
Combinatorics in Banach space theory

Lecture 9

9 A quantitative version of Krein’s theorem

The classical Krein theorem says that the convex hull of a weakly compact subset of
a Banach space is relatively weakly compact. The aim of this section is to derive a certain
quantitative version of this fact which was proved in [FHM05] and which asserts that the
property of being weakly compact is stable with resect to the convex hull operation. To
formulate this result we need a notion of ‘almost’ weak compactness, or ε-weak compact-
ness. Hereinafter, we will often identify an underlying Banach space X with its canonical
image in X∗∗. In particular, for any A ⊂ X the symbol A

w∗
stands for the weak∗ closure

of A in X∗∗.

Definition 9.1. Let A be a subset of a Banach space X and let ε > 0. We say that A is
ε-relatively weakly compact (ε-RWC for short) if it is bounded and A

w∗ ⊂ X + εBX∗∗ .

Observe that this definition harmonises perfectly with the standard fact that A ⊂ X
is relatively weakly compact if and only A

w∗ ⊂ X. In other words, A is relatively weakly
compact if and only if it is 0-RWC (see Problem 1.3). Our goal is to prove the following
remarkable improvement of Krein’s theorem:

Theorem 9.2 (Fabian, Hájek, Montesinos, Zizler, 2005). Let X be a Banach space and
ε > 0. If A ⊂ X is ε-RWC, then conv(A) is 2ε-RWC.

Using double limits is the key technique of the proof. The following notion defines
a perturbation of Grothendieck’s double-limit condition characterising relatively weakly
compact sets.

Definition 9.3. Let X be a Banach space, ε > 0 and let A ⊂ X and B ⊂ X∗ be bounded
sets. We say that A ε-interchanges limits with B, and we write A-ε-B, if for any sequences
(xm)∞m=1 ⊂ A and (x∗n)∞n=1 ⊂ B we have∣∣ lim

m→∞
lim
n→∞
〈xm, x∗n〉 − lim

n→∞
lim
m→∞

〈xm, x∗n〉
∣∣ 6 ε, (9.1)

provided that both of the two iterated limits above exist.

The whole proof of Theorem 9.2 is contained in three steps formulated as the assertions
(i)-(iii) in Theorem 9.4 below. The first assertion is elementary and rather technical.
The second one requires a piece of topological machinery, that is, the upper (weak∗)
semicontinuous envelope which will be applied to functionals defined on BX∗ , in particular,
to those that are not weak∗ continuous. Finally, the third assertion is based on a crucial
combinatorial lemma due to Pták [Ptá63]. It is quite surprising that Pták’s lemma,
seemingly elementary and purely combinatorial, may be proved with the aid of Banach
space theoretic methods. However, it fully pays back, as it is the key part of the proof of
Theorem 9.2 which clearly lies in the heart of the Banach space theory.
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Theorem 9.4. Let X be a Banach space, A ⊂ X be a bounded set and ε > 0. Then, the
following assertions hold true:

(i) If A is ε-RWC, then A-2ε-BX∗.
(ii) If A-ε-BX∗, then A is ε-RWC.

(iii) If A-ε-BX∗, then conv(A)-ε-BX∗

Proof of assertion (i). Let x∗0 ∈ X∗ be a w∗-cluster point of the sequence (x∗n)∞n=1. Then,
for every y ∈ X and δ > 0 all but finitely many x∗n’s belong to the weak∗ open basis
neighbourhood {y∗ ∈ X∗ : |〈y, y∗ − x∗0〉| < δ} of x∗0. In particular, we have

lim
n→∞
〈xm, x∗n〉 = 〈xm, x∗0〉 for each m ∈ N. (9.2)

Similarly, let x∗∗0 ∈ A
w∗

be a w∗-cluster point of (xm)∞m=1. Then, we have

lim
m→∞

〈xm, x∗n〉 = 〈x∗n, x∗∗0 〉 for each n ∈ N. (9.3)

In view of (9.2) and (9.3), the two double limits appearing in condition (9.1) equal:

lim
m→∞

lim
n→∞
〈xm, x∗n〉 = lim

m→∞
〈xm, x∗0〉 = 〈x∗0, x∗∗0 〉

and
lim
n→∞

lim
m→∞

〈xm, x∗n〉 = lim
n→∞
〈x∗n, x∗∗0 〉.

