
Functional analysis

Lecture 10: Boundedness of variation of complex measures;
The Radon–Nikodym theorem and duality Lp(µ)∗ ∼= Lq(µ)

Proof of Theorem 6.1(b). The main observation is the following

Claim. For every E ∈M with |µ|(E) =∞, there exists a decomposition E = A∪B such
that A,B ∈M, A ∩B = ∅, |µ(A)| > 1 and |µ|(B) =∞.

Indeed, take any t > 6(1 + |µ(E)|) and choose a partition (Ei)
n
i=1 ∈ Π(E) such that∑n

i=1 |µ(Ei)| > t. By Lemma 6.2 applied to the complex numbers zi = µ(Ei) (i = 1, . . . , n)
there is a set S ⊆ {1, . . . , n} for which |µ(A)| ≥ 1, where A =

⋃
i∈S Ei. By the definition

of t and our choice of S, we also have

|µ(E \ A)| ≥ |µ(A)| − |µ(E)| ≥ 1.

Since the variation of µ is additive, at least one of the values |µ|(A) and |µ|(E \A) must
be infinite. Interchanging A with E \A if necessary, we obtain the desired decomposition.

Now, suppose that |µ|(X) = ∞. Using the above Claim, by an easy induction, we
construct a descending sequence of measurable sets (Bn)∞n=0 with B0 = X such that for
each n ∈ N0 we have:

• Bn = An+1 ∪Bn+1,

• An+1 ∩Bn+1 = ∅,

• |µ(An+1)| ≥ 1 and |µ|(Bn+1) =∞.

Then, the sets (An)∞n=1 are pairwise disjoint and the series
∑∞

n=1 µ(An) is plainly divergent.
This contradicts the fact that |µ| is σ-additive as the set C =

⋃∞
n=1An belongs to M.

Definition 6.3. Let µ be a positive measure on a σ-algebra M and let λ be either
a positive (not necessarily finite) measure or a complex-valued measure on M. We say
that λ is absolutely continuous with respect to µ and write

λ�µ

provided that µ(E) = 0 implies λ(E) = 0 for every E ∈M. We say that λ is supported on
a set E ∈M if for every A ∈M we have λ(A) = λ(A∩E). If λ1, λ2 are two positive (not
necessarily finite) measures, or two complex measures on M, then we call them singular
and write

λ1⊥λ2
if they are supported on disjoint sets.

Let µ be a positive measure and h ∈ L1(µ). It is easy to show that the formula
λ(E) =

∫
E
h dµ defines a (signed or complex) measure which is absolutely continuous

with respect to µ. The fundamental theorem of Radon and Nikodym says that this is
basically the only method of producing measures absolutely continuous with respect to
the given one. Below we present a proof due to von Neumann which actually gives two
results simultaneously: the classical Lebesgue decomposition theorem which says that
any complex measure has a uniquely determined singular part and absolutely continuous
part (assertion (a)) and the mentioned Radon–Nikodym theorem which represents the
absolutely continuous part as an intergal.
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Theorem 6.4 (Lebesgue–Radon–Nikodym theorem). Let M be a σ-algebra of sub-
sets of X. Let µ be a σ-finite positive measure on M and λ a complex measure on M.

(a) There is a uniquely determined pair of complex measures (λa, λs) on M such that

λ = λa + λs, λa�µ, λs⊥µ. (6.1)

Moreover, λa⊥λs and if λ is positive, then λa and λs are also positive.

(b) There is a unique function h ∈ L1(µ) such that

λa(E) =

∫
E

h dµ (E ∈M). (6.2)

Proof. First, we remark that we can reduce the proof to the case where both µ and λ are
positive and finite. So, assume that the result has been proved in this particular case.
In the first step, if µ is positive σ-finite and λ is positive finite, pick a disjoint family of
measurable sets (Xn)∞n=1 such that µ(Xn) < ∞ for each n ∈ N. Consider the σ-algebra
Mn = {E ∩Xn : E ∈M} of subsets of Xn and let µn and λn be the restrictions of µ and
λ to Mn. We get a sequence of Lebesgue decompositions:

λn = λ(n)a + λ(n)s , λ(n)s �µn, λ(n)s ⊥µn,

as well as a sequence of functions hn ∈ L1(µn) such that λn(E) =
∫
E
hn dµn for all n ∈ N

and E ∈Mn. Then, the formulas

λa(E) =
∞∑
n=1

λ(n)a (E ∩Xn), λs(E) =
∞∑
n=1

λ(n)s (E ∩Xn)

give the absolutely continuous and singular parts in the Lebesgue decomposition of λ. On
the other hand, the function h : X → R defined by h(x) = hn(x), for x ∈ Xn, represents
the measure λ as the integral with respect to µ. Notice that h ∈ L1(µ) because λ(X) <∞.

