Functional analysis

Lecture 10: BOUNDEDNESS OF VARIATION OF COMPLEX MEASURES; THE RADON-NIKODYM THEOREM AND DUALITY $L_p(\mu)^* \cong L_q(\mu)$

Proof of Theorem 6.1(b). The main observation is the following

Claim. For every $E \in \mathfrak{M}$ with $|\mu|(E) = \infty$, there exists a decomposition $E = A \cup B$ such that $A, B \in \mathfrak{M}, A \cap B = \emptyset, |\mu(A)| > 1$ and $|\mu|(B) = \infty$.

Indeed, take any $t > 6(1 + |\mu(E)|)$ and choose a partition $(E_i)_{i=1}^n \in \Pi(E)$ such that $\sum_{i=1}^n |\mu(E_i)| > t$. By Lemma 6.2 applied to the complex numbers $z_i = \mu(E_i)$ (i = 1, ..., n) there is a set $S \subseteq \{1, ..., n\}$ for which $|\mu(A)| \ge 1$, where $A = \bigcup_{i \in S} E_i$. By the definition of t and our choice of S, we also have

$$|\mu(E \setminus A)| \ge |\mu(A)| - |\mu(E)| \ge 1.$$

Since the variation of μ is additive, at least one of the values $|\mu|(A)$ and $|\mu|(E \setminus A)$ must be infinite. Interchanging A with $E \setminus A$ if necessary, we obtain the desired decomposition.

Now, suppose that $|\mu|(X) = \infty$. Using the above Claim, by an easy induction, we construct a descending sequence of measurable sets $(B_n)_{n=0}^{\infty}$ with $B_0 = X$ such that for each $n \in \mathbb{N}_0$ we have:

- $B_n = A_{n+1} \cup B_{n+1},$
- $A_{n+1} \cap B_{n+1} = \emptyset$,
- $|\mu(A_{n+1})| \ge 1$ and $|\mu|(B_{n+1}) = \infty$.

Then, the sets $(A_n)_{n=1}^{\infty}$ are pairwise disjoint and the series $\sum_{n=1}^{\infty} \mu(A_n)$ is plainly divergent. This contradicts the fact that $|\mu|$ is σ -additive as the set $C = \bigcup_{n=1}^{\infty} A_n$ belongs to \mathfrak{M} . \Box

Definition 6.3. Let μ be a positive measure on a σ -algebra \mathfrak{M} and let λ be either a positive (not necessarily finite) measure or a complex-valued measure on \mathfrak{M} . We say that λ is *absolutely continuous* with respect to μ and write

 $\lambda \ll \mu$

provided that $\mu(E) = 0$ implies $\lambda(E) = 0$ for every $E \in \mathfrak{M}$. We say that λ is supported on a set $E \in \mathfrak{M}$ if for every $A \in \mathfrak{M}$ we have $\lambda(A) = \lambda(A \cap E)$. If λ_1, λ_2 are two positive (not necessarily finite) measures, or two complex measures on \mathfrak{M} , then we call them *singular* and write

 $\lambda_1 \perp \lambda_2$

if they are supported on disjoint sets.

Let μ be a positive measure and $h \in L_1(\mu)$. It is easy to show that the formula $\lambda(E) = \int_E h \, d\mu$ defines a (signed or complex) measure which is absolutely continuous with respect to μ . The fundamental theorem of Radon and Nikodym says that this is basically the only method of producing measures absolutely continuous with respect to the given one. Below we present a proof due to von Neumann which actually gives two results simultaneously: the classical Lebesgue decomposition theorem which says that any complex measure has a uniquely determined singular part and absolutely continuous part (assertion (a)) and the mentioned Radon–Nikodym theorem which represents the absolutely continuous part as an intergal.

Theorem 6.4 (Lebesgue–Radon–Nikodym theorem). Let \mathfrak{M} be a σ -algebra of subsets of X. Let μ be a σ -finite positive measure on \mathfrak{M} and λ a complex measure on \mathfrak{M} .

(a) There is a uniquely determined pair of complex measures (λ_a, λ_s) on \mathfrak{M} such that

$$\lambda = \lambda_{\rm a} + \lambda_{\rm s}, \quad \lambda_{\rm a} \ll \mu, \quad \lambda_{\rm s} \perp \mu. \tag{6.1}$$

Moreover, $\lambda_a \perp \lambda_s$ and if λ is positive, then λ_a and λ_s are also positive.