In order to estimate the absolute value of the difference between these double limits, we
use our assumption A

w∗ ⊂ X + εBX∗∗ to pick x0 ∈ X such that ‖x∗∗0 − x0‖ 6 ε. Then,
for each n ∈ N we have ‖x∗∗0 − x0‖ · ‖x∗n − x∗0‖ 6 2ε (recall that x∗n, x

∗
0 ∈ BX∗), whence∣∣ lim

n→∞
〈x∗n, x∗∗0 〉 − 〈x∗0, x∗∗0 〉

∣∣ =
∣∣ lim
n→∞
〈x∗n − x∗0, x∗∗0 〉

∣∣ 6 ∣∣ lim
n→∞
〈x0, x

∗
n − x∗0〉

∣∣+ 2ε = 2ε.

For any x∗∗ ∈ X∗∗ let x̂∗∗ : BX∗ → R be the upper w∗-semicontinuous envelope (regu-
larisation) of x∗∗ on the unit ball of X∗, that is,

x̂∗∗(y∗) = inf
{
f(y∗) | f : BX∗ → R is a w∗-continuous function

such that x∗∗ 6 f
}
.

(9.4)

It is a standard fact from general topology that the so-defined map x̂∗∗ is the least upper
w∗-semicontinuous function that majorises x∗∗ (of course, for x∗∗ ∈ X we have x̂∗∗ =
x∗∗|BX∗ , since in this case x∗∗ itself is w∗-continuous). It is also well-known that x̂∗∗ may
be equivalently defined by the formula

x̂∗∗(y∗) = lim
U∈N (y∗)

supx∗∗(U), (9.5)

where N (y∗) is the collection of all weak∗ open neighbourhoods of y∗ contained in BX∗ ,
directed by reversed inclusion. The equivalence of formulas (9.4) and (9.5) holds true for
general topological spaces and for upper semicontinuous envelopes of arbitrary functions.
We omit the routine proof of this fact. Now, before showing assertion (ii) of Theorem 9.4
we need to derive the following simple lemma:

Lemma 9.5. For every x∗∗ ∈ X∗∗ we have x̂∗∗(0) = dist(x∗∗, X).
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Proof. Denote d = dist(x∗∗, X). To show our claim we will use formula (9.5).
For showing the inequality ‘6’ choose a sequence (xn)∞n=1 ⊂ X satisfying ‖x∗∗−xn‖ <

d+ 1/n, for n ∈ N. Consider the weak∗ open basis neighbourhoods Un ∈ N (0) given by

Un =
{
y∗ ∈ BX∗ : |〈xj, y∗〉| < n−1 for 1 6 j 6 n

}
.

If y∗ ∈ Un, then

〈y∗, x∗∗〉 6 |〈y∗, x∗∗ − xn〉|+ |〈xn, y∗〉| < ‖x∗∗ − xn‖+
1

n
< d+

2

n
.

Therefore, supx∗∗(Un) 6 d+ 2/n and formula (9.5) yields x̂∗∗(0) 6 d.
In order to show the inequality ‘>’ it is enough to prove that for every basis neigh-

bourhood U ∈ N (0) the supremum of x∗∗ over U is at least d. So, suppose U has the
form

U =
{
y∗ ∈ BX∗ : |〈xj, y∗〉| < ε for 1 6 j 6 k

}
for some ε > 0 and x1, . . . , xk ∈ X. The classical corollary from the Hahn–Banach exten-
sion theorem (see, e.g., Corollary 1.9.7 in [Meg98]) implies that there exists a functional
ψ ∈ X∗∗∗ such that ‖ψ‖ = 1, ψ(x∗∗) = d and ψ vanishes on X. Moreover, Goldstine’s
theorem says that the canonical image of the unit ball BX∗ is w∗-dense in the unit ball
BX∗∗∗ . Consequently, the values of ψ at the finite number of points: x∗∗, x1, . . . , xk may
be approximated to within any positive number δ by a functional y∗ ∈ BX∗ (↪→ BX∗∗∗).
Taking δ < ε we get in this way a functional y∗ ∈ U satisfying 〈y∗, x∗∗〉 > d − δ. Since
δ > 0 may be arbitrarily small, our claim follows.

The following corollary results immediately from Lemma 9.5 and formula (9.5).

Corollary 9.6. Let x∗∗ ∈ X∗∗ and d = dist(x∗∗, X). Then, for every U ∈ N (0) we have
supx∗∗(U) > d and for every δ > 0 there exists Uδ ∈ N (0) such that supx∗∗(V ) < d + δ
for every V ∈ N (0) with V ⊂ Uδ.

Proof of assertion (ii). Assume that A-ε-BX∗ . Fix any x∗∗ ∈ Aw∗ and let d = dist(x∗∗, X).
We are to prove that d 6 ε. To this end we will construct two sequences, (xm)∞m=1 ⊂ A
and (x∗n)∞n=1 ⊂ BX∗ such that∣∣ lim

m→∞
lim
n→∞
〈xm, x∗n〉 − lim

n→∞
lim
m→∞

〈xm, x∗n〉
∣∣ = d, (9.6)

whereas both of the two double limits above exist. Once this is done, the proof is com-
pleted, in view of the assumption.