Now, assume that µ is still positive and σ-finite, but λ is a complex measure. Then
λ = λ1 + iλ2, where λ1, λ2 are signed measures, the real and imaginary parts of λ. By
the Hahn decomposition theorem (see Theorem 3.22), we can write both these measures
as differences of positive finite measures (positive and negative parts):

λ1 = λ+1 − λ−1 , λ2 = λ+2 − λ−2

Applying the previous part to µ and each of the measures λ±i (i = 1, 2) we obtain the
Lebesgue decomposition of λ in an obvious way. If h±i ∈ L1(µ) yield the integral repre-
sentation of λ±i , then plainly h ∈ L1(µ) defined by h = (h+1 − h−1 ) + i(h+2 − h−2 ) gives the
integral representation of λ.

For proving the uniqueness of λa and λs, suppose we have two pairs (λa, λs) and (λ′a, λ
′
s)

which give Lebesgue’s decomosition of λ with respect to µ, i.e. pairs of measures satisfying
all the properties listed in (6.1). Then λ′a−λa = λs−λ′s and both sides represent a measure
which is simultaneously absolutely continuous and singular with respect to µ. From this
it follows easily that they are both the zero measure, that is, λa = λ′a and λs = λ′s.

From now on, we assume that µ and λ are positive finite measures.
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Define ϕ = λ + µ. An elementary verification, by the definition of Lebesgue integral,
shows that

∫
X
f dϕ =

∫
X
f dλ +

∫
X
f dµ for every f ∈ L1(ϕ). Hence, by the standard

Cauchy–Schwarz inequality for integrals,∣∣∣ ∫
X

f dλ
∣∣∣ ≤ ∫

X

|f | dλ ≤
∫
X

|f | dϕ ≤ (ϕ(X))1/2
(∫

X

|f |2 dϕ
)1/2

.

This estimate shows that the map

L1(ϕ) 3 f 7−→
∫
X

f dλ

is a continuous linear functional (with norm at most (ϕ(X))1/2 <∞), that is, an element
of (L2(ϕ))∗. By the Riesz representation theorem (Theorem 5.7), there exists a function
g ∈ L2(ϕ) such that ∫

X

f dλ =

∫
X

fg dϕ for every f ∈ L2(ϕ). (6.3)

(Observe that we essentially used the fact that L2(ϕ) is complete, and hence a Hilbert
space, which is the content of Theorem 1.12.)

Let E ∈M, ϕ(E) > 0 and put f = 1E in equation (6.3). Since 0 ≤ λ ≤ ϕ, we obtain

0 ≤ 1

ϕ(E)

∫
E

g dϕ ≤ 1.

As it holds true for every set E of positive measure, we have 0 ≤ g(x) ≤ 1 a.e. Here, we
have just used the following simple observation: If ν is any positive measure, f ∈ L1(ν)
and S ⊆ C is a closed set such that the integral mean (ν(E))−1

∫
X
f dν ∈ S for every

measurable set E with ν(E) > 0, then f(x) ∈ S for a.e. To see this, note that C\S is the
union of countably many open balls disjoint from S. Hence, it is enough to prove that
for every open ball D ⊂ C \ S we have ν(f−1(D)) = 0. Let D be centered at x0 and of
radius r > 0, and suppose that E := f−1(D) is of positive measure. Then∣∣∣ 1

ν(E)

∫
E

f dν − x0
∣∣∣ ≤ 1

ν(E)

∫
E

|f(x)− x0| dν(x) < r

which means that the integral mean over E belongs to the ball D, thus it is disjoint
from S. This, however, contradicts our assumption. We are going to use the just proved
proposition a couple of times in the sequel.