(b) There is a unique function $h \in L_1(\mu)$ such that

$$\lambda_{\mathbf{a}}(E) = \int_{E} h \,\mathrm{d}\mu \qquad (E \in \mathfrak{M}). \tag{6.2}$$

Proof. First, we remark that we can reduce the proof to the case where both μ and λ are positive and finite. So, assume that the result has been proved in this particular case. In the first step, if μ is positive σ -finite and λ is positive finite, pick a disjoint family of measurable sets $(X_n)_{n=1}^{\infty}$ such that $\mu(X_n) < \infty$ for each $n \in \mathbb{N}$. Consider the σ -algebra $\mathfrak{M}_n = \{E \cap X_n \colon E \in \mathfrak{M}\}$ of subsets of X_n and let μ_n and λ_n be the restrictions of μ and λ to \mathfrak{M}_n . We get a sequence of Lebesgue decompositions:

$$\lambda_n = \lambda_{\rm a}^{(n)} + \lambda_{\rm s}^{(n)}, \quad \lambda_{\rm s}^{(n)} \ll \mu_n, \quad \lambda_{\rm s}^{(n)} \perp \mu_n,$$

as well as a sequence of functions $h_n \in L_1(\mu_n)$ such that $\lambda_n(E) = \int_E h_n d\mu_n$ for all $n \in \mathbb{N}$ and $E \in \mathfrak{M}_n$. Then, the formulas

$$\lambda_{\mathbf{a}}(E) = \sum_{n=1}^{\infty} \lambda_{\mathbf{a}}^{(n)}(E \cap X_n), \quad \lambda_{\mathbf{s}}(E) = \sum_{n=1}^{\infty} \lambda_{\mathbf{s}}^{(n)}(E \cap X_n)$$

give the absolutely continuous and singular parts in the Lebesgue decomposition of λ . On the other hand, the function $h: X \to \mathbb{R}$ defined by $h(x) = h_n(x)$, for $x \in X_n$, represents the measure λ as the integral with respect to μ . Notice that $h \in L_1(\mu)$ because $\lambda(X) < \infty$.

Now, assume that μ is still positive and σ -finite, but λ is a complex measure. Then $\lambda = \lambda_1 + i\lambda_2$, where λ_1 , λ_2 are signed measures, the real and imaginary parts of λ . By the Hahn decomposition theorem (see Theorem 3.22), we can write both these measures as differences of positive finite measures (positive and negative parts):

$$\lambda_1 = \lambda_1^+ - \lambda_1^-, \quad \lambda_2 = \lambda_2^+ - \lambda_2^-$$

Applying the previous part to μ and each of the measures λ_i^{\pm} (i = 1, 2) we obtain the Lebesgue decomposition of λ in an obvious way. If $h_i^{\pm} \in L_1(\mu)$ yield the integral representation of λ_i^{\pm} , then plainly $h \in L_1(\mu)$ defined by $h = (h_1^+ - h_1^-) + i(h_2^+ - h_2^-)$ gives the integral representation of λ .

For proving the uniqueness of λ_a and λ_s , suppose we have two pairs (λ_a, λ_s) and (λ'_a, λ'_s) which give Lebesgue's decomosition of λ with respect to μ , i.e. pairs of measures satisfying all the properties listed in (6.1). Then $\lambda'_a - \lambda_a = \lambda_s - \lambda'_s$ and both sides represent a measure which is simultaneously absolutely continuous and singular with respect to μ . From this it follows easily that they are both the zero measure, that is, $\lambda_a = \lambda'_a$ and $\lambda_s = \lambda'_s$.

From now on, we assume that μ and λ are positive finite measures.

