
Functional analysis

Lecture 1: Normed space; examples; Riesz’ lemma;
equivalence of norms on a finite-dimensional space

1 Normed spaces and Banach spaces

Throughout this lecture we will be considering vector spaces over a field K of either real
or complex numbers, i.e. K ∈ {R,C}. Some of the presented results remain valid in the
same form when the scalar field is R and C. Sometimes, however, the transition from
the real case to the complex one requires a nontrivial argument (like in the Hahn–Banach
theorem), but it also happens that the situation is essentially different in both these cases
(as in the spectral theory). Usually, it should be clear from the context over which field
are the vector (normed, Banach) spaces in question. If not, it should be explicitely stated.
If we do not mention the scalar field, it means that the result works the same way over
either R and C.

Definition 1.1. Let X be a vector space over a field K ∈ {R,C}. A function ‖·‖ : X →
[0,∞) is called a norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖λx‖ = |λ|·‖x‖ for all λ ∈ K, x ∈ X,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X (the triangle inequality).

The vector space X equipped with a norm ‖·‖, that is, the pair (X, ‖·‖) we shall call
a normed space.

Each norm is naturally associated with a metric given by ρ(x, y) = ‖x− y‖, so every
normed space is automatically a metric space, hence also a topological space with the
topology generated by the basis {D(x, r) : x ∈ X, r > 0}, where D(x, r) stands for the
open ball:

• D(x, r) = {y ∈ X : ‖x− y‖ < r}.

Using any topological notions (like convergence, closedness, density etc.) in reference to
a normed space, we shall always have in mind the topolgy given by the underlying norm,
unless otherwise stated. In particular, the norm as a function defined on X and values in
[0,∞) is continuous with respect to itself (classes).

The (closed) unit ball and the unit sphere of a normed space (X, ‖·‖) are denoted,
respectively, by:

• BX = {x ∈ X : ‖x‖ ≤ 1},
• SX = {x ∈ X : ‖x‖ = 1}.

For simplifying notation, instead of mentioning the pair (X, ‖·‖), we shall often speak
of X alone as of a normed space. In most cases it will be clear from the context which
norm we consider. Below, we list the most classical examples of normed spaces—these
objects appear all over mathematics.
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Example 1.2. Let K be either R or C. The following vector spaces over K, supplied with
norms described below, are normed spaces.

(1) The n-dimensional space Kn supplied with one of the norms:

• ‖x‖∞ = max{|x1|, . . . , |xn|},
• ‖x‖p = (|x1|p + . . .+ |xn|p)1/p for x = (x1, . . . , xn) ∈ Kn,

where p is any parameter from [1,∞). (Notice that limp→∞ ‖x‖p = ‖x‖∞, so the
‘maximum norm’ is the limit case of the ’p-norms’ as p grows to infinity.)

(2) The sequence spaces:

• c0 =
{

(xn)∞n=1 ∈ KN : limn xn = 0
}

,

• c =
{

(xn)∞n=1 ∈ KN : limn xn exists in K
}

,

• `∞=
{

(xn)∞n=1 ∈ KN : supn |xn| <∞
}

,

• `p =
{

(xn)∞n=1 ∈ KN :
∑

n |xn|
p <∞

}
(1 ≤ p <∞),

where each of the spaces: c0, c and `∞ is supplied with the ‘supremum norm’:

‖(xn)∞n=1‖∞ = sup
n
|xn|,

whereas `p is supplied with a norm defined by

‖(xn)∞n=1‖p =
( ∞∑
n=1

|xn|p
)1/p

.

(Of course, the linear structure in all the sequence spaces above is given by the
standard coordinatewise operations.)

All the spaces (Kn, ‖·‖p) and (`p, ‖·‖p) for 1 ≤ p ≤ ∞ are particular cases of the following,
more general construction:

(3) Let (X,M, µ) be a measure space with a positive (not necessarily finite) measure µ.
On the set of all measurable scalar-valued functions on X we introduce an equivalence
relation ∼ by saying that f ∼ g if and only if f(x) = g(x) holds true µ-a.e. on X, that
is, µ({x : f(x) 6= g(x)}) = 0. Denote by [f ]∼ the class of abstraction corresponding
to a function f . For 1 ≤ p <∞, we define

Lp(µ) =
{

[f ]∼ | f : X → K is M-measurable and
∫
X |f |

p dµ <∞
}
,

and for p =∞,

L∞(µ) =
{

[f ]∼ | f : X → K is M-measurable and essentially bounded,

i.e. ∃A∈M, µ(A)=0 supx∈X\A |f(x)| <∞
}
.