By modifying g on a measure zero set, we can assume that 0 ≤ g(x) ≤ 1 holds true
for every x ∈ X. Let us rewrite formula (6.3) in the form∫

X

(1− g)f dλ =

∫
X

fg dµ for every f ∈ L2(ϕ). (6.4)

Define
A = {x ∈ X : 0 ≤ g(x) < 1} and B = {x ∈ X : g(x) = 1},

and the corresponding restricted measures:

λa(E) = λ(A ∩ E) and λs(E) = λ(B ∩ E) (E ∈M).
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Putting f = 1B in equation (6.4) we see that µ(B) = 0 and hence λs ⊥ µ. Similarly, if
µ(E) = 0, then (6.4) shows that ∫

A∩E
(1− g) dλ = 0

and since 1 − g is positive on A, we obtain λa(E) = 0. This shows that λa�µ (which,
of course, will also follow once we prove the Radon–Nikodym representation). Obviously,
λ = λa + λs and hence we have proved assertion (a).

Since g is bounded, we can put f := (1 + g + g2 + . . .+ gn)1E in equation (6.4), with
any n ∈ N and E ∈M. Thus, we obtain∫

E

(1− gn+1) dλ =

∫
E

g(1 + g + g2 + . . .+ gn) dµ.

Notice that the left-hand side converges to λ(A ∩ E) = λa(E) as n → ∞ . On the
other hand, the sequence (g(1 + g + g2 + . . . + gn))∞n=1 is pointwise monotone increasing
and converges to some nonnegative measurable function h. By Lebesgue’s theorem on
monotone convergence, the right-hand side converges to

∫
E
h dµ. Consequently,

λa(E) =

∫
E

h dµ.

The Radon–Nikodym theorem, which we have just proved, says that if µ is a σ-
finite positive measure, then every complex measure λa which is absolutely continuous
with respect to µ admits a representation (6.2) with some function h ∈ L1(µ), uniquely
determined as an element of L1(µ). Thus, it makes sense to call this h the Radon–Nikodym
derivative of λa with respect to µ and to use the notation

• h =
dλa
dµ

if h ∈ L1(µ) represents λa by formula (6.2).

Remark. The integral represenation (6.2) of the Radon–Nikodym theorem is still valid
under the assumption that λa is positive and σ-finite, however, we cannot guarantee that
h is then µ-integrable. In this case, h can be claimed to be just ‘locally’ integrable (see
Problem 5.14).

The following important corollary is a measure-theoretic analogue of the usual polar
decomposition of complex numbers.

Corollary 6.5. Let µ be a complex measure on a σ-algebra M of subsets of X. Then
there exists a measurable function h such that |h(x)| = 1 for every x ∈ X and

dµ = h d|µ|. (6.5)

Proof. Obviously, µ� |µ| and hence the Radon–Nikodym theorem produces a function
h ∈ L1(|µ|) satisfying (6.5). For any r > 0 consider the set Ar = {x ∈ X : |h(x)| < r}.
For any partition (Ej)

n
j=1 ∈ Π(Ar) we have

n∑
j=1

|µ(Ej)| =
n∑

j=1

∣∣∣ ∫
Ej

h d|µ|
∣∣∣ ≤ n∑

j=1

∫
Ej

|h| d|µ| =
∫
Ar

|h| d|µ| ≤ r|µ|(Ar).
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Passing to supremum we get |µ|(Ar) ≤ r|µ|(Ar). Therefore, |µ|(Ar) = 0 for r < 1, which
means that |h(x)| ≥ 1 a.e. on X.

On the other hand, for every E ∈M with |µ|(E) > 0 we have∣∣∣ 1

|µ|(E)

∫
E

h d|µ|
∣∣∣ =
|µ(E)|
|µ|(E)

≤ 1.

Hence, our observation concerning integral means (see the proof of Theorem 6.4) yields
that |h(x)| ≤ 1 a.e. on X. By modifying the function h on a measure zero set, we can
thus guarantee that |h(x)| = 1 for every x ∈ X.