Define $\varphi = \lambda + \mu$. An elementary verification, by the definition of Lebesgue integral, shows that $\int_X f \, d\varphi = \int_X f \, d\lambda + \int_X f \, d\mu$ for every $f \in L_1(\varphi)$. Hence, by the standard Cauchy–Schwarz inequality for integrals,

$$\left|\int_{X} f \,\mathrm{d}\lambda\right| \leq \int_{X} |f| \,\mathrm{d}\lambda \leq \int_{X} |f| \,\mathrm{d}\varphi \leq (\varphi(X))^{1/2} \Big(\int_{X} |f|^{2} \,\mathrm{d}\varphi\Big)^{1/2}.$$

This estimate shows that the map

$$L_1(\varphi) \ni f \longmapsto \int_X f \, \mathrm{d}\lambda$$

is a continuous linear functional (with norm at most $(\varphi(X))^{1/2} < \infty$), that is, an element of $(L_2(\varphi))^*$. By the Riesz representation theorem (Theorem 5.7), there exists a function $g \in L_2(\varphi)$ such that

$$\int_X f \,\mathrm{d}\lambda = \int_X f g \,\mathrm{d}\varphi \quad \text{for every } f \in L_2(\varphi). \tag{6.3}$$

(Observe that we essentially used the fact that $L_2(\varphi)$ is complete, and hence a Hilbert space, which is the content of Theorem 1.12.)

Let $E \in \mathfrak{M}, \varphi(E) > 0$ and put $f = \mathbb{1}_E$ in equation (6.3). Since $0 \leq \lambda \leq \varphi$, we obtain

$$0 \le \frac{1}{\varphi(E)} \int_E g \,\mathrm{d}\varphi \le 1.$$

As it holds true for every set E of positive measure, we have $0 \leq g(x) \leq 1$ a.e. Here, we have just used the following simple observation: If ν is any positive measure, $f \in L_1(\nu)$ and $S \subseteq \mathbb{C}$ is a closed set such that the integral mean $(\nu(E))^{-1} \int_X f \, d\nu \in S$ for every measurable set E with $\nu(E) > 0$, then $f(x) \in S$ for a.e. To see this, note that $\mathbb{C} \setminus S$ is the union of countably many open balls disjoint from S. Hence, it is enough to prove that for every open ball $D \subset \mathbb{C} \setminus S$ we have $\nu(f^{-1}(D)) = 0$. Let D be centered at x_0 and of radius r > 0, and suppose that $E := f^{-1}(D)$ is of positive measure. Then

$$\left|\frac{1}{\nu(E)} \int_{E} f \, \mathrm{d}\nu - x_{0}\right| \le \frac{1}{\nu(E)} \int_{E} |f(x) - x_{0}| \, \mathrm{d}\nu(x) < r$$

which means that the integral mean over E belongs to the ball D, thus it is disjoint from S. This, however, contradicts our assumption. We are going to use the just proved proposition a couple of times in the sequel.

By modifying g on a measure zero set, we can assume that $0 \le g(x) \le 1$ holds true for every $x \in X$. Let us rewrite formula (6.3) in the form

$$\int_{X} (1-g)f \,\mathrm{d}\lambda = \int_{X} fg \,\mathrm{d}\mu \quad \text{for every } f \in L_{2}(\varphi).$$
(6.4)

Define

$$A = \{ x \in X : 0 \le g(x) < 1 \} \text{ and } B = \{ x \in X : g(x) = 1 \},\$$

and the corresponding restricted measures:

$$\lambda_{\mathbf{a}}(E) = \lambda(A \cap E)$$
 and $\lambda_{\mathbf{s}}(E) = \lambda(B \cap E)$ $(E \in \mathfrak{M}).$

Putting $f = \mathbb{1}_B$ in equation (6.4) we see that $\mu(B) = 0$ and hence $\lambda_s \perp \mu$. Similarly, if $\mu(E) = 0$, then (6.4) shows that

$$\int_{A \cap E} (1 - g) \,\mathrm{d}\lambda = 0$$

and since 1 - g is positive on A, we obtain $\lambda_{a}(E) = 0$. This shows that $\lambda_{a} \ll \mu$ (which, of course, will also follow once we prove the Radon–Nikodym representation). Obviously, $\lambda = \lambda_{a} + \lambda_{s}$ and hence we have proved assertion (a).

