
Combinatorics in Banach space theory

Lecture 8

8 The Johnson–Lindenstrauss space

In this section we will present a construction, due to Johnson and Lindenstrauss [JL74],
which gives an interesting counterexample in the theory of the ‘three-space problem’. The
key role in the construction is played by an almost disjoint family. To motivate this topic,
we shall start with some basic facts concerning the notion of weakly compactly generated
spaces which yields a natural generalisation of both separable and reflexive spaces.

Definition 8.1. We say that a Banach space X is weakly compactly generated (WCG for
short) if there exists a weakly compact set K ⊂ X such that X = span(K). Any set K
with such a property will be called fundamental.

Example 8.2. Every separable Banach space is WCG.

To see this, consider any countable and dense subset {xn : n ∈ N} of the unit ball of
X and let K = { 1

n
xn : n ∈ N} ∪ {0}. Plainly, K is (weakly) compact and fundamental.

Observe that we have just shown that every separable Banach space is in fact generated by
a compact set. Conversely, every Banach space that is ‖ · ‖-compactly generated must be
separable, since compact metric spaces are separable and every separable subset generates
only separable subspace.

Example 8.3. Every reflexive Banach space is WCG.

This follows immediately from the fact that the unit dual ball of any reflexive space
is weakly compact and it is, of course, fundamental.

Example 8.4. Every L1(µ)-space, with µ being a σ-finite, non-negative measure, is WCG.

First, notice that every L1(µ)-space as above is isometrically isomorphic to another
L1(ν)-space with ν being a finite measure. Indeed, there exists a µ-integrable positive
function ϕ with

∫
ϕ dµ = 1, thus the measure ν given by dν = ϕdµ is a probabilistic

measure and the map U : L1(µ)→ L1(ν) given by Uf = f/ϕ is an isometry.
Now, if µ is finite, then Hölder’s inequality implies that the inclusion embedding

j : L2(µ) ↪→ L1(µ) is a bounded linear operator and, by a standard result from measure
theory, its range is dense in L1(µ). Hence, j(BL2(µ)) is a fundamental subset of L1(µ), but
it is also weakly compact as BL2(µ) is weakly compact and j is weak-to-weak continuous.

Example 8.5. For every non-empty index set Γ the space c0(Γ) is WCG.

Indeed, the inclusion embedding j : `2(Γ)→ c0(Γ) is bounded and has a dense range,
hence j(B`2(Γ)) is a weakly compact, fundamental subset of c0(Γ). Another way of showing
our claim is to observe that the set {eγ : γ ∈ Γ} ∪ {0} ⊂ c0(Γ) is weakly compact (and
is, of course, fundamental). Indeed, let U be any weakly open covering of this set and let
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U ∈ U be such that 0 ∈ U . There is a finite set F ⊂ `1(Γ) ' c0(Γ)∗ and some ε > 0 such
that {

x ∈ c0(Γ) : |x∗x| < ε for x∗ ∈ F
}
⊂ U.

For any x∗ ∈ F the inequality |x∗eγ| < ε is valid for all but finitely many γ’s from Γ, thus
all but finitely many vectors eγ (γ ∈ Γ) belong to U , which proves that U has a finite
subcovering.

On the other hand, there are plenty of negative examples. For instance, the space `∞ is
a non-WCG Banach space as every weakly compact subset of `∞ is norm separable. More
generally, this property is shared by all Banach spaces that are duals of separable spaces
(see Problem 1.4), hence every non-separable Banach space that is a dual of a separable
one is not WCG. Another class of non-WCG spaces is formed by `1(Γ)-spaces, for Γ being
any uncountable set. In this case, the reason for every weakly compact subset of `1(Γ)
being norm separable is Schur’s property which even implies that every weakly compact
subset of `1(Γ) is compact (see Problem 4.9).

We may now proceed to the general framework for the ‘three-space problem’. Later
we will discuss some more advanced machinery, developed mainly by Kalton and Peck
([Kal78], [KP79]), which gives deep insight in this problem. For now, it is enough just to
understand what the problem is about.

Suppose we are interested in a certain property P (such as reflexivity, separability,
being isomorphic to a Hilbert space etc.) and we are given Banach spaces X, Y and Z
such that Z contains a subspace Y1 isomorphic to Y with the quotient Z/Y1 isomorphic
to X. The question is: Assuming that both X and Y satisfy P, must Z also satisfy P?

Another way of formulating this problem is to use the language of exact sequences.
Given Banach spaces X, Y and Z, a short exact sequence is a diagram

0 −→ Y
i−→ Z

q−→ X −→ 0 (8.1)

where each arrow represents an operator and the image of each arrow coincides with the
kernel of the one that follows. Hence, i is injective and q is surjective. The exact sequence
(8.1) corresponds exactly to the situation desribed in the previous paragraph. Indeed,
Y1 = i(Y ) = ker(q) is a (closed) subspace of Z and the Open Mapping Theorem implies
that the (unique) algebraic isomorphism T : Z/Y1 → X satisfying T ◦ π = q (where
π : Z → Z/Y1 is the canonical projection) is in fact an isomorphism in the sense of the
Banach space theory. We say that P is a three-space property (3SP property for short),
provided that for all Banach spaces X, Y satisfying P and every exact sequence of the
form (8.1), with Z being a Banach space, Z also satisfies P. We say that P is a 3SP in
some prescribed class C of linear topological spaces, provided that the above condition
holds true, when instead of assuming that X, Y and Z are Banach spaces we assume that
X, Y and Z belong to C.

