the set $\{1, 2, \ldots\}$ of all natural numbers \mathbb{N} \mathbb{N}_0 the set $\{0, 1, 2, \ldots\}$ of all non-negative integers \mathbb{Z} the set of all integers \mathbb{Q} the set of all rationals $\mathbb R$ the set of all reals \mathbb{C} the set of all complex numbers the unit ball of a normed space $X, B_X = \{x \in X : ||x|| \le 1\}$ B_X the unit sphere of a normed space $X, S_X = \{x \in X : ||x|| = 1\}$ S_X X^* the dual of a normed space X|A|the cardinality of a set A $\mathbb{1}_A$ the characteristic function of a set Athe identity operator acting on a Banach space X I_X ω the first infinite ordinal number [n]the set $\{1, 2, ..., n\}$ $\mathcal{P}\Gamma$ the family of all subsets of a given set Γ $\mathcal{P}_{\infty}\Gamma$ the family of all infinite subsets of a given set Γ $\mathcal{F}_n\Gamma$ the family of all *n*-element subsets of Γ $\mathcal{F}\Gamma$ the family of all finite subsets of Γ $\Pi(\Gamma)$ the family of all partitions of Γ \overline{A} the closure of A in the norm topology \overline{A}^w the closure of A in the weak topology \overline{A}^{w*} the closure of A in the weak^{*} topology the linear space generated by a set A $\operatorname{span}(A)$ the norm closure of $\operatorname{span}(A)$ $\overline{\operatorname{span}}(A)$ $\overline{\operatorname{span}}^{w*}(A)$ the closure of $\operatorname{span}(A)$ in the weak^{*} topology $\operatorname{conv}(A)$ the convex hull of a set A $\overline{\mathrm{conv}}(A)$ the norm closure of conv(A) $\operatorname{dist}(x, A)$ the distance between a point x and a set Athe *n*th canonical unit vector in a sequence space (unless otherwise stated) e_n e_n^* the *n*th coordinate functional on a sequence space (unless otherwise stated) $X \oplus Y$ the direct sum of Banach spaces X and Y, equipped with any norm which is equivalent to $||(x, y)||_{\infty} := \max\{||x||, ||y||\}$ the Banach space of all scalar functions x defined on Γ such that for every $c_0(\Gamma)$ $\varepsilon > 0$ there is a finite set $F \subset \Gamma$ with $|x(\gamma)| < \varepsilon$ for each $\gamma \in \Gamma \setminus F$, equipped with the supremum norm for $p \in [1, \infty)$, the Banach space of all scalar functions x defined on Γ such $\ell_p(\Gamma)$ that $||x||_p := \left(\sum_{\gamma \in \Gamma} |x(\gamma)|^p\right)^{1/p} < \infty$, equipped with the norm $||\cdot||_p$ the Banach space of all scalar bounded functions defined on Γ , equipped $\ell_{\infty}(\Gamma)$ with the supremum norm $||x||_{\infty} := \sup\{|x(\gamma)|: \gamma \in \Gamma\}$ operator = bounded and linear operator (unless otherwise stated) *isomorphism* = bounded, linear and bijective operator between Banach spaces *functional* = continuous, linear functional (unless otherwise stated) isometry = linear isometry (unless otherwise stated) = bounded, injective, linear operator with a closed range embedding = closed, linear subspace (unless we talk about a dense subspace) subspace