Now, we present another important application of the Radon–Nikodym theorem.
Namely, we extend the duality between Lp(µ)- and Lq(µ)-spaces to arbitrary positive
(σ-finite for p = 1) measures. Recall that we proved it earlier only for the Lebesgue
measure on an interval (or, with no essential changes in the proof, on a half line or the
whole real line); see Theorem 3.6.

Theorem 6.6. Let (X,M, µ) be a measure space and p ∈ [1,∞). Let q ∈ (1,∞] be the
conjugate exponent, i.e. 1

p
+ 1

q
= 1 and:

• if p > 1, then µ can be an arbitrary positive measure;

• if p = 1 and q =∞ we assume that µ is σ-finite.

For every functional Λ ∈ Lp(µ)∗ there exists a unique g ∈ Lq(µ) such that

Λf =

∫
X

fg dµ for every f ∈ Lp(µ) (6.6)

and, moreover, ‖Λ‖ = ‖g‖q. On the other hand, any g ∈ Lq(µ) defines a continuous linear
functional on Lp(µ) via formula (6.6). Consequently, the map Λ 7→ g yields an isometric
isomorphism

Lp(µ)∗ ∼= Lq(µ).

Proof. For now, we deal with the σ-finite case and later we will explain how to reduce the
general cases to this one, for 1 < p, q <∞.

Fix any Λ ∈ Lp(µ)∗. Note that the uniqueness of g which represents Λ by formula
(6.6) is obvious. Also, by Hölder’s inequality, we easily get ‖Λ‖ ≤ ‖g‖q. We have to prove
the existence of g and that the reverse inequality holds true. For Λ = 0 we take g = 0, so
we assume that Λ 6= 0.

First, assume that µ(X) < ∞. Define λ(E) = Λ1E for E ∈ M and observe it
is a σ-additive set function. For, let E =

⋃∞
n=1En, where each En ∈ M, and define

SN =
⋃N

n=1En. Then

‖1E − 1SN
‖p = (µ(E \ SN))1/p −−−→

n→∞
0

and by the continuity of Λ, we have λ(SN)→ λ(E) (notice that it is not true for p =∞).
Hence, λ is a complex measure on M.

Plainly, µ(E) = 0 implies that λ(E) = 0, that is, λ�µ. By the Radon–Nikodym
theorem, there exists g ∈ L1(µ) such that

Λ1E =

∫
E

g dµ =

∫
X

1E · g dµ for every E ∈M.
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By linearity, the above formula holds true for any simple function in the place of 1E.
Since every bounded measurable function is the pointwise limit of a uniformly bounded
sequence of simple functions, we also have

Λf =

∫
X

fg dµ for every f ∈ L∞(µ). (6.7)

By standard measure-theoretic arguments, simple functions are also dense in Lp(µ). This
can be seen by first considering any nonnegative f ∈ Lp(µ), approximating it by sim-
ple functions (sn)∞n=1 and then using Lebesgue’s theorem on dominated convergence to
conclude that ‖sn − f‖p → 0. The case of a general complex-valued function f ∈ Lp(µ)
follows from then easily. Therefore, we have proved formula (6.6).

It remains to prove that g ∈ Lq(µ) and ‖Λ‖ ≥ ‖g‖q. For p = 1, we observe that for
each E ∈M we have ∣∣∣ ∫

E

g dµ
∣∣∣ ≤ ‖Λ‖·‖1E‖1 = ‖Λ‖µ(E).

Hence, in view of our observation on integral means (see the proof of Theorem 6.4), we
have ‖g‖∞ ≤ ‖Λ‖.

If p > 1, we take a measurable function α : X → C such that |α(x)| = 1 for every
x ∈ X and αg = |g|. For any n ∈ N, define

En = {x ∈ X : |g(x)| ≤ n} and f = 1En|g|
q−1α.

Then |f |p = |g|q on En, hence f ∈ L∞(µ) According to (6.7), we have∫
En

|g|q dµ =

∫
X

fg dµ = Λf ≤ ‖Λ‖ ·
(∫

En

|g|q dµ
)1/p

.

It follows that ∫
X

1En|g|
q dµ ≤ ‖Λ‖q

which means that ‖g‖q ≤ ‖Λ‖, as n was arbitrary. TBC
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