\ell_{\infty}(\Gamma)^{*}} \leqslant B\left\|\sum_{j=1}^{n} a_{j} e_{\gamma_{j}}\right\|_{\ell_{2}(\Gamma)}$$
(7.5)

for all distinct $\gamma_1, \ldots, \gamma_n \in \Gamma$ and all scalars a_1, \ldots, a_n (see [AK06, Theorem 1.3.2]).

For any distinct $A_1, \ldots, A_n \in \mathcal{F}$ and any scalars a_1, \ldots, a_n we have

$$\left\|\sum_{j=1}^{n} a_{j}\psi_{A_{j}}\right\|_{\ell_{\infty}(\Gamma)^{*}} = \sup_{x \in B_{\ell_{\infty}(\Gamma)}} \sum_{j=1}^{n} a_{j} \left(\varphi(\mathbb{1}_{A_{j}}x) - \varphi(\mathbb{1}_{\Gamma \setminus A_{j}}x)\right)$$

Let us use the notation $A^1 = A$ and $A^{-1} = \Gamma \setminus A$. Observe that each of the summands $\varphi(\mathbb{1}_{A_{\varepsilon}^{\varepsilon}}x)$, for $1 \leq j \leq n$ and $\varepsilon = \pm 1$, may be decomposed as

$$\varphi(\mathbb{1}_{A_j^{\varepsilon}} x) = \sum_{\substack{(\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}^n \\ \varepsilon_j = \varepsilon}} \varphi\left(x \cdot \prod_{i=1}^n \mathbb{1}_{A_i^{\varepsilon_i}}\right).$$

In this way we obtain

$$\begin{split} \left\|\sum_{j=1}^{n} a_{j} \psi_{A_{j}}\right\|_{\ell_{\infty}(\Gamma)^{*}} &= \sup_{x \in B_{\ell_{\infty}(\Gamma)}} \sum_{(\varepsilon_{1}, \dots, \varepsilon_{n}) \in \{-1, 1\}^{n}} \left(\sum_{j=1}^{n} \varepsilon_{j} a_{j}\right) \varphi\left(x \cdot \prod_{i=1}^{n} \mathbb{1}_{A_{i}^{\varepsilon_{i}}}\right) \\ &= \sum_{(\varepsilon_{1}, \dots, \varepsilon_{n}) \in \{-1, 1\}^{n}} \left|\sum_{j=1}^{n} \varepsilon_{j} a_{j}\right| \cdot 2^{-n} = \int_{0}^{1} \left|\sum_{j=1}^{n} a_{j} r_{j}(t)\right| \mathrm{d}t, \end{split}$$

where $(r_j)_{j=1}^{\infty}$ is the Rademacher system on [0, 1]. By appealing to Khintchine's inequality we conclude that condition (7.5) is valid with $A = A_1$ and $B = B_1$.