These sets form vector spaces over K with the canonical operations [f ]∼ + [g]∼ =
[f + g]∼ and λ[f ]∼ = [λf ]∼. They are obviously well-defined, as well as the following
functions which are actually norms:
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• ‖[f ]∼‖p =
{∫
X

|f |p dµ
}1/p

for [f ]∼ ∈ Lp(µ), 1 ≤ p <∞,

• ‖[f ]∼‖∞ = ess sup f
df.
= inf

A∈M, µ(A)=0
sup
x∈X\A

|f(x)|

= inf
{
a ∈ R : µ(|f |−1(a,∞)) = 0

}
for [f ]∼ ∈ L∞(µ).

Remark. (a) Even though the elements of Lp(µ) are classes of abstraction, we will al-
ways treat them as genuine functions. This shall not cause any confusion as long as we
remember to identify functions equal almost everywhere.

(b) The normed spaces (Kn, ‖·‖p) and (`p, ‖·‖p) (1 ≤ p ≤ ∞) are particular cases of the
Lp(µ)-spaces. This can be seen by considering the counting measure µ on an n-element
set and on the set N of natural numbers, respectively (i.e. µ(A) is the cardinality of A if A
is finite and is∞ if A is infinite). Similarly, considering any set of indices Γ (of arbitrarily
large cardinality) and taking µ to be the counting measure on Γ we obtain ‘long’ versions
of the `p-spaces (1 ≤ p ≤ ∞), and also of the space c0:

• c0(Γ) =
{
x : Γ→ K | ∀ε>0 {γ ∈ Γ: |x(γ)| ≥ ε} is finite

}
,

• `∞(Γ)=
{
x : Γ→ K | ‖x‖∞ := supγ∈Γ |x(γ)| <∞

}
,

• `p(Γ) =
{
x : Γ→ K | ‖x‖p :=

(∑
γ∈Γ |x(γ)|p

)1/p
<∞

}
(1 ≤ p <∞).

Notice that each element x of c0(Γ) or `p(Γ) for 1 ≤ p <∞ must have countable support,
i.e. x(γ) = 0 for all but countably many γ’s. Nevertheless, each of these space is nonsep-
arable whenever Γ is uncountable (classes). At this point, let us introduce a common
notation:

• `np = (Kn, ‖·‖p), for 1 ≤ p ≤ ∞;

• cn0 is sometimes used instead of `n∞ (for reasons that should be clear).

(4) Let K be a compact Hausdorff space, L be a locally compact (i.e. every point has
a neighborhood of compact closure) Hausdorff space, and let X be any Hausdorff
space. Then, all the following three spaces:

• C(K) = {f : K → K | f is continuous},

• C0(L) =
{
f : L→ K | ∀ε>0 {x ∈ L : |f(x)| ≥ ε} is compact

}
,

• Cb(X) = {f : K → K | f is continuous and bounded},

are normed spaces when supplied with the supremum norm ‖f‖∞ = supx |f(x)|.
(Functions belonging to C0(L) are called vanishing at infinity.)

Proof (that examples (1)–(4) yield normed spaces). Definitely, all the spaces above are
vector spaces over K and the conditions (i) and (ii) from the definition of norm are
trivially satisfied. The triangle inequality is very easy to verify in the cases of: cn0 , c0, `∞,
L∞(µ), C(K), C0(L) and Cb(X). We just need to show the triangle inequality for the
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Lp(µ)-spaces, for 1 ≤ p < ∞ (as mentioned, `np ’s and `p are particular cases), but this is
a direct consequence of the famous Minkowski inequality:{∫

X

|f + g|p dµ
}1/p

≤
{∫

X

|f |p dµ
}1/p

+
{∫

X

|g|p dµ
}1/p

,

which can be proven with the aid of Hölder’s inequality:∫
X

|fg| dµ ≤
{∫

X

|f |p dµ
}1/p{∫

X

|g|p
′
dµ
}1/p′

;

they both hold true for all measurable functions f , g, and each p ∈ (1,∞) (for p = 1
the Minkowski inequality is trivially fulfilled as well), where p′ ∈ (1,∞) is the conjugate
exponent to p, i.e. the one that satisfies 1

p
+ 1

p′
= 1 (classes).

If Y is any subset (in particular, a subspace) of a normed space X, then the distance
from x to Y is denoted by

• dist(x, Y ) = inf{‖x− y‖ : y ∈ Y }.

The first nontrivial information on the geometry of general normed spaces we get from
the following lemma sometimes called the lemma about an almost orthogonal element.