Since g is bounded, we can put $f := (1 + g + g^2 + \ldots + g^n) \mathbb{1}_E$ in equation (6.4), with any $n \in \mathbb{N}$ and $E \in \mathfrak{M}$. Thus, we obtain

$$\int_{E} (1 - g^{n+1}) \, \mathrm{d}\lambda = \int_{E} g(1 + g + g^{2} + \ldots + g^{n}) \, \mathrm{d}\mu$$

Notice that the left-hand side converges to $\lambda(A \cap E) = \lambda_{a}(E)$ as $n \to \infty$. On the other hand, the sequence $(g(1 + g + g^{2} + \ldots + g^{n}))_{n=1}^{\infty}$ is pointwise monotone increasing and converges to some nonnegative measurable function h. By Lebesgue's theorem on monotone convergence, the right-hand side converges to $\int_{E} h \, d\mu$. Consequently,

$$\lambda_{\mathbf{a}}(E) = \int_{E} h \,\mathrm{d}\mu.$$

The Radon–Nikodym theorem, which we have just proved, says that if μ is a σ -finite positive measure, then every complex measure $\lambda_{\rm a}$ which is absolutely continuous with respect to μ admits a representation (6.2) with some function $h \in L_1(\mu)$, uniquely determined as an element of $L_1(\mu)$. Thus, it makes sense to call this h the Radon–Nikodym derivative of $\lambda_{\rm a}$ with respect to μ and to use the notation

•
$$h = \frac{\mathrm{d}\lambda_{\mathrm{a}}}{\mathrm{d}\mu}$$
 if $h \in L_1(\mu)$ represents λ_{a} by formula (6.2).

Remark. The integral representation (6.2) of the Radon–Nikodym theorem is still valid under the assumption that λ_a is positive and σ -finite, however, we cannot guarantee that h is then μ -integrable. In this case, h can be claimed to be just 'locally' integrable (see **Problem 5.14**).

The following important corollary is a measure-theoretic analogue of the usual polar decomposition of complex numbers.

Corollary 6.5. Let μ be a complex measure on a σ -algebra \mathfrak{M} of subsets of X. Then there exists a measurable function h such that |h(x)| = 1 for every $x \in X$ and

$$\mathrm{d}\mu = h \,\mathrm{d}|\mu|.\tag{6.5}$$

Proof. Obviously, $\mu \ll |\mu|$ and hence the Radon–Nikodym theorem produces a function $h \in L_1(|\mu|)$ satisfying (6.5). For any r > 0 consider the set $A_r = \{x \in X : |h(x)| < r\}$. For any partition $(E_j)_{j=1}^n \in \Pi(A_r)$ we have

$$\sum_{j=1}^{n} |\mu(E_j)| = \sum_{j=1}^{n} \left| \int_{E_j} h \, \mathrm{d}|\mu| \right| \le \sum_{j=1}^{n} \int_{E_j} |h| \, \mathrm{d}|\mu| = \int_{A_r} |h| \, \mathrm{d}|\mu| \le r |\mu| (A_r).$$

Passing to supremum we get $|\mu|(A_r) \leq r|\mu|(A_r)$. Therefore, $|\mu|(A_r) = 0$ for r < 1, which means that $|h(x)| \geq 1$ a.e. on X.

On the other hand, for every $E \in \mathfrak{M}$ with $|\mu|(E) > 0$ we have

$$\left|\frac{1}{|\mu|(E)}\int_{E} h \,\mathrm{d}|\mu|\right| = \frac{|\mu(E)|}{|\mu|(E)} \le 1.$$

Hence, our observation concerning integral means (see the proof of Theorem 6.4) yields that $|h(x)| \leq 1$ a.e. on X. By modifying the function h on a measure zero set, we can thus guarantee that |h(x)| = 1 for every $x \in X$.

Now, we present another important application of the Radon–Nikodym theorem. Namely, we extend the duality between $L_p(\mu)$ - and $L_q(\mu)$ -spaces to arbitrary positive (σ -finite for p = 1) measures. Recall that we proved it earlier only for the Lebesgue measure on an interval (or, with no essential changes in the proof, on a half line or the whole real line); see Theorem 3.6.

Theorem 6.6. Let (X, \mathfrak{M}, μ) be a measure space and $p \in [1, \infty)$. Let $q \in (1, \infty]$ be the conjugate exponent, i.e. $\frac{1}{p} + \frac{1}{q} = 1$ and:

- if p > 1, then μ can be an arbitrary positive measure;
- if p = 1 and $q = \infty$ we assume that μ is σ -finite.

For every functional $\Lambda \in L_p(\mu)^*$ there exists a unique $g \in L_q(\mu)$ such that

$$\Lambda f = \int_X fg \,\mathrm{d}\mu \quad \text{for every } f \in L_p(\mu) \tag{6.6}$$

and, moreover, $\|\Lambda\| = \|g\|_q$. On the other hand, any $g \in L_q(\mu)$ defines a continuous linear functional on $L_p(\mu)$ via formula (6.6). Consequently, the map $\Lambda \mapsto g$ yields an isometric isomorphism

$$L_p(\mu)^* \cong L_q(\mu).$$

Proof. For now, we deal with the σ -finite case and later we will explain how to reduce the general cases to this one, for $1 < p, q < \infty$.