It is a well-known fact that if X is a Banach space and X∗ is separable, then X is
separable as well. The same is true if we replace the word ‘separable’ by ‘reflexive’. So,
since WCG Banach spaces generalise both separable and reflexive spaces, the following
question arises:

Question 1. Let X be a Banach space such that X∗ is WCG. Does it imply that X is
also WCG?

Similarly, since both separabilty and reflexivity are 3SP properties (see Corollaries 1.12.10
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and 1.11.19 in [Meg98]), we may also ask the following question:

Question 2. Is being WCG a 3SP property?

These two questions were formulated by Lindenstrauss in 1967. Seven years later Johnson
and Lindenstrauss [JL74] constructed a Banach space, which we will denote as JL2 and
call the Johnson–Lindenstrauss space, such that substituting X = JL2 gives negative
answers to both of them. Let us now proceed to the definition of JL2.

Let {Nγ}γ∈Γ be an almost disjoint family of infinite subsets of N with |Γ| = c and for
each γ ∈ Γ let ϕγ = 1Nγ be the characteristic function of Nγ, defined on N. Let also

V = span
(
c0 ∪

{
ϕγ : γ ∈ Γ

})
which is a linear subspace of the linear space `∞. Observe that every x ∈ V may be
written in the form

x = y +
k∑
j=1

aγjϕγj , where y ∈ c0, aγj ∈ R, γj ∈ Γ and γi 6= γj for i 6= j. (8.2)

Moreover, for any such x the scalars aγ (for γ ∈ Γ) are uniquely determined (almost all
of them are zero) and they may be calculated by

aγ = lim
n→∞
n∈Nγ

x(n).

Therefore, the formula

‖x‖JL2 = max

{
‖x‖∞,

( k∑
j=1

|aγj |2
)1/2

}
(8.3)

is well-posed and, as is easily seen, defines a norm on the linear space V . The Johnson–
Lindenstrauss space JL2 is defined as the completion of the normed space (V, ‖ · ‖JL2).
Now, we need two key properties of JL2.

Proposition 8.6. There exists an exact sequence

0→ c0 → JL2 → `2(Γ)→ 0.

Proof. In view of formula (8.3), the identity embedding c0 ↪→ V is an isometry, thus
JL2 contains an isometric copy of c0. We shall only prove that the quotient JL2/c0 is
isomorphic to `2(Γ).

Obviously, for any x ∈ V of the form (8.2) we have

‖x‖JL2 >
( k∑
j=1

|aγj |2
)1/2

= ‖(aγ)γ∈Γ‖`2(Γ).

On the other hand, since the sets Nγj , for 1 6 j 6 k, may meet only at finitely many
places, there exists a finitely supported sequence z (hence z ∈ c0) such that∥∥∥∥∥z +

k∑
j=1

aγjϕγj

∥∥∥∥∥
∞

= max
16j6k

|aγj |,

3



whence the JL2-norm of the vector at the left-hand side is equal to the `2(Γ)-norm of the
sequence (aγ)γ∈Γ. We have thus proved that the distance between any x ∈ V and the
subspace c0 ↪→ V is equal to ‖(aγ)γ∈Γ‖`2(Γ). Consequently, V/c0 is isometrically isomorphic
to the (non-complete) space of all finitely supported sequences in `2(Γ). By passing to
completions, we get the result.

Since c0 and `2(Γ) are both WCG, if the answer to Question 2 was positive, then JL2

would also be WCG. But this is not the case. In fact, the collection of all evaluation
functionals JL2 3 x 7→ x(n) (for n ∈ N) is a countable and total (i.e. separating points)
subset of JL∗2. Hence, every weakly compact subset K of JL2 is metrisable in the weak
topology, therefore K is weakly separable and, since weak and strong separability are
equivalent, K is norm separable. Consequently, span(K) is also separable, thus it cannot
be equal to the non-separable space JL2.

Proposition 8.7. JL∗2 ' `2(Γ)⊕ `1.

Proof. Passing to adjoint operators in the exact sequence

0 −→ c0
S−→ JL2

T−→ `2(Γ) −→ 0

we obtain another (dual) exact sequence

0 −→ `2(Γ)
T ∗
−→ JL∗2

S∗
−→ `1 −→ 0,

where S∗ is a surjective operator from JL∗2 onto `1. By the projectivity of `1 (see Prob-
lem 1.9), the operator S∗ admits a lifting, that is, an operator L : `1 → JL∗2 such that
S∗L = I`1 . This means that the exact sequence splits and the space JL∗2 is isomorphic to
the direct sum of `2(Γ) and `1. Indeed, for every z ∈ JL∗2 we have z − LS∗z ∈ ker(S∗) =
im(T ∗) ' `2(Γ). Therefore, the formula z = (z − LS∗z) + LS∗z gives the decomposition
JL∗2 = im(T ∗) + im(L). Since im(T ∗) ∩ im(L) = {0}, this sum is direct. Finally, im(L)
is a closed subspace of JL∗2 and the Open Mapping Theorem implies that it is isomorphic
to `1 which completes the proof.

Consequently, the answer to Question 1 is also negative, since the dual JL∗1 is WCG
being a direct sum of two WCG Banach spaces.

The construction of the Johnson–Lindenstrauss space presented above may be carried
on with no essential changes for any p ∈ (1,∞) instead of 2. In this way we would get
a space which is called the pth Johnson–Lindenstrauss space and is denoted as JLp. For
any p ∈ (1,∞) the so-defined spaces JLp enjoy properties analogous to those formulated
in Propositions 8.6 and 8.7.
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