Pick any x1 ∈ A and let

U(x1; 1) = {y∗ ∈ BX∗ : |〈x1, y
∗〉| < 1} ∈ N (0).

By Corollary 9.6, we may find x∗1 ∈ U(x1; 1) such that d − 1 6 〈x∗1, x∗∗〉 6 d + 1. Now,
pick x2 ∈ A satisfying |〈x∗1, x∗∗ − x2〉| < 1/2 (this may be done, since x∗∗ ∈ Aw∗) and let

U
(
x1, x2;

1

2

)
=
{
y∗ ∈ BX∗ : |〈xj, y∗〉| <

1

2
for j = 1, 2

}
∈ N (0).

Then, again by Corollary 9.6, there is x∗2 ∈ U(x1, x2; 1/2) satisfying d− 1/2 6 〈x∗2, x∗∗〉 6
d + 1/2. Continuing in this way we obtain sequences (xm)∞m=1 ⊂ A and (x∗n)∞n=1 ⊂ BX∗

which satisfy the following conditions:
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(a) |〈x∗j , x∗∗ − xm〉| < 1
m

for each m ∈ N and j = 1, 2, . . . ,m− 1;

(b) x∗n ∈ U
(
x1, . . . , xn,

1
n

)
, thus |〈xj, x∗n〉| < 1

n
for each n ∈ N and j = 1, 2, . . . , n;

(c) d− 1
n
6 〈x∗n, x∗∗〉 6 d+ 1

n
for each n ∈ N.

Consequently, condition (b) implies that limm→∞ limn→∞〈xm, x∗n〉 = 0, whereas conditions
(a) and (c) give limn→∞ limm→∞〈xm, x∗n〉 = d. Therefore, equality (9.6) is valid and the
proof is completed.

We now proceed to the proof of assertion (iii) of Theorem 9.4 which involves the convex
hull operation and requires a combinatorial insight. A family G ⊂ FN is called hereditary,
provided that for every G ∈ G each subset of G belongs to G.

Lemma 9.7 (Pták’s lemma, 1963). Let G ⊂ FN be a hereditary family with the following
property: There exists δ > 0 such that for every finite sequence a1, . . . , an of non-negative
numbers with

∑n
j=1 aj = 1 there is a set G ∈ G for which

∑
j∈G aj > δ. Then, there exists

an infinite set M ⊂ N such that FM ⊂ G.

Proof. Define a non-negative function ‖ · ‖G on c00, the space of all finitely supported real
sequences, by the formula∥∥∥∥∥

∞∑
j=1

ajej

∥∥∥∥∥
G

= sup

{∣∣∣∣∣∑
j∈G

aj

∣∣∣∣∣ : G ∈ G
}
.

Plainly, ‖ · ‖G is homogeneous and satisfies the triangle inequality. Moreover, it easily
follows from the assumption that G covers the whole of N and, being hereditary, contains
all singletons. Therefore ‖x‖G is positive whenever x ∈ c00 is non-zero, whence ‖ · ‖G is
a norm. Let X be the completion of (c00, ‖ · ‖G).

Observe that for any n ∈ N and any scalars a1, . . . , an we have

δ

2

n∑
j=1

|aj| 6

∥∥∥∥∥
n∑
j=1

ajej

∥∥∥∥∥
G

6
n∑
j=1

|aj|.

The right inequality is obvious, whereas the left one follows easily from the assumption.
This means that the sequence (en)∞n=1 ⊂ X is equivalent to the canonical basis of `1 and
there exists an isomorphism from X onto `1 that maps each of the vectors en’s from X to
the corresponding canonical unit vector in `1.

Notice that every set G ∈ G gives rise to a functional ϕG ∈ X∗ defined on the dense
subspace c00 of X by the formula

ϕG

(
∞∑
j=1

ajej

)
=
∑
j∈G

aj.

Of course, for each G ∈ G we have ‖ϕG‖ 6 1 and the collection {ϕG : G ∈ G} is norming,
that is, for every x ∈ X we have ‖x‖ = sup{|ϕG(x)| : G ∈ G}. Let K be the w∗-
closure of the set of all ϕG’s, for G ∈ G. Then, K is a compact Hausdorff space and
the correspondence X 3 x 7→ fx ∈ C(K), given by fx(ϕG) = 〈x, ϕG〉, is an isometric
embedding of X into C(K).