Fix any $\Lambda \in L_p(\mu)^*$. Note that the uniqueness of g which represents Λ by formula (6.6) is obvious. Also, by Hölder's inequality, we easily get $\|\Lambda\| \leq \|g\|_q$. We have to prove the existence of g and that the reverse inequality holds true. For $\Lambda = 0$ we take g = 0, so we assume that $\Lambda \neq 0$.

First, assume that $\mu(X) < \infty$. Define $\lambda(E) = \Lambda \mathbb{1}_E$ for $E \in \mathfrak{M}$ and observe it is a σ -additive set function. For, let $E = \bigcup_{n=1}^{\infty} E_n$, where each $E_n \in \mathfrak{M}$, and define $S_N = \bigcup_{n=1}^N E_n$. Then

$$\|\mathbb{1}_E - \mathbb{1}_{S_N}\|_p = (\mu(E \setminus S_N))^{1/p} \xrightarrow[n \to \infty]{} 0$$

and by the continuity of Λ , we have $\lambda(S_N) \to \lambda(E)$ (notice that it is not true for $p = \infty$). Hence, λ is a complex measure on \mathfrak{M} .

Plainly, $\mu(E) = 0$ implies that $\lambda(E) = 0$, that is, $\lambda \ll \mu$. By the Radon–Nikodym theorem, there exists $g \in L_1(\mu)$ such that

$$\Lambda \mathbb{1}_E = \int_E g \, \mathrm{d}\mu = \int_X \mathbb{1}_E \cdot g \, \mathrm{d}\mu \quad \text{for every } E \in \mathfrak{M}.$$

By linearity, the above formula holds true for any simple function in the place of $\mathbb{1}_E$. Since every bounded measurable function is the pointwise limit of a uniformly bounded sequence of simple functions, we also have

$$\Lambda f = \int_X fg \,\mathrm{d}\mu \quad \text{for every } f \in L_\infty(\mu). \tag{6.7}$$

By standard measure-theoretic arguments, simple functions are also dense in $L_p(\mu)$. This can be seen by first considering any nonnegative $f \in L_p(\mu)$, approximating it by simple functions $(s_n)_{n=1}^{\infty}$ and then using Lebesgue's theorem on dominated convergence to conclude that $||s_n - f||_p \to 0$. The case of a general complex-valued function $f \in L_p(\mu)$ follows from then easily. Therefore, we have proved formula (6.6).

It remains to prove that $g \in L_q(\mu)$ and $\|\Lambda\| \ge \|g\|_q$. For p = 1, we observe that for each $E \in \mathfrak{M}$ we have

$$\left|\int_{E} g \,\mathrm{d}\mu\right| \le \|\Lambda\| \cdot \|\mathbb{1}_{E}\|_{1} = \|\Lambda\|\mu(E).$$

Hence, in view of our observation on integral means (see the proof of Theorem 6.4), we have $\|g\|_{\infty} \leq \|\Lambda\|$.

If p > 1, we take a measurable function $\alpha \colon X \to \mathbb{C}$ such that $|\alpha(x)| = 1$ for every $x \in X$ and $\alpha g = |g|$. For any $n \in \mathbb{N}$, define

$$E_n = \{x \in X : |g(x)| \le n\}$$
 and $f = \mathbb{1}_{E_n} |g|^{q-1} \alpha$.

Then $|f|^p = |g|^q$ on E_n , hence $f \in L_{\infty}(\mu)$ According to (6.7), we have

$$\int_{E_n} |g|^q \,\mathrm{d}\mu = \int_X fg \,\mathrm{d}\mu = \Lambda f \le \|\Lambda\| \cdot \Big(\int_{E_n} |g|^q \,\mathrm{d}\mu\Big)^{1/p}.$$

It follows that

$$\int_X \mathbb{1}_{E_n} |g|^q \,\mathrm{d}\mu \le \|\Lambda\|^q$$

which means that $||g||_q \leq ||\Lambda||$, as n was arbitrary.

٦	1	B	(2
-		-	~	,