Lemma 1.3 (Riesz’ lemma). Let X be a normed space and Y ( X be its proper closed
subspace. Then, for every ε > 0 there exists a vector x ∈ SX such that dist(x, Y ) ≥ 1− ε.

Proof. Pick any u ∈ X \ Y and let δ = dist(u, Y ). Since Y is closed, we have δ > 0. For
any η > 0 we can find v ∈ Y such that δ ≤ ‖u− v‖ ≤ δ + η. Define

x =
u− v
‖u− v‖

and observe that for each y ∈ Y we have

‖x− y‖ =
∥∥∥ u− v
‖u− v‖

− y
∥∥∥ =

1

‖u− v‖
∥∥u− (v + ‖u− v‖y)︸ ︷︷ ︸

∈Y

∥∥ ≥ δ

δ + η
.

Hence, it is enough to take η so that δ
δ+η
≥ 1− ε, and then dist(x, Y ) ≥ 1− ε.

Corollary 1.4. If X is an infinite-dimensional normed space, then the unit sphere SX
contains a sequence (xn)∞n=1 such that ‖xm − xn‖ ≥ 1

2
for all m,n ∈ N, m 6= n, and

therefore SX (and BX) fails to be compact.

Definition 1.5. Let X be a vector space over either R or C and let ‖·‖1, ‖·‖2 be two norms
on X. We say that these norms are equivalent provided there exist constants c, C > 0
such that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for every x ∈ X.

Remark. The motivation for this definition comes from the fact that two norms are
equivalent if and only if they generate the same topology (classes).

Theorem 1.6. If X is a finite-dimensional normed space, then all norms on X are
equivalent to each other.
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Proof. Let n = dimX < ∞ and (e1, . . . , en) be a Hamel (algebraic) basis of X. Any
x ∈ X can be then uniquely written in the form x =

∑n
j=1 αjej for some scalars αj. For

such an x we set ‖x‖∞ = max1≤j≤n |αj|. Plainly, this formula defines a norm ‖·‖∞ on X.
Let ‖·‖ be any other norm on X; it is enough to show that ‖·‖∞ and ‖·‖ are equivalent.

First, observe that

‖x‖ ≤
n∑
j=1

|αj|‖ej‖ ≤ C‖x‖∞, (1.1)

where C :=
∑n

j=1 ‖ej‖.
Let T and U stand for the topologies on X generated by the norms ‖·‖∞ and ‖·‖,

respectively. Let B = {x ∈ X : ‖x‖∞ ≤ 1}. In view of (1.1), we have U ⊆ T . Since B is
T -compact, it is also U -compact and since any compact Hausdorff topology is rigid (can-
not be weakened without losing Hausdorffness and cannot be enriched without spoiling
compactness—(classes)), we infer that T and U agree on the set B.

Define A = {x ∈ X : ‖x‖∞ < 1}. Since it is a T -open subset of B, it is also U -open.
Hence, there is U ∈ U such that U ∩ B = A. Obviously, 0 ∈ A, so U must contain
a U -neighborhood of zero which means that there is r > 0 with {x ∈ X : ‖x‖ < r} ⊆ U .
Therefore, (

‖x‖ < r and ‖x‖∞ ≤ 1
)

=⇒ ‖x‖∞ ≤ 1. (1.2)

Claim. ‖x‖ < r =⇒ ‖x‖∞ < 1.

Assume that ‖x‖ < r. Obviously, x
‖x‖∞

∈ B and now if ‖x‖∞ ≥ 1, then we would have∥∥∥ x

‖x‖∞

∥∥∥ < r

‖x‖∞
≤ r.

Hence, condition (1.2) would imply that 1 = x
‖x‖∞

< 1; a contradiciton which establishes

our claim. By homogeneity, it follows easily that ‖x‖∞ < r−1‖x‖ for every x ∈ X.

Corollary 1.7. If M is a finite-dimensional subspace of a normed space, then M is closed.

Proof. (classes)

Corollary 1.8. A normed space X is locally compact if and only if dimX <∞.

Proof. One direction is contained in Corollary 1.4. Namely, if dimX =∞, then X is not
locally compact. On the other hand, if n := dimX < ∞, then Theorem 1.6 guarantees
that the norm on X is equivalent, for example, to the Euclidean norm in `n2 (we identify
X with Kn in an obvious manner). This means that BX is a closed set contained in
a Euclidean ball of certain radius. Hence, BX is compact due to the Heine–Borel theorem.
Consequently, every closed ball in X is compact and thus every point has a neighborhood
with compact closure.
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