It is evident from the Hahn–Banach theorem that any subspace of a Banach space
with a separable dual has also a separable dual. Hence, since X ' `1 and X embeds into
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C(K), the dual of C(K) is non-separable. If K was countable, then it would follows easily
from the Riesz Representation Theorem that C(K)∗ is separable?.

Let ψ be any functional from K; we may write it formally as ψ =
∑∞

n=1 cne
∗
n, where

cn = ψ(en) for each n ∈ N. Since ψ lies in the weak∗ closure of the set {ϕG : G ∈ G}, for
every ε > 0 and n ∈ N there are infinitely many G’s in G satisfying |cj − ϕG(ej)| < ε for
each 1 6 j 6 n. This, in particular, implies that for every n ∈ N we have cn ∈ {0, 1} and
the functional ψ may be identified with a subset H of N (consisting of all those n ∈ N for
which cn = 1). Moreover, the set H is the limit in the product (pointwise) topology of 2N

of a sequence of some sets G ∈ G. In other words, K may be identified with the closure
of G in the pointwise topology on 2N. Since K is uncountable, there exists an infinite set
M ⊂ N which is a pointwise limit of elements from G and since G is hereditary, every
finite subset of M must belong to G.

The assertion of Pták’s lemma may be also formulated without assuming that the
underlying family is hereditary. In fact, this is how we will use Pták’s lemma in the proof
of assertion (iii) of Theorem 9.4.

Lemma 9.8 (‘Non-hereditary’ version of Pták’s lemma). Assume G ⊂ FN has the fol-
lowing property: There exists δ > 0 such that for every finite sequence a1, . . . , an of
non-negative numbers with

∑n
j=1 aj = 1 there is a set G ∈ G for which

∑
j∈G aj > δ.

Then, there exists a strictly increasing sequence H1 ⊂ H2 ⊂ . . . of finite subsets of N and
a sequence (Gn)∞n=1 ⊂ G such that Hn ⊂ Gn for each n ∈ N.

Proof. Define G̃ = {H ∈ FN : H ⊂ G for some G ∈ G} and apply Pták’s Lemma 9.7 to

the (hereditary) family G̃ instead of G.

Proof of assertion (iii). Pick a positive number M such that ‖x‖ 6 M for every x ∈ A.
Let ε > 0 and suppose that there exist two sequences: (xm)∞m=1 ⊂ conv(A) and (x∗n)∞n=1 ⊂
BX∗ satisfying ∣∣ lim

m→∞
lim
n→∞
〈xm, x∗n〉 − lim

n→∞
lim
m→∞

〈xm, x∗n〉
∣∣ = ε. (9.7)

Pick any β ∈ (0, ε). We are going to construct a sequence (tj)
∞
j=1 ⊂ A and a subsequence

(x∗nk
)∞k=1 of (x∗n)∞n=1 such that∣∣ lim

j→∞
lim
k→∞
〈tj, x∗nk

〉 − lim
k→∞

lim
j→∞
〈tj, x∗nk

〉
∣∣ > β (9.8)

and then we will be done.

?Suppose K is a countable compact Hausdorff space. Then, for every (x, y) ∈ K×K with x 6= y the set
Hx,y = {f ∈ C(K) : f(x) = f(y)} is the kernel of the non-zero functional C(K) 3 f 7→ f(x)−f(y), so it is
a closed, one-codimensional hyperplane. By the Baire Category Theorem, the union

⋃
(x,y)∈K×K,x6=yHx,y

is a meagre subset of C(K), thus there is some function f ∈ C(K) that belongs to none of Hx,y’s. In
other words, f is a one-to-one continuous map from K into R and therefore it gives rise to a metric on
K, consistent with the original topology. We have thus proved that every countable compact Hausdorff
space is metrisable. With no much extra effort it may be also shown that every such space is scattered,
that is, every its non-empty closed subset has an isolated point (see [FHH10, Lemma 14.21]). Moreover,
according to Rudin’s theorem [FHH10, Theorem 14.24], for every scattered compact Hausdorff space K
the dual of C(K) is isometrically isomorphic to `1(Γ) for some index set Γ and C(K)∗ ' `1 whenever K
is countable.

Considering the set {δt : t ∈ K} ⊂ C(K)∗ of all Dirac’s measures, it is easy to see that C(K)∗ is
non-separable whenever K is uncountable. Consequently, the dual of C(K) is separable if, and only if,
K is countable and in every such case (except finite-dimensional spaces) C(K)∗ is isometric to `1.
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Let x∗0 ∈ BX∗ be a w∗-cluster point of (x∗n)∞n=1 and let A0 ⊂ A be a countable set
such that (xm)∞m=1 ⊂ conv(A0). For any point x ∈ X there is a subsequence of (x∗n)∞n=1

which converges at x to x∗0x. Using the diagonal procedure we may extract a common
subsequence for all the elements of the countable set A0 ∪ {xm : m ∈ N}. For simplicity,
let us denote that subsequence again by (x∗n)∞n=1. Then, we have x∗n → x∗0 pointwise on
the set A0 ∪ {xm : m ∈ N}.

Since limn〈xm, x∗n〉 = 〈xm, x∗0〉, we may rewrite (9.7) as

σ
(

lim
m→∞

〈xm, x∗0〉 − lim
n→∞

lim
m→∞

〈xm, x∗n〉
)

= ε,

with a suitable σ ∈ {−1, 1}. Pick any δ > 0 (we shall impose an additional condition
upon δ later); by deleting a finite number of x∗n’s we may assume that

σ
(

lim
m→∞

〈xm, x∗0〉 − lim
m→∞

〈xm, x∗n〉
)
> ε− δ for each n ∈ N,

that is,
σ lim
m→∞

〈xm, x∗0 − x∗n〉 > ε− δ for each n ∈ N. (9.9)

Now, let us give a heuristic argument in order to see in what way Pták’s lemma
might be used. Suppose we have found a sequence (tj)

∞
j=1 satisfying (9.8) and suppose

that it is contained in A0, just to make our life easier. Then for each j ∈ N we have
limk〈tj, x∗nk

〉 = 〈tj, x∗0〉, so (9.8) really means that limk limj |〈tj, x∗0 − x∗nk
〉| > β. That

would be true, if we had |〈tj, x∗0 − x∗nk
〉| > β, for each j ∈ N and each k = 1, . . . , j. This

observation suggests to define sets

Γ(t) =
{
n ∈ N : |〈t, x∗0 − x∗n〉| > β

}
(t ∈ A0).

At once, we may note that every Γ(t) is a finite subset of N, as x∗n → x∗0 pointwise on A0.
If we could prove that the family G = {Γ(t) : t ∈ A0} satisfies the assumption of Pták’s
Lemma 9.8, then for some sequence (tj)

∞
j=1 ⊂ A0 and some natural numbers n1 < n2 < . . .

we would have
{n1, . . . , nj} ⊂ Γ(tj) for each j ∈ N. (9.10)

By extracting appropriate subsequences from (tj)
∞
j=1 and (x∗nk

)∞k=1 we could also assume
that:

• limj〈tj, x∗0 − x∗nk
〉 exists for every k ∈ N,

• limk limj〈tj, x∗0 − x∗nk
〉 exists,

• limj〈tj, x∗0〉 exists,

and this would not influence the validity of (9.10). Having all these conditions, both of
the two double limits in (9.8) exist and, as it was explained above, equality (9.8) holds
true. So, what remains to be proved is that the family G satisfies the assumption of Pták’s
lemma with some number γ > 0.

Suppose that no choice of γ > 0 is possible. Then, for every γ > 0 there is a sequence
a1, . . . , aN of non-negative numbers with

∑N
j=1 aj = 1 and such that

∑
j∈G aj < γ for

every G ∈ G. Define

x∗ =
N∑
j=1

aj(x
∗
0 − x∗j) ∈ 2BX∗ .
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For every t ∈ A0 we have

|〈t, x∗〉| =

∣∣∣∣∣
N∑
j=1

aj〈t, x∗0 − x∗j〉

∣∣∣∣∣
6
∑

16j6N
j∈Γ(t)

aj |〈t, x∗0 − x∗j〉|︸ ︷︷ ︸
62‖t‖62M

+
∑

16j6N
j 6∈Γ(t)

aj|〈t, x∗0 − x∗j〉| 6 2Mγ + β.

Since (xm)∞m=1 ⊂ conv(A0), we have also |〈xm, x∗〉| 6 2Mγ+β for each m ∈ N. Therefore,
in view of (9.9), we have

2Mγ + β > lim
m→∞

|〈xm, x∗〉| =

∣∣∣∣∣
N∑
j=1

aj lim
m→∞

〈xm, x∗0 − x∗j〉

∣∣∣∣∣
= σ

N∑
j=1

aj lim
m→∞

〈xm, x∗0 − x∗j〉 > ε− δ.

Consequently, the supposition that G does not satisfy the assumption of Pták’s lemma
leads to the conclusion δ + 2Mγ > ε − β. However, for any β < ε we may choose δ > 0
and γ > 0 so small that δ + 2Mγ < ε